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Abstract

For each t ∈ R, we define the entire function

Ht (z) :=
∫
∞

0
etu2

Φ(u) cos(zu) du,

where Φ is the super-exponentially decaying function

Φ(u) :=
∞∑

n=1

(2π 2n4e9u
− 3πn2e5u) exp(−πn2e4u).

Newman showed that there exists a finite constant Λ (the de Bruijn–Newman constant) such that
the zeros of Ht are all real precisely when t > Λ. The Riemann hypothesis is equivalent to the
assertion Λ 6 0, and Newman conjectured the complementary bound Λ > 0. In this paper, we
establish Newman’s conjecture. The argument proceeds by assuming for contradiction that Λ < 0
and then analyzing the dynamics of zeros of Ht (building on the work of Csordas, Smith and
Varga) to obtain increasingly strong control on the zeros of Ht in the range Λ < t 6 0, until one
establishes that the zeros of H0 are in local equilibrium, in the sense that they locally behave (on
average) as if they were equally spaced in an arithmetic progression, with gaps staying close to
the global average gap size. But this latter claim is inconsistent with the known results about the
local distribution of zeros of the Riemann zeta function, such as the pair correlation estimates of
Montgomery.
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1. Introduction

Let H0 : C→ C denote the function

H0(z) :=
1
8
ξ

(
1
2
+

i z
2

)
, (1)

where ξ denotes the Riemann xi function

ξ(s) :=
s(s − 1)

2
π−s/2Γ

( s
2

)
ζ(s) (2)

and ζ is the Riemann zeta function. Then H0 is an entire even function with
functional equation H0(z) = H0(z), and the Riemann hypothesis is equivalent to
the assertion that all the zeros of H0 are real.

It is a classical fact (see [29, page 255]) that H0 has the Fourier representation

H0(z) =
∫
∞

0
Φ(u) cos(zu) du,

where Φ is the super-exponentially decaying function

Φ(u) :=
∞∑

n=1

(2π 2n4e9u
− 3πn2e5u) exp(−πn2e4u). (3)

The sum defining Φ(u) converges absolutely for negative u also. From Poisson
summation, one can verify that Φ satisfies the functional equation Φ(u) =
Φ(−u) (that is, Φ is even).

De Bruijn [4] introduced the more general family of functions Ht : C→ C for
t ∈ R by the formula

Ht(z) :=
∫
∞

0
etu2
Φ(u) cos(zu) du. (4)

As noted in [11, page 114], one can view Ht as the evolution of H0 under the
backward heat equation ∂t Ht(z) = −∂zz Ht(z). As with H0, each of the Ht is an
entire even function with functional equation Ht(z) = Ht(z). From results of
Pólya [20], it is known that if Ht has purely real zeros for some t , then Ht ′ has
purely real zeros for all t ′ > t . De Bruijn showed that the zeros of Ht are purely
real for t > 1/2. Strengthening these results, Newman [17] showed that there is
an absolute constant −∞ < Λ 6 1/2, now known as the De Bruijn–Newman
constant, with the property that Ht has purely real zeros if and only if t > Λ.
The Riemann hypothesis is then clearly equivalent to the upper bound Λ 6 0.
Newman conjectured the complementary lower boundΛ > 0 and noted that this
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The De Bruijn–Newman constant is non-negative 3

conjecture asserts that if the Riemann hypothesis is true, it is only ‘barely so’. As
progress towards this conjecture, several lower bounds on Λ were established;
see Table 1.

Table 1. Previous lower bounds on Λ. Dates listed are publication dates. The final four
results use the method of Csordas, Smith and Varga [11].

Lower bound on Λ References
−∞ Newman 1976 [17]
−50 Csordas–Norfolk–Varga 1988 [8]
−5 te Riele 1991 [22]
−0.385 Norfolk–Ruttan–Varga 1992 [18]
−0.0991 Csordas–Ruttan–Varga 1991 [10]
−4.379× 10−6 Csordas–Smith–Varga 1994 [11]
−5.895× 10−9 Csordas–Odlyzko–Smith–Varga 1993 [9]
−2.63× 10−9 Odlyzko 2000 [19]
−1.15× 10−11 Saouter–Gourdon–Demichel 2011 [23]

We also mention that the upper boundΛ 6 1/2 of de Bruijn [4] was sharpened
slightly by Ki, Kim and Lee [13] to Λ < 1/2. (In press: this bound has recently
been improved to Λ 6 0.22 in [21].) See also [5, 25] on work on variants of
Newman’s conjecture and [3, Ch. 5] for a survey.

The main result of this paper is to affirmatively settle Newman’s conjecture:

THEOREM 1. One has Λ > 0.

We now discuss the methods of the proof. Starting from the work of Csordas–
Smith–Varga [11], the best lower bounds on Λ were obtained by exploiting the
following repulsion phenomenon: if Λ was significantly less than zero, then
adjacent zeros of H0 (or of the Riemann ξ function) cannot be too close to
each other (as compared with the other nearby zeros). See [11, Theorem 1]
for a precise statement. In particular, a negative value of Λ gives limitations
on the quality of ‘Lehmer pairs’ [14], which roughly speaking refer to pairs
of adjacent zeros of the Riemann zeta function that are significantly closer to
each other than the average spacing of zeros at that level. The lower bounds
on Λ in [9, 11, 19, 23] then follow from numerically locating Lehmer pairs of
increasingly high quality. (See also [26] for a refinement of the Lehmer pair
concept used in the above papers.)

In principle, one could settle Newman’s conjecture by producing an
infinite sequence of Lehmer pairs of arbitrarily high quality. As suggested
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in [19], we were able to achieve this under the Gaussian Unitary
Ensemble (GUE) hypothesis on the asymptotic distribution of zeros of the
Riemann zeta function; we do not detail this computation here as it is
superseded by our main result. (A sketch of the argument may be found
at terrytao.wordpress.com/2018/01/20.) However, without the
GUE hypothesis, the known upper bounds on narrow gaps between zeros (for
example, [7]) do not appear to be sufficient to make this strategy work, even if
one assumes the Riemann hypothesis (which one can do for Theorem 1 without
loss of generality). Instead, we return to the analysis in [11] and strengthen the
repulsion phenomenon to a relaxation to local equilibrium phenomenon: if Λ
is negative, then the zeros of H0 are not only repelled from each other but will
nearly always be arranged locally as an approximate arithmetic progression, with
the gaps between zero mostly staying very close to the global average gap that
is given by the Riemann–von Mangoldt formula. (To illustrate the equilibrium
nature of arithmetic progressions under backward heat flow, consider the entire
functions Ft(z) := etu2 cos(zu) for some fixed real u > 0. These functions

all have zeros on the arithmetic progression {
2π(k+

1
2 )

u : k ∈ Z} and solve the
backward heat equation ∂t Ft = −∂zz F .)

To obtain the local relaxation to equilibrium under the hypothesis that Λ < 0
requires a sequence of steps in which we obtain increasingly strong control on
the distribution of zeros of Ht for Λ < t 6 0 (actually for technical reasons,
we will need to move t away from Λ as the argument progresses, restricting
instead to ranges such as Λ/2 6 t 6 0 or Λ/4 6 t 6 0). The first step is
to obtain Riemann–von Mangoldt type formulae for the number of zeros of Ht

in an interval such as [0, T ] or [T, T + α], where T > 2 and 0 < α 6 o(T ).
When t = 0, we can obtain asymptotics of T

4π log T
4π −

T
4π + O(log T ) and

α

4π log T+o(log T ) by the classical Riemann–von Mangoldt formula and a result
of Littlewood, respectively; this gives good control on the zeros down to length
scales α � 1. For Λ < t < 0, we were only able to obtain the weaker bounds
of T

4π log T
4π −

T
4π + O(log2 T ) and α

4π log T + o(log2 T ), respectively, down to
length scales α � log T , but it turns out that these bounds still (barely) suffice
for our arguments; see Section 3. A key input in the proof of the Riemann–von
Mangoldt type formula will be some upper and lower bounds for Ht(x−iy)when
y is comparable to log x ; see Lemma 4 for a precise statement. The main tool
used to prove these bounds is the saddle point method, in which various contour
integrals are shifted until they resemble the integral for the gamma function, to
which the Stirling approximation may be applied.

It was shown in [11] that in the region Λ < t 6 0, the zeros x j(t) of Ht are
simple, and furthermore evolve according to the system of ordinary differential
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equations (ODEs)

∂t xk(t) = 2
∑
j : j 6=k

1
xk(t)− x j(t)

; (5)

see Theorem 11 for a more precise statement. One can view this equation as
describing the dynamics of a system of ‘particles’ x j , in which every pair of
particles x j , xk experiences a repulsion that is inversely proportional to their
separation. (We caution however that the dynamics here are not Newtonian in
nature since (5) prescribes the velocity ∂t xk of each particle rather than the
acceleration ∂2

t xk . Nevertheless we found the physical analogy to be helpful in
locating the arguments used in this paper.) By refining the analysis in [11], we
can obtain a more quantitative lower bound on the gap x j+1(t) − x j(t) between
adjacent ‘particles’ (zeros), in particular establishing a bound of the form

log
1

x j+1(t)− x j(t)
� log2 j log log j

for all large j in the range Λ/2 6 t 6 0; see Proposition 13 for a more precise
statement. While far from optimal, this bound almost allows one to define the
Hamiltonian

H(t) :=
∑

j,k: j 6=k

log
1

|x j(t)− xk(t)|
,

although in practice we will have to apply some spatial cutoffs in j, k to make
this series absolutely convergent. For the sake of this informal overview, we
ignore this cutoff issue for now. The significance of this quantity is that system
(5) can (formally, at least) be viewed as the gradient flow for the Hamiltonian
H(t). In particular, there is a formal monotonicity formula

∂tH(t) = −4E(t), (6)

where the energy E(t) is defined as

E(t) :=
∑

j,k: j 6=k

1
|x j(t)− xk(t)|2

.

Again, in practice, one needs to apply spatial cutoffs to j, k to make this
quantity finite, and one then has to treat various error terms arising from this
cutoff, which among other things ‘renormalizes’ the summands 1

|x j (t)−xk (t)|2
so

that the renormalized energy vanishes when the zeros are arranged in the
equilibrium state of an arithmetic progression; we ignore these issues for the
current discussion. A further formal calculation indicates that E(t) is monotone
nonincreasing in time (so that H(t) is formally convex in time, as one would
expect for the gradient flow of a convex Hamiltonian). Exploiting (a variant
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of) equation (6), we are able to control integrated energies that resemble the
quantities

∫ 0
Λ/2 E(t) dt ; see first the weak preliminary integrated energy bound

in Proposition 15 and then the final integrated energy bound in Theorem 17. By
exploiting local monotonicity properties of the energy (and using a pigeonholing
argument of Bourgain [2]), we can then obtain good control (a truncated version)
of the energy E(t) at time t = 0, which intuitively reflects the assertion that the
‘particles’ x j(t) are close to local equilibrium at time t = 0. This implies that the
zeros of the Riemann zeta function behave locally like an arithmetic progression
on the average. However, this can be ruled out by the existing results on the local
distribution of zeros, such as pair correlation estimates of Montgomery [15]. As
it turns out, it will be convenient to make use of a closely related estimate of
Conrey, Ghosh, Goldston, Gonek and Heath-Brown [6].

It may be possible to use the methods of this paper to also address the
generalized Newman conjecture introduced in [25], but we do not pursue this
direction here.

REMARK 2. It is interesting to compare this with the results in [13, Theorem
1.14], which show that regardless of the value of Λ, the zeros of Ht will be
spaced like an arithmetic progression on average for any positive t .

REMARK 3. In press: We note that in forthcoming work, Alex Dobner has found
a proof that Λ > 0, which avoids the heat equation approach we have used here.
Dobner’s approach instead relies on a Riemann–Siegel type approximation for
Ht in order to demonstrate the existence of zeros off the critical line. There is
also some very intriguing numerical work of Rudolph Dwars (see the comments
to terrytao.wordpress.com/2018/12/28) that suggests that many of
the zeros of Ht , t < 0 away from the critical line organize around deterministic
curves.

1.1. Notation. Throughout the rest of the paper, we will assume for the sake
of contradiction that Newman’s conjecture fails:

Λ < 0.

In particular, this implies the Riemann hypothesis (which, as mentioned
previously, is equivalent to the assertion Λ 6 0).

We will have a number of logarithmic factors appearing in our upper bounds.
To avoid the minor issue of the logarithm occasionally being negative, we will
use the modified logarithm

log
+
(x) := log(2+ |x |)
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for several of these bounds. We also use the standard branch of the complex
logarithm, with imaginary part in the interval (−π, π], and the standard branch
z1/2
:= exp( 1

2 log z) of the square root, defined using the standard branch of the
complex logarithm.

Let Λ < t 6 0; then the zeros of Ht are all real and symmetric around the
origin. It is a result of Csordas, Smith and Varga [11, Corollary 1] that the zeros
are also distinct and avoid the origin. Thus we can express the zeros of Ht as
(x j(t)) j∈Z∗ , where Z∗ := Z\{0} are the nonzero integers,

0 < x1(t) < x2(t) < . . . ,

and x− j(t) = −x j(t) for all j > 1.
For any real numbers j− 6 j+, we use [ j−, j+]Z∗ to denote the discrete interval

[ j−, j+]Z∗ := { j ∈ Z∗ : j− 6 j 6 j+}.

We use the usual asymptotic notation X � Y , Y � X , or X = O(Y ) to denote
a bound of the form |X | 6 CY for some absolute constant C , and write X � Y
for X � Y � X . Note that as Λ is also an absolute constant, C can certainly
depend on Λ; thus, for instance, |Λ| � 1. If we need the implied constant C to
depend on other parameters, we will indicate this by subscripts, thus, for instance,
X = Oκ(Y ) denotes the estimate |X | 6 CκY for some C depending on κ . If
the quantities X, Y depend on an asymptotic parameter such as T , we write
X = oT→∞(Y ) to denote a bound of the form |X | 6 c(T )Y , where c(T ) is a
quantity that goes to zero as T →∞.

For X and Y depending on an asymptotic parameter T , we will also use the
notation X / Y or X = Õ(Y ) for X � Y logO(1) T in the last two sections of
this paper.

Furthermore, in sums that will appear which depend on a parameter T , we
say that indices j, k are nearby, and write j ∼T k if one has 0 < | j − k| <
(T 2
+ | j | + |k|)0.1.

We will use a marked sum to indicate principle value summation:
′∑
j

· · · = lim
J→∞

∑
| j |6J

· · · .

In cases where there is any chance of confusion for the range of summation, we
record the index being summed and use a colon to indicate its range; for example,
we write

∑
j : j 6=k to indicate that the summation is over j , and j is to not equal

k (where k is fixed outside the sum). Semicolons are used to separate additional
conditions.

We use the phrase for almost every t throughout this paper to denote that a
relation holds for all t except a set of null Lebesgue measure.
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2. Asymptotics of Ht

In this section, we establish some upper and lower bounds on Ht(z) and its
logarithmic derivative H ′t

Ht
(z). We will be able to obtain reasonable upper bounds

in the regime where z = x − iy with y = O(log
+

x), and obtain more precise
asymptotics when y � log

+
x (as long as the ratio y/ log

+
x is large enough);

this will be the key input for the Riemann–von Mangoldt type asymptotics in the
next section. More precisely, we show the following.

LEMMA 4. Let z = x − iκ log
+

x for some x > 0 and 0 6 κ 6 C, and let
Λ < t 6 0. Then one has

Ht(z)� exp
(
−
πx
8
+ OC(log2

+
x)
)
. (7)

(The reader is advised not to take the numerous factors of π ,
√

2 and so
on appearing in this section too seriously, as the exact numerical values of
these constants are not of major significance in the rest of the arguments.)
Furthermore, there is an absolute constant C ′ > 0 (not depending on C) such
that if κ > C ′, then one has the refinement

Ht(z) = exp
(
−
πx
8
+ OC(log2

+
x)
)
, (8)

as well as the additional estimate

H ′t
Ht
(z) =

i
4

log
(

i z
4π

)
+ OC

(
log
+

x
x

)
, (9)

using the standard branch of the complex logarithm.

REMARK 5. With a little more effort, one could replace the hypothesis Λ < t
here by −C < t ; in particular (in contrast to the remaining arguments in this
paper), these results are nonvacuous when Λ > 0. However, we will need
to assume Λ < t in the application of these estimates in the next section,
particularly with regard to the proof of (49). Our proof methods also allow for a
more precise version of asymptotic (8) (as one might expect given the level of
precision in (9)), but such improvements do not seem to be helpful for the rest of
the arguments in this paper. In the t = 0 case, one can essentially obtain Dirichlet
series expansions for 1

H0(z)
or H ′0

H0
(z), which allow one to also obtain bounds such

as (8) or (9) when the imaginary part of z is much smaller than log
+

x . However,
in the t < 0 case, there does not appear to be any usable series expansions for
1
Ht
(z) or H ′t

Ht
(z) that could be used to prove (8) or (9). Instead, we will prove these

estimates by computing Ht(z) to a high degree of accuracy, which we can only

https://doi.org/10.1017/fmp.2020.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.6
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do when y is greater than or equal to a large multiple of log
+

x in order to ensure
that the series expansions we have for Ht(z) converge rapidly.

We begin by treating the easy case t = 0, in which we can exploit identity (1).
We have the very crude bound

ζ(σ + iτ)� (1+ |τ |)O(1) (10)

whenever σ > 1/2 and τ ∈ R (this follows for instance from [29, Theorem
4.11]). In the region σ > 1/4, we also have the Stirling approximation (see for
example, [1, 6.1.41])

Γ (σ + iτ) = exp
((
σ + iτ −

1
2

)
log(σ + iτ)− (σ + iτ)

+ log
√

2π + O
(

1
|σ + iτ |

))
, (11)

where we use the standard branch of the logarithm; in particular,

Γ (σ + iτ)� exp
((
σ −

1
2

)
log |σ + iτ | − τ arctan

τ

σ
− σ

)
. (12)

As arctan τ

σ
=

π

2 sgn(τ )+ O( σ

σ+|τ |
), we have in particular that

Γ (σ + iτ)� exp
(
−
π

2
|τ | + O(σ log

+
(|σ | + |τ |))

)
.

Inserting these bounds into (1) and (2), we obtain the crude upper bound

H0(x − iy)� exp
(
−
π |x |

8
+ O((1+ y) log

+
(|x | + y))

)
(13)

for x ∈ R and y > 0. This gives the s = 0 case of (7). As is well known, when
σ > 2 (say), we can improve (10) to

|ζ(σ + iτ)| � 1

and so we obtain the improvement

H0(x − iy) = exp
(
−
π |x |

8
+ O((1+ y) log

+
(|x | + y))

)
when y > C ′ log

+
x (in fact, in this case it would suffice to have y > 4, say).

This gives the s = 0 case of (8). Finally, from taking logarithmic derivatives of
(1) and (2), one has

H ′0
H0
(z) =

i
2

(
1
s
+

1
s − 1

−
1
2

logπ +
1
2
Γ ′

Γ

( s
2

)
+
ζ ′

ζ
(s)
)
,

https://doi.org/10.1017/fmp.2020.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.6


B. Rodgers and T. Tao 10

where s := 1
2 +

i z
2 . From taking log-derivatives of (11) using the Cauchy integral

formula, one has the well-known asymptotic

Γ ′

Γ

( s
2

)
= log

s
2
+ O

(
1
|s|

)
for the digamma function Γ ′

Γ
, and from the Dirichlet series expansion ζ ′

ζ
(s) =

−
∑
∞

n=1
Λ(n)

ns �
∑
∞

n=2
log n
nRes , one can easily establish the bound

ζ ′

ζ
(s)�

1
|s|

in the regime C ′ log
+

x 6 y 6 C log x . Putting all this together, one obtains (9)
in this case.

Henceforth, we address the t < 0 case. We begin with the proof of the upper
bound (7). Here it will be convenient to exploit the fundamental solution for the
(backward) heat equation to relate Ht with H0. Indeed, for any t < 0, we have
the classical heat equation (or Gaussian) identity

etu2
exp(i zu) =

1
√

4π

∫
R

e−r2/4 exp(i(z + r |t |1/2)u) dr (14)

for any complex numbers z, u; replacing z, r by −z,−r and averaging, we
conclude that

etu2
cos(zu) =

1
√

4π

∫
R

e−r2/4 cos
(
(z + r |t |1/2)u

)
dr.

Multiplying byΦ(u), integrating u from 0 to infinity and using Fubini’s theorem,
we conclude that

Ht(z) =
1
√

4π

∫
R

e−r2/4 H0(z + r |t |1/2) dr. (15)

Applying (13), the triangle inequality and the hypothesisΛ< t 6 0, we conclude
that

Ht(x − iy)� exp
(
−
π |x |

8
+ O((1+ y) log

+
(|x | + y))

)
×

∫
R

exp
(
−

r 2

4
+ O((1+ y + |r |) log

+
r)
)

dr.

Using (1 + |r |) log
+

r 6 εr 2
+ Oε(1) and y log

+
r � εr 2

+ Oε(y2) for any
absolute constant ε > 0, we have

−
r 2

4
+ O(|r |)+ O((1+ y + |r |)(1+ log

+
r)) 6 −

r 2

8
+ O((1+ y)2),

https://doi.org/10.1017/fmp.2020.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.6


The De Bruijn–Newman constant is non-negative 11

thus arriving at the bound

Ht(x − iy)� exp
(
−
π |x |

8
+ O((1+ y) log

+
|x | + (1+ y)2)

)
.

Since y = OC(log
+

x), this gives (7).
To prove the remaining two bounds (8) and (9), it is convenient to cancel off

the t = 0 case that has already been established, and reduce to showing that

Ht

H0
(z) = exp

(
OC(log2

+
x)
)

(16)

and
H ′t
Ht
(z)−

H ′0
H0
(z)�C

log
+

x
x

(17)

when κ > C ′. To prove these estimates, the heat equation approach is less
effective due to the significant oscillation present in H0. Instead, we will use
the method of steepest descent (also known as the saddle point method) to shift
contours to where the phase is stationary rather than oscillating. We allow all
implied constants to depend on C . We may assume that x is larger than any
specified constant C ′′ (depending on C) as the case x = OC(1) follows trivially
from compactness, since the zeros of Ht for t > Λ are all real, so that Ht(z) is
bounded away from zero in this region of interest.

Now suppose that z = x − iy, where y = κ log
+

x for some C ′ 6 κ 6 C ; in
particular, C is large since C ′ is. As Φ is even, we may write (4) as

Ht(z) =
1
2

∫
R

etu2
Φ(u)ei zu du.

From (3) and Fubini’s theorem (which can be justified when t < 0), we conclude
that

Ht(z) =
1
2

∞∑
n=1

2π 2n4 It(πn2, 9+ y + i x)− 3πn2 It(πn2, 5+ y + i x), (18)

where It(b, ζ ) denotes the oscillatory integral

It(b, ζ ) :=
∫
R

exp(tw2
− be4w

+ ζw) dw, (19)

which is an absolutely convergent integral for t < 0 whenever Re b > 0.
We therefore need to obtain good asymptotics on It(b, ζ ) for b > 1 and ζ in

the region

Ω := {y + i x : x > C ′′;C ′ log
+

x 6 y 6 2C log
+

x}. (20)
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Observe that the phase tw2
−be4w

+ζw has a stationary point at the origin when
4b = ζ . In general, 4b will not equal ζ ; however, for any complex number w0 in
the strip {

w0 ∈ C : 0 6 Im(w0) <
π

8

}
, (21)

we see from shifting the contour in (19) to the horizontal line {w +w0 : w ∈ R}
that we have the identity

It(b, ζ ) = exp(tw2
0 + ζw0)It(be4w0, ζ + 2tw0) (22)

whenever b > 0 (so that be4w0 has a positive real part). We will thus be able to
reduce to the stationary phase case 4b = ζ if we can solve the equation

4be4w0 = ζ + 2tw0 (23)

in strip (21). This we do in the following lemma. (One could also
write w0 explicitly in terms of the Lambert W -function as w0 = −

ζ

2t +
1
4 W (− 8b

t exp(− 2ζ
t )), but we will not use this expression in this paper, and in fact

will not explicitly invoke any properties of the W -function in our arguments.)

LEMMA 6. If b > 1 and ζ ∈ Ω , then there exists a unique w0 = w0(b, ζ ) in
strip (21) such that (23) holds. Furthermore, we have the following estimates:

(i) Re(4be4w0) > 1.

(ii) (Precise asymptotic for small and medium b) If ζ = y + i x and b 6
x exp(100 x1/2

|t | ), then

w0 =
1
4

log
x

4b
+ OR

(
1
x

)
+ i

(
π

8
−

y
4x
−

t log x
4b

8x
+ OR

C

(
log2
+

x
x3/2

))
,

where the superscript in the O() notation indicates that these quantities are
real-valued.

(iii) (Crude bound for huge b) If ζ = y + i x and b > x exp( x1/2

|t | ), then Rew0 is
negative; in fact, we have

−Rew0 >
1
8 log

+
b.

Proof. The function w0 7→ 4be4w0 − 2tw0 traverses the graph {a + i(π |t |4 +

4be2a/|t |) : a ∈ R} on the upper edge { a
2|t | + i π8 : a ∈ R} of strip (21), while

the lower edge of the strip is of course mapped to the real axis. Since |t | 6 Λ
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and C,C ′ are large, the region Ω lies between these two curves, and so from the
argument principle (and observing that the map w0 7→ 4be4w0 − 2tw0 sends the
line segments {−R + iβ : 0 < β < π/8} and {R + iβ : 0 < β < π/8} well
to the left and right of ζ , respectively, for R large enough), for every ζ ∈ Ω ,
there exists exactly one w0 in strip (21) such that 4be4w0 −2tw0 = ζ , which is of
course equivalent to (23). The uniqueness implies that the holomorphic function
w0 7→ 4be4w0 − 2tw0 has a nonzero derivative at this value of w0.

Now write ζ = y + i x as per (20), and write w0 = α + iβ for some α ∈ R
and 0 < β < π/8. Taking real and imaginary parts in (23), we have the system
of equations

4be4α cos 4β = y + 2tα (24)

and
4be4α sin 4β = x + 2tβ. (25)

To prove (i), suppose for contradiction that Re(4be4w0) < 1; thus

4be4α cos 4β 6 1. (26)

Since t, β = O(1), we see from (25) that 4be4α sin 4β � x , and hence from
sin2 4β + cos2 4β = 1, we have

4be4α
� x

and hence (since b > 1) α 6 1
4 log

+
x +O(1). In particular,−2tα 6 |t |

2 log
+

x +
O(1). Inserting this into (24) and using (26), one then has

y 6
|t |
2

log
+

x + O(1),

which contradicts (20) since |t | 6 Λ and C ′ is large.
Now we show (ii). From (25) and sin 4β 6 1, t, β = O(1), one has

4be4α > x − O(1)

and hence on taking logarithms (and using the fact that b > 1 and x is large)

α >
1
4

log
x

4b
− O

(
1
x

)
. (27)

On the other hand, from squaring (24) and (25) and summing, we have

(4be4α)2 = (y + 2tα)2 + (x + 2tβ)2. (28)
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Crudely bounding x+2tβ = O(x), y = O(x), b > 1 and t = O(1), we conclude
that

e8α
� x2

+ α2

, which implies that α 6 O(log
+

x). From the hypothesis b 6 x exp(100 x1/2

|t | )

and (27), we also have α > −O(x1/2/t); thus tα � x1/2. Returning to (28) and
using 2tβ = O(1) and y � x1/2, we conclude that

(4be4α)2 = x2
+ O(x).

So on taking square roots

4be4α
= x + O(1) (29)

and hence on taking logarithms, we have the matching upper bound

α 6
1
4

log
x

4b
+ O

(
1
x

)
to (27). In particular,

y + 2tα = y +
t log x

4b

2
+ O

(
1
x

)
.

Inserting this and (29) into (24), we have

cos 4β =
y
x
+

t log x
4b

2x
+ O

(
1

x3/2

)
and hence (by Taylor expansion of the arc cosine function)

4β =
π

2
−

y
x
−

t log x
4b

2x
+ OC

(
log2
+

x
x3/2

)
,

giving (ii).
Finally, we prove (iii). From identity (28) and crudely bounding y, tβ = O(x),

we have
(4be4α)2 � x2

+ t2
|α|2

and hence either
e−4α
�

b
x

or
e−4α
�

b
|t ||α|

.

Under the hypothesis b > x exp( x1/2

|t | ), so that 1/|t | and x are O(b1/10) (say), so
both options force −α > 1

8 log b as claimed.
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We combine the above lemma with the following asymptotic.

LEMMA 7. Let b be a complex number with Re b > 1. Then

It(b, 4b) =
√
π

8
exp(−b)

(
1
√

b
+ O

(
1
|b|3/2

))
(30)

using the standard branch of the square root.

Proof. One could establish this from Laplace’s method, but we will instead use
the Stirling approximation (11). (We thank Alex Dobner for pointing out some
issues in the original proof of this lemma and suggesting a repaired proof, which
is reproduced here.) Writing

etw2
=

∫
R

e4iξw dµ(ξ)

, where µ is the Gaussian probability measure

dµ(ξ) :=
2
√
π |t |

e−4ξ2/|t |

of mean zero and variance |t |/8, and applying Fubini’s theorem, we obtain

It(b, 4b) =
∫
R

(∫
R

exp(−be4w
+ 4(b + iξ)w) dw

)
dµ(ξ).

Making the change of variables r = be4w (and contour shifting or analytic
continuation) and the definition Γ (s) =

∫
∞

0 e−rr s−1 dr of the Γ function, we
see that∫

R
exp(−be4w

+ 4(b + iξ)w) dw =
1
4

exp(−(b + iξ) log b)Γ (b + iξ)

and hence

It(b, 4b) =
1
4

∫
R

exp(−(b + iξ) log b)Γ (b + iξ) dµ(ξ).

We divide the integral into regions |ξ | 6 10|t |1/2|b|1/2 and |ξ | > 10|t |1/2|b|1/2. By
applying the Stirling approximation, the integral over the first region becomes

1
4

∫
|ξ |610|t |1/2|b|1/2

(
1+ O

(
1

|b + iξ |

)) √
2π

√
b + iξ
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× exp
(
(b + iξ) log

(
1+

iξ
b

)
− b − iξ

)
dµ(ξ).

Note that we may assume that |b| is sufficiently large so that |ξ | < |b|/2 in this
region (the small |b| case of the lemma follows trivially from compactness), and
so we have 1

√
b+iξ =

(
1+ O

(
|ξ |

|b|

))
1
√

b
and (b+ iξ) log(1+ iξ

b ) = iξ + O
(
|ξ |2

|b|

)
.

Substituting these expressions into the integrand, we get√
π

8b
exp(−b)

∫
|ξ |610|t |1/2|b|1/2

(
1+ O

(
1+ |ξ |2

|b|

))
dµ(ξ),

and now the integral evaluates to 1+ O( 1
|b| ). Thus it will suffice to establish the

tail bound∫
|ξ |>10|t |1/2|b|1/2

exp(−(b + iξ) log b)Γ (b + iξ) dµ(ξ)� exp(−Re(b))|b|−3/2.

By applying the triangle inequality and bounding the integrand with

|exp(−(b + iξ) log b)| 6 exp
(
−Re(b) log |b| +

π

2
(|b| + |ξ |)

)
and

|Γ (b + iξ)| 6 Γ (Re(b)) 6 exp(Re(b) log |b| − Re(b)),

we get the following upper bound:

exp
(
−Re(b)+

π

2
|b|
) 2
√
π |t |

∫
|ξ |>10|t |1/2|b|1/2

exp
(
π

2
|ξ | −

4ξ 2

|t |

)
.

Now again we assume |b| is large enough so that we have π

2 |ξ | −
4ξ2

|t | 6 −
ξ2

|t | for
all ξ in the given region, and hence the integral is bounded above by

exp
(
−Re(b)+

π

2
|b|
) 2
√
π |t |

∫
|ξ |>10|t |1/2|b|1/2

exp
(
−
ξ 2

|t |

)
� exp(−Re(b)−10|b|)

(say), and the claim follows.

From the above two lemmas and (22), we have the asymptotic

It(b, ζ ) =
√
π

8
exp(tw2

0 − be4w0 + ζw0)

(
1

√
be4w0

+ O
(

1
|be4w0 |3/2

))
(31)

for any b > 1 and ζ ∈ Ω , where w0 = w0(b, ζ ) is the quantity in Lemma 6.
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Now we can control sum (18). As before, we assume that z = x − iy, where
y = κ log

+
x for some C ′ 6 κ 6 C . From (18), one has

Ht(x − iy) =
1
2

∞∑
n=1

Q t,n, (32)

where Q t,n is the quantity

Q t,n := 2π 2n4 It(πn2, 9+ y + i x)− 3πn2 It(πn2, 5+ y + i x).

We first consider the estimation of Qn in the main case when n is not too huge,
in the sense that

n 6 x exp
(

100
x1/2

|t |

)
. (33)

In this case, if we apply Lemma 6(ii) with ζ = 9+ y+ i x and b = πn2, we have
that the quantity w0 = w0,t,n arising in that lemma obeys the asymptotics

w0 =
1
4

log
x

4πn2
+OR

(
1
x

)
+ i

(
π

8
−

9+ y
4x
−

t log x
4πn2

8x
+ OR

C

(
log2
+

x
x3/2

))
,

(34)
which when combined with (23) gives

4be4w0 = i x + OC(x1/2).

In particular, the factor 1√
be4w0
+ O

(
1

|be4w0 |3/2

)
in (31) can be expressed as

1
√

i x/4
(1+ OC(x−1/2)),

and thus by (31),

|It(πn2, 9+y+i x)| =
√
π

2x
exp

(
Re
(

tw2
0 −

ζ

4
−

tw0

2
+ ζw0

)
+ OC

(
x−1/2)) ,

where we have again used (23). From (34) (and using t = O(1) and y =
OC(log

+
x) to bound some small error terms), we can calculate the quantity

Re
(
tw2

0 −
ζ

4 −
tw0

2 + ζw0
)

to be

t
16

log2 x
4πn2

−
tπ 2

64
−

9+ y
4
−

t
8

log
x

4πn2
+

9+ y
4

log
x

4πn2
−
πx
8

+
9+ y

4
+

t log x
4πn2

8
+ OC

(
x−1/2) ,

https://doi.org/10.1017/fmp.2020.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.6


B. Rodgers and T. Tao 18

and thus on cancelling and gathering terms, we obtain

|It(πn2, 9+ y + i x)| =
( x

4πn2

) 9+y
4

Jt K t,n exp(OC(x−1/2, ))

where Jt = Jt(x) and K t,n = K t,n(x) are the positive quantities

Jt :=

√
π

2x
exp

(
t

16
log2 x

4π
−

tπ 2

64
−
πx
8

)
(35)

and

K t,n := exp
(
−

t
4

(
log

x
4π

)
log n +

t
4

log2 n
)
.

A similar computation gives

|It(πn2, 5+ y + i x)| =
( x

4πn2

) 5+y
4

Jt K t,n exp
(
OC

(
x−1/2)) .

In particular, we have the upper bound

Q t,n � n4
( x

4πn2

) 9+y
4

Jt K t,n

for 1 6 n 6 x exp(100 x1/2

|t | ), and for n = 1, we have the refinement

|Q t,1| = (2π 2
+ OC(x−1/2))

( x
4π

) 9+y
4

Jt . (36)

Using the crude bound

K t,b 6 exp
(
−

t
4

(
log

x
4π

)
log n

)
6 n−

t
4 log x ,

we conclude that
Q t,n � n−

1+y
2 −

t
4 log x
|Q t,1|.

Since y > C ′ log
+

x , the 2 6 n 6 x exp(100 x1/2

|t | ) terms sum to O(|Q t,1|/x); thus

∑
n6x exp(100 x1/2

|t | )

Q t,n =

(
1+ OC

(
1
x

))
Q t,1.

Also, from (35), we have

|Q t,1| �

( x
4π

) 9+y
4

Jt = exp
(
−
πx
8
+ OC(log2

+
x)
)
.
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Thus, to finish the proof of (8) (or (16)), one just needs to show that the
tail

∑
n>x exp(100 x1/2

|t | )
Q t,n is negligible compared with the main term Q t,1 =

exp(−πx
8 +OC(log2

+
x)). Suppose now that n > x exp(100 x1/2

|t | ). If we now apply
Lemma 6(iii) with ζ = 9 + y + i x and b = πn2, and write w0 = α + iβ with
0 < β < π/8, we have that α is negative with

−α > 1
8 log n,

while from (31) and (23) (and Lemma 6(i)), we have

It(πn2, 9+ y + i x)� exp
(

Re
(

tw2
0 −

ζ

4
−

tw0

2
+ ζw0

))
� exp

(
−|t ||α|2 −

|t ||α|
2
+ OC(log2

+
x)
)
,

and similarly for It(πn2, 5+ y+i x). Since log n > 100 x1/2

|t | , we have |α| > 10 x1/2

|t |
and thus

|t ||α|2 > 10x1/2 log n.

In particular, n4 exp(−|t ||α|2)� exp(−9x1/2 log n) and thus

Q t,n � exp(−8x1/2 log n + OC(log2
+

x))

(say). Summing, we conclude that∑
n>x exp(100 x1/2

|t | )

Q t,n � exp(−100x/|t |)

(say), which is certainly O(|Q1|/x). Inserting these bounds into (18), we
conclude that

Ht(x − iy) =

(
1
2
+ OC

(
log2
+

x
x

))
Q t,1,

which already gives (7). Sending t to 0, taking absolute values, and then dividing
using (36) and (35), we obtain after cancelling all the t-independent terms that∣∣∣∣ Ht

H0

∣∣∣∣ (x − iy) =

(
1+ OC

(
log2
+

x
x

))
exp

(
t

16
log2 x

4π
−

tπ 2

64

)
.

Since the ratio Ht
H0

is holomorphic in the region of interest, we can thus find a
holomorphic branch of log Ht

H0
for which

Re log
Ht

H0
(z)−

t
16

log2 z
4π i
= −

tπ 2

64
+ OC

(
log2
+

x
x

)
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for all z = x − iy in this region. Varying x, y by O(log
+

x) (adjusting the
constants C,C ′,C ′′ slightly as necessary) and using the Borel–Carathéodory
theorem and the Cauchy integral formula, we conclude that

d
dz

(
log

Ht

H0
(z)−

t
16

log2 z
4π i

)
= OC

(
log
+

x
x

)
,

which gives (17) after a brief calculation.

3. Riemann–von Mangoldt type formulae

For any Λ < t 6 0, the zeros of Ht are all real and simple [11, Corollary 1].
For any interval I ⊂ R, let Nt(I ) denote the number of zeros of Ht in I . The
classical Riemann–von Mangoldt formula (see for example, [29, Theorem 9.4]),
combined with (1), gives the asymptotic

N0([0, T ]) = Ψ (T )+ O(log
+

T ) (37)

for all T > 0, where we use Ψ : R+→ R to denote the function

Ψ (T ) :=
T

4π
log

T
4π
−

T
4π
. (38)

(It is traditional to also insert the lower order term− 7
8 here, but this term will not

be of use in our analysis and will therefore be discarded. The factors of 4π are
not of particular significance and may be ignored by the reader on a first read.)
For future reference, we record the derivative of Ψ as

Ψ ′(T ) =
1

4π
log

T
4π
; (39)

in particular, Ψ is increasing for T > 4π . Applying (37) with T replaced by
T + α and subtracting, we conclude from the mean value theorem that

N0([T, T + α]) =
α log

+
T

4π
+ O(log

+
T ) (40)

for all T > 0 and 0 6 α 6 C for any fixed C , where the implied constants in the
asymptotic notation are allowed to depend on C . Because we are assuming the
Riemann hypothesis (and hence the Lindelöf hypothesis), one can improve this
latter bound to

N0([T, T + α]) =
α log

+
T

4π
+ oT→∞(log

+
T ), (41)

a result of Littlewood (see [29, Theorem 13.6]). (Indeed, on the Riemann
hypothesis, one can improve the error term to O

(
log+ T

log+ log+ T

)
; see [29, Theorem
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14.13]. However, we will not need this further refinement in this paper.) A key
input in these bounds is a lower bound on |ζ(s)| when Re(s) is somewhat large,
for example, between 2 and 3; this is easily obtained through the Dirichlet series
identity 1

ζ(s) =
∑
∞

n=1
µ(n)

ns that is valid in this region.
Define the classical location ξ j of the j th zero for j > 1 to be the unique

quantity in (1,+∞) solving the equation

Ψ (ξ j) = j, (42)

and extend this to negative j by setting ξ− j := −ξ j . (As with the quantity w0

introduced in Lemma 6, one could express ξ j explicitly in terms of the Lambert
W function if desired as ξ j = 4πe exp(W ( j/e)), but we will not use this relation
in this paper.) Clearly, ξ j are increasing in j . For future reference, we record the
following bounds on ξ j .

LEMMA 8 (Spacing of the classical locations).

(i) For any j > 1, one has

ξ j = (1+ o| j |→∞(1))
4π j

log
+

j
. (43)

In particular, ξ j �
j

log+ j and log
+
ξ j � log

+
j .

(ii) For any j, k ∈ Z∗, one has

|ξk − ξ j | �
|k − j |

log
+
(|ξ j | + |ξk |)

. (44)

(iii) If 1 6 j � k, then one has the more precise approximation

ξk − ξ j =
4π(k − j)

log ξ j
+ O

(
|k − j |2

j log2 ξ j

)
. (45)

Of course, the implied constant in the error term in (45) can depend on the
implied constants in the hypothesis j � k.

Proof. If j > 1, then from (38), one has

ξ j log
+
ξ j = (1+ o j→∞(1))4π j, (46)

which implies that j 1/2
� ξ j � j (say), which implies that log

+
ξ j � log

+
j ;

substituting this back into (46) yields

ξ j �
j

log
+

j
.
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This in turn implies that log
+
ξ j = (1+ o j→∞(1)) log

+
j , and using (46) one last

time gives (42).
Now we obtain (ii). If j, k have opposing sign, then (44) follows from (43), so

by symmetry we may assume that j, k are both positive. If j is much larger than
k or vice versa, then bound (44) follows from (43) and the triangle inequality, so
we may now restrict attention to the case 1 6 j � k. Estimates (44) and (45) are
trivial for j = O(1), so we may assume j to be large.

From (42), we have
Ψ (ξk)− Ψ (ξ j) = k − j

and hence by the mean value theorem and (39), we have

1
4π

log
T

4π
(ξk − ξ j) = k − j

for some T between ξk and ξ j . From (43), we see that T � ξ j , and so (44) follows.
Furthermore, we can conclude that

T = ξ j + O(|ξk − ξ j |) = ξ j + O
(
|k − j |
log ξ j

)
and hence

log T = log ξ j + O
(
|k − j |
ξ j log ξ j

)
= log ξ j + O

(
|k − j |

j

)
and

1
log T

=
1

log ξ j
+ O

(
|k − j |
j log2 ξ j

)
,

giving (45).

Applying (37) to T = x j(0) for some j > 1, we conclude in particular that

Ψ (x j(0))− Ψ (ξ j) = O(log
+

x j(0)).

From (39) and the mean value theorem, we conclude that

x j(0) = ξ j + O(1) (47)

for all j > 1, and hence for all j ∈ Z∗ by symmetry. (One may wish to treat the
bounded case j = O(1) separately to avoid the minor issue that Ψ (T ) becomes
decreasing for T < 1.) In particular, from (43) and the fact that x1(0) > 0, we
conclude that

x j(0) �
j

log
+
ξ j
�

j
log
+

j

for all j > 1.
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In a similar vein, if 1 6 j < k 6 j + log
+

j , then from applying (41) with
T = x j(0) and α equal to (or slightly less than) xk(0)− x j(0), we have

k − j =
xk(0)− x j(0)

4π
log
+
ξ j + o j→∞(log

+
ξ j)

and hence
xk(0)− x j(0) =

4π(k − j)
log
+
ξ j
+ o j→∞(1).

Informally, this asserts that the zeros x j(0) behave like an arithmetic progression
of spacing 4π

log+ ξ j
at spatial scales between o(1) and 1. (In fact, when combined

with (47) and (45), we see that this behaviour persists for all scales between o(1)
and o(ξ j).)

In this section, we use the asymptotics on Ht obtained in the previous section
to establish analogous, but weaker, bounds for the zeros x j(t) of the functions
Ht , in which we lose an additional logarithm factor in the error estimates.

THEOREM 9 (Riemann–von Mangoldt type formulae). Let Λ < t 6 0, T > 0,
and let 0 6 α 6 C for some C > 0. Then one has

Nt([0, T ]) = Ψ (T )+ O(log2
+

T ) (48)

and

Nt([T, T + α log
+

T ]) =
α log2

+
T

4π
+ oT→∞(log2

+
T ). (49)

The decay rate in the oT→∞() error term is permitted to depend on C but is
otherwise uniform in α.

Repeating the previous analysis, we conclude the following.

COROLLARY 10 (Macroscopic structure of zeros). LetΛ < t 6 0. Then one has

x j(t) = ξ j + O(log
+
ξ j) (50)

for all j ∈ Z∗; in particular,

x j(t) �
j

log
+
ξ j
�

j
log
+

j
(51)

for all j > 1. We also have

xk(t)− x j(t) =
4π(k − j)

log
+
ξ j
+ o j→∞(log

+
ξ j) (52)

whenever 1 6 j < k 6 j + log2
+
ξ j .
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Informally, this corollary asserts that the zeros x j(t) behave like an arithmetic
progression of spacing 4π

log+ ξ j
at spatial scales between o(log

+
ξ j) and o(ξ j). This

level of spatial resolution is worse by a factor of log
+
ξ j than what one can

achieve for x j(0), but will still (barely) be enough for our applications. We
remark that a significantly sharper estimate (with an error term of just O(1) in
the analogue of (48)) is available for any fixed t > 0; see [13, Theorem 1.4]. (In
press: even sharper estimates have recently been obtained in [21, Theorem 1.5].)

We now turn to the proof of the two bounds in Theorem 9.

Proof of (48). We make use of the argument principle in exactly the same
manner as in the classical proof of the Riemann–von Mangoldt formula. By
perturbing T slightly if necessary, we may assume that T is not a zero of Ht .
Let κ > 0 be a sufficiently large absolute constant. Then the argument principle
yields

Nt([0, T ]) =
1

2π i

∫
Γ

H ′t
Ht
(z) dz,

where Γ is the counterclockwise contour carved out by a straight line from
iκ log

+
0 = iκ log 2 to −iκ log

+
0 = −iκ log 2, then along the curve ΓI

parameterized by x − iκ log
+

x for x ∈ [0, T ], then along the line ΓI I from
T − iκ log

+
T to T , then along the vertical line conjugate to ΓI I and the

curve conjugate to ΓI , leading back to i log 2. As the integrand is odd, the
integral along the line from iκ log

+
0 to−iκ log

+
0 vanishes. Using the symmetry

Ht(z) = Ht(z), we thus have

Nt([0, T ]) =
1
π

Im
(∫

ΓI

+

∫
ΓI I

)
H ′t
Ht
(z) dz.

From (9) and (39), one sees that

1
π

H ′t
Ht
(z) =

d
dz
(Ψ (i z))+ O

(
log
+

x
x

)
for z = x−iκ log

+
x on ΓI (extendingΨ to the right half-plane using the standard

branch of the logarithm), and hence by the fundamental theorem of calculus

1
π

Im
∫
ΓI

H ′t
Ht
(z) dz = ImΨ (iT + κ log

+
T )− Ψ (log

+
0)+ O(log2

+
T )

= Ψ (T )+ O(log2
+

T ).

On the other hand, if we let θ be a phase so that eiθ Ht(T − iκ log
+

T ) is real and
positive, then ∣∣∣∣Im ∫

ΓI I

H ′t
Ht
(z) dz

∣∣∣∣ 6 π(m + 1),
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where m is the number of zeros of Re eiθ Ht(z) along the contour ΓI I , since the
left-hand side is the change in arg eiθ Ht(z) as z varies over this contour, and for
each increment of π in the value of arg eiθ Ht(z), we must have that Re eiθ Ht(z)
is zero for some z. Note that the number of zeros of ReHt(z) along this contour
is the same as the number of zeros of

g(s) := 1
2 (e
−iθ Ht(is+ T )+ eiθ Ht(−is+ T ))

as s ranges along the line from 0 to κ log
+

T . Hence m is no more than the
number of zeros m ′ of g(s) in the disc of radius κ log

+
T centred at κ log

+
T .

We can estimate the count m ′ with the Jensen formula as follows. Let M be
the maximum of g(s) in a disc centred at κ log

+
T of radius 2κ log

+
T . Using (7)

and the conjugate symmetry of Ht(z), we have

M� e−
π

8 T+O(log2
+ T )
.

Since from (8) we have g(κ log
+

T ) = eiθ Ht(T − iκ log
+

T ) = e−
π

8 T+O(log2
+ T ),

it therefore follows from the Jensen formula (see for example, [16, Lemma 6.1])
that

m ′ � log2
+

T .

This induces a corresponding bound on the integral of H ′t
Ht

over ΓI I and therefore
establishes the claimed estimate for Nt([0, T ]).

Proof of (49). We will use a ‘limiting profile argument’ (also known as a
‘compactness argument’ or ‘normal families argument’), in which one extracts
and then studies a limit of suitably rescaled versions of a family of analytic
functions to conclude asymptotic information about these functions. We remark
that this sort of argument can also be used in a similar fashion to deduce
the Lindelöf hypothesis from the Riemann hypothesis: see Theorem 1 of
terrytao.wordpress.com/2015/03/01.

Suppose for contradiction that this claim failed; then there exists a sequence
Tn → ∞, and bounded sequences Λ < tn 6 0 and 0 6 αn 6 C , as well as an
ε > 0, such that∣∣∣∣∣Ntn ([Tn, Tn + αn log

+
Tn])−

αn log2
+

Tn

4π

∣∣∣∣∣ > ε log2
+

Tn (53)

for all n. By perturbing Tn slightly, we may assume that Htn does not vanish at
Tn or Tn + αn .

Let κ > 0 be a sufficiently large absolute constant. By the hypothesis Λ <

tn , the function Htn has no zeros in the lower half-plane. Thus we can define
holomorphic functions Fn on the lower half-plane by the formula
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Fn(z) :=
1

log2
+

Tn
log

Htn (Tn + z log
+

Tn)

Htn (Tn − iκ log
+

Tn)

with the branch of the logarithm chosen so that Fn(−iκ) = 0. From (7), we see
that Fn are uniformly bounded on any compact subset of the lower half-plane.
Thus, by Montel’s theorem (see [24, Section 3.2]), we may pass to a subsequence
and assume that Fn converge locally uniformly to a holomorphic function F
on the lower half-plane; since Fn all vanish on −iκ , F does also. Then by the
Cauchy integral formula, the derivatives

F ′n(z) =
1

log
+

Tn

H ′tn
Htn
(Tn + z log

+
Tn)

converge locally uniformly to F ′. Comparing this with (9), we conclude that

F ′(z) = 1
4

whenever the imaginary part of z is sufficiently large and negative. By unique
continuation, we thus have F ′(z) = 1

4 for all z in the lower half-plane; as F
vanishes on −iκ , we thus have

F(z) =
z + iκ

4

on the lower half-plane. Since Fn converges locally uniformly to F , we conclude
that

Htn (Tn + z log
+

Tn) = Htn (Tn − iκ log
+

Tn) exp
(

z + iκ + on→∞(1)
4

log2
+

Tn

)
(54)

uniformly for z in a compact subset of the lower half-plane. Similarly, since F ′n
converges locally to F , we have

H ′tn
Htn
(Tn + z log

+
Tn) =

1+ on→∞(1)
4

log
+

Tn (55)

uniformly for z in a compact subset of the lower half-plane.
Let δ > 0 be a small constant. As in the proof of (48), we can use the argument

principle (and a rescaling) to write

Ntn ([Tn, Tn + αn log
+

Tn])

=
log
+

Tn

π
Im
(∫

ΓI,n

+

∫
ΓI I,n

+

∫
ΓI I I,n

)
H ′tn
Htn
(Tn + z log

+
Tn) dz,
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where ΓI,n , ΓI I,n , ΓI I I,n trace the line segments from 0 to −iδ, from −iδ to
αn − iδ and from αn − iδ to αn , respectively. By (55), the contribution of the
ΓI I,n integral is α+on→∞(1)+O(δ)

4π log2
+

Tn (we allow the decay rate in the on→∞(1)
errors to depend on δ). Applying the Jensen formula argument used to prove (48),
we see that the contribution of the ΓI,n integral is bounded in magnitude by

�

∫ 1

0
log |gn(δ + 2δe2π iα)| − log |gn(δ)| dα,

where

gn(s) := 1
2

(
e−iθn Htn (Tn + is log

+
Tn)+ eiθn Htn (Tn − is log

+
Tn)
)
,

and the phase θn is chosen so that eiθn Htn (Tn − iδ log
+

Tn) is real and positive.
Applying (54) (and the functional equation Htn (z) = Htn (z)) when |Im(z)| >√
δ (say), and (7) (and the functional equation) otherwise, we conclude that the

ΓI,n integral is equal to (on→∞(1)+ O(
√
δ)) log2

+
Tn . We have this similarly for

the ΓI I I,n integral. Taking δ to be sufficiently small and n sufficiently large, we
contradict (53).

4. Dynamics of zeros

As remarked in Section 1, the functions Ht solve a backward heat equation.
As worked out in [11], this induces a corresponding dynamics on the zeros x j of
Ht .

THEOREM 11 (Dynamics of zeros). For Λ < t 6 0, the zeros x j(t) depend in a
continuously differentiable fashion on t for each j , with the equations of motion

∂t xk(t) = 2
′∑

j : j 6=k

1
xk(t)− x j(t)

(56)

for k ∈ Z∗ and Λ < t 6 0, where recall that the tick denotes principal value
summation over j ∈ Z∗ (which will converge thanks to (50) and (43)).

Proof. This follows from [11, Lemma 2.4] (the continuity of the derivative
following for instance from [11, Lemma 2.1]).

Informally, ODE (56) indicates that the zeros xk(t) will repel each other as
one goes forward in time. On the other hand, if xk(t) are arranged (locally, at
least) in an arithmetic progression, then ODE (56) suggests that the zeros will be
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in equilibrium. If xk are not arranged in an arithmetic progression, and instead
have some fluctuation in the spacing between zeros, then heuristically ODE
(56) suggests that the zeros would move away from the more densely spaced
regions and towards more sparsely spaced regions, thus converging towards
the equilibrium of an arithmetic progression. This is the intuition behind the
convergence to local equilibrium mentioned in Section 1.

One can estimate the speed of this local convergence to equilibrium by the
following heuristic calculation. Consider the zeros in a region [T, T+α] of space,
where T > 0 is large and α is reasonably small (for example, α = O(log

+
T )).

From Theorem 9 (or (43) and (50)), we see that we expect about α

4π log T zeros in
this interval, with an average spacing of 4π

log+ T . Suppose for the sake of informal
discussion that there is some moderate fluctuation in this spacing, for instance,
suppose that the left half of the interval contains about 1.5 α

8π log T zeros and the
right half contains only about 0.5 α

8π log
+

T zeros. Then a back of the envelope
calculation suggests that for xk(t) near the middle of this interval, the right-hand
side of (56) would be positive and have magnitude� α log+ T

α
= log

+
T . Since the

length of the interval is α, one may then predict that the time needed to relax to
equilibrium is about α/ log

+
T . Since we can evolve the flow for time |Λ| � 1,

one would expect to attain equilibrium at the final time t = 0 if the initial length
scale α of the fluctuation obeys the bound α = oT→∞(log

+
T ). Happily, this

upper bound is precisely what asymptotic (52) gives, so we heuristically expect
to (barely) be able to establish local equilibrium at time t = 0.

Of course, one has to make this intuition more precise. Our strategy for
doing so involves exploiting the formal gradient flow structure of ODE (56).
(This strategy was loosely inspired by the work of Erdős, Schlein and Yau [12]
exploiting the Hamiltonian structure of Dyson Brownian motion to obtain local
convergence to equilibrium since the equations for Dyson Brownian motion
resemble that in (56) but with an additional Brownian motion term. Indeed,
Dyson Brownian motion is the diffusion related to the Gibbs measure 1

Z e−βH

for the Hamiltonian studied here.) Indeed, one may formally write (56) as the
gradient flow

∂t xk(t) = −∂xk H((x j(t)) j∈Z∗),

where H is the formal ‘Hamiltonian’

H((x j) j∈Z∗) :=
∑

j,k∈Z∗: j 6=k

log
1

|xk − x j |
,

where we ignore for this nonrigorous discussion the fact that the series defining
H is not absolutely convergent. The Hamiltonian is convex, so one expects the
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quantity
H(t) := H((x j(t)) j∈Z∗) =

∑
j,k∈Z∗: j 6=k

H jk(t)

to be decreasing and convex in time, and for the state (x j(t)) j∈Z∗ to converge to
a critical point of the Hamiltonian, where

H jk(t) := log
1

|x j(t)− xk(t)|
(57)

denotes the Hamiltonian interaction between x j(t) and xk(t). Indeed, a formal
calculation using (56) yields the identity

∂tH(t) = −4E(t),

where E is the ‘energy’

E(t) :=
∑

k,k′∈Z∗: k 6=k′

Ekk′(t)

and
Ekk′(t) :=

1
|xk(t)− xk′(t)|2

(58)

denotes the ‘interaction energy’ between xk(t) and xk′(t), and we once again
ignore the issue that the series is not absolutely convergent. A further formal
calculation using (56) again eventually yields

∂t E(t) = −2
∑

k,k′∈Z∗: k 6=k′

 2
|xk(t)− xk′(t)|2

−

∑
k′′∈Z∗: k′′ 6=k,k′

1
(xk′′(t)− xk(t))(xk′′(t)− xk′(t))

2

,

suggesting that H(t) and E(t) are decreasing and that H(t) is convex, as
claimed.

In order to deal with the divergence of the infinite series appearing above, we
will need to truncate the Hamiltonian and energy before differentiating them.
The following lemma records some of the identities that arise when doing such
truncations.

LEMMA 12 (Identities). For brevity, we suppress explicit dependence on the time
parameter t ∈ (Λ, 0]. Let K ⊂ Z∗ be a finite set of some cardinality |K |. All
summation indices such as i, j, k are assumed to lie in Z∗.
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(i) (Dynamics of a gap, cf. [11, Lemma 2.4]) If j, k ∈ Z∗ are distinct, then

∂t(xk − x j) =
4

xk − x j
− 2(xk − x j)

∑
i : i 6=k, j

1
(xi − xk)(xi − x j)

.

(ii) (Cross-energy inequality, cf. [11, Lemma 2.5]) One has

∂t

∑
k∈K ; j 6∈K

E jk > −
∑

k∈K ; j 6∈K

8
(xk − x j)4

in the weak sense that∑
k∈K ; j 6∈K

E jk(t2)− E jk(t1) > −
∫ t2

t1

∑
k∈K ; j 6∈K

8
(xk − x j)4

(t) dt

whenever Λ < t1 < t2 6 0.

(iii) (Energy identity) One has

∂t

∑
k,k′∈K : k 6=k′

Ekk′ =
∑
j 6∈K

k,k′∈K : k 6=k′

4
(xk − xk′)2(xk − x j)(xk′ − x j)

− 2
∑

k,k′∈K : k 6=k′

 2
(xk − xk′)2

−

∑
k′′∈K : k′′ 6=k,k′

1
(xk′′ − xk)(xk′′ − xk′)

2

.

(iv) (Virial identity) One has

∂t

∑
k,k′∈K : k 6=k′

(xk − xk′)
2
= 4|K |2(|K | − 1)

−

∑
k,k′∈K : k 6=k′

(xk − xk′)
2
∑
j 6∈K

4
(xk − x j)(xk′ − x j)

.

(The terminology here is in analogy with the virial identity in N-body
classical gravitational physics; see for example, [27, Exercise 1.48].)

(v) (Hamiltonian identity) One has

∂t

∑
k,k′∈K : k 6=k′

Hkk′ = −4
∑

k,k′∈K : k 6=k′

Ekk′ + 2
∑
j 6∈K

k,k′∈K : k 6=k′

1
(x j − xk)(x j − xk′)

.
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A key point in identities (iii), (iv) and (v) is that if one ignores the ‘cross
terms’ involving interactions between indices in K (representing some ‘local
subsystem’ of particles) and indices outside of K (representing the ‘environment’
that subsystem interacts with), the right-hand side has a definite sign (negative
in the case of (iii) and (v) and positive in the case of (iv)). This gives a number
of useful ‘monotonicity formulae’ as long as cross terms are under control. As
discussed above, many of these various monotonicity formulae reflect the formal
convexity properties of the Hamiltonian H. With more effort, one can obtain a
precise formula for the defect in the inequality in (ii); see [11, Lemma 2.5].

Proof. From (56), one has

∂t xk − ∂t x j =
2

xk − x j
−

2
x j − xk

+

∑
i : i 6=k, j

2
xk − xi

−
2

xk − x j
,

which gives (i). Note that the series is now absolutely convergent thanks to (43)
and (50).

Now we prove (ii). By monotone convergence, it suffices to show that∑
k∈K

j∈[−R,R]Z∗ \K

E jk(t2)− E jk(t1) > −
∫ t2

t1

∑
k∈K

j∈[−R,R]Z∗ \K

8
(xk − x j)4

(t) dt

for all Λ < t1 6 t2 6 0 and all sufficiently large R. By the fundamental theorem
of calculus, it suffices to show that

∂t

∑
k∈K

j∈[−R,R]Z∗ \K

E jk > −
∑
k∈K

j∈[−R,R]Z∗ \K

8
(xk − x j)4

.

We can expand the left-hand side as

−2
∑
k∈K

j∈[−R,R]Z∗ \K

∂t(xk − x j)

(xk − x j)3
,

which by (i) becomes

−

∑
k∈K

j∈[−R,R]Z∗ \K

8
(xk − x j)4

+ 4
∑
k∈K

j∈[−R,R]Z∗ \K
i : i 6= j,k

1
(xk − x j)2(xi − xk)(xi − x j)

and so it will suffice to show that∑
k∈K

j∈[−R,R]Z∗ \K
i : i 6= j,k

1
(xk − x j)2(xi − xk)(xi − x j)

> 0.
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If R is large enough that [−R, R]Z∗ contains k, we can split this sum into three
parts, depending on whether i ∈ K , i ∈ [−R, R]Z∗\K or i 6∈ [−R, R]Z∗ . The
contribution of the case i ∈ K can be rewritten as∑

j 6∈K
k,k′∈K : k 6=k′

4(xk′ − x j)

(xk − x j)2(xk′ − x j)2(xk − xk′)
,

which equals ∑
j∈[−R,R]Z∗
k,k′∈K : k 6=k′

2
(xk − x j)2(xk′ − x j)2

after symmetrizing in k and k ′, which is clearly non-negative. Similarly the
contribution of the case i ∈ [−R, R]Z∗\K is∑

k∈K
j, j ′∈[−R,R]Z∗ \K : j 6= j ′

2
(xk − x j)2(xk − x j ′)2

,

which is also clearly non-negative. Finally, for i 6∈ [−R, R]Z∗ , all summands are
already non-negative. This gives (ii).

For (iii), we can similarly expand the left-hand side as

−2
∑

k,k′∈K : k 6=k′

∂t(xk − xk′)

(xk − xk′)3
,

which by (i) becomes

−

∑
k,k′∈K : k 6=k′

8
(xk − xk′)4

+ 4
∑

k,k′∈K :k 6=k′
i : i 6=k,k′

1
(xk − xk′)2(xi − xk)(xi − xk′)

.

To prove (iii), it thus suffices to establish the identity

∑
k,k′∈K : k 6=k′

 2
(xk − xk′)2

−

∑
k′′∈K : k′′ 6=k,k′

1
(xk′′ − xk)(xk′′ − xk′)

2

=

∑
k,k′∈K : k 6=k′

4
(xk − xk′)4

− 2
∑

k,k′,k′′∈K : k,k′,k′′ distinct

×
1

(xk − xk′)2(xk′′ − xk)(xk′′ − xk′)
.
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The left-hand side expands as∑
k,k′∈K : k 6=k′

4
(xk − xk′)4

−

∑
k,k′∈K : k 6=k′

4
(xk − xk′)2

∑
k′′∈K : k′′ 6=k,k′

1
(xk′′ − xk)(xk′′ − xk′)

+

∑
k,k′∈K : k 6=k′

∑
k′′∈K : k′′ 6=k,k′

1
(xk′′ − xk)2(xk′′ − xk′)2

+

∑
k,k′∈K : k 6=k′

∑
k′′,k′′′∈K : k′′ 6=k,k′

1
(xk′′ − xk)(xk′′ − xk′)(xk′′′ − xk)(xk′′′ − xk′)

.

The final sum can be rewritten as∑
k,k′,k′′,k′′′∈K : k,k′,k′′,k′′′ distinct

(xk − xk′ )(xk′′ − xk′′′ )

(xk′′ − xk)(xk′′ − xk′ )(xk′′′ − xk)(xk′′′ − xk′ )(xk − xk′ )(xk′′ − xk′′′ )
.

The denominator is a Vandermonde determinant and is totally antisymmetric
in k, k ′, k ′′, k ′′′. All the monomials appearing in the numerator disappear upon
antisymmetrization, so the final sum vanishes. To conclude the proof of (iii), it
suffices to show that∑

k,k′∈K : k 6=k′

∑
k′′∈K : k′′ 6=k,k′

1
(xk′′ − xk)2(xk′′ − xk′)2

=

∑
k,k′∈K :k 6=k′

2
(xk − xk′)2

∑
k′′∈K : k′′ 6=k,k′

1
(xk′′ − xk)(xk′′ − xk′)

.

The difference between the left-hand and right-hand sides can be written as∑
k,k′,k′′∈K : k,k′,k′′ distinct

(xk − xk′)
2
− 2(xk′′ − xk)(xk′′ − xk)

(xk′′ − xk)2(xk′′ − xk′)2(xk − xk′)2
.

The denominator is totally symmetric in k, k ′, k ′′, while the numerator
symmetrizes to zero, giving the claim.

Now we prove (iv). The left-hand side expands as

2
∑

k,k′∈K : k 6=k′

(xk − xk′)∂t(xk − xk′),

which by (i) becomes

8|K |(|K | − 1)− 4
∑

k,k′∈K : k 6=k′

(xk − xk′)
2
∑

i 6=k,k′

1
(xi − xk)(xi − xk′)

.
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It will thus suffice to show that∑
k,k′,k′′∈K : k,k′,k′′ distinct

(xk − xk′)
2

(xk′′ − xk)(xk′′ − xk′)
= −|K |(|K | − 1)(|K | − 2).

But the left-hand side can be written as∑
k,k′,k′′∈K : k,k′,k′′ distinct

(xk − xk′)
3

(xk′′ − xk)(xk′′ − xk′)(xk − xk′)
= −|K |(|K | − 1)(|K | − 2).

The denominator is totally antisymmetric in k, k ′, k ′′. The numerator antisymme-
trizes to −(xk′′ − xk)(xk′′ − xk′)(xk − xk′), giving the claim.

Finally we prove (v). The left-hand side expands as

−

∑
k,k′∈K : k 6=k′

∂t(xk − xk′)

xk − xk′
,

which by (i) becomes

−

∑
k,k′∈K : k 6=k′

4
(xk − xk′)2

+ 2
∑

k,k′∈K : k 6=k′

∑
i : i 6=k,k′

1
(xi − xk)(xi − xk′)

.

It thus suffices to show that the expression∑
k,k′,k′′∈K :k,k′,k′′ distinct

1
(xk′′ − xk)(xk′′ − xk′)

vanishes. But the summand antisymmetrizes to zero, giving the claim.

5. A weak bound on gaps

In order to analyse (truncated versions of) the Hamiltonian H(t) =∑
j 6=k H jk(t), we will need some upper bounds on the individual terms H jk(t). It

was shown in [11, Corollary 1] that these quantities are finite (that is, the zeros
are simple) when Λ < t 6 0. It turns out that by refining the analysis in [11]
(and by narrowing the range of times t to the region Λ/2 6 t 6 0), one can
establish a more quantitative lower bound.

PROPOSITION 13 (Lower bound on gaps). For any j ∈ Z∗ and anyΛ/2 6 t 6 0,
one has

max
k∈Z∗: k 6= j

H jk(t)� (log2
+

j) log
+

log
+

j. (59)
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The bound in (59) is probably not optimal, but for our application any bound
that grows more slowly than (say) | j |0.1 as j →∞ would suffice.

To prove this proposition, we first need the following variant of a result in [11].

LEMMA 14. Let K be a finite subset of Z∗ of cardinality |K | > 2, and letΛ/2 6
t 6 0. Then ∑

k,k′∈K : k 6=k′

(xk(t)− xk′(t))2 �
|K |3

1+
∑

k∈K
j 6∈K

E jk(t)
.

Informally, this lemma asserts that the gaps within K cannot be too small,
unless there is also a small gap between an element of K and an element outside
of K . The strategy will be to iterate this observation to show that a very small
gap will therefore propagate until it contradicts (52).

Proof. Let A = A(t) and B = B(t) denote the functions

A(t) :=
∑

k,k′∈K : k 6=k′

(xk(t)− xk′(t))2

B(t) :=
∑
k∈K
j 6∈K

Ek j(t).

The function A(t) is continuously differentiable. The corresponding claim for
B(t) is not obvious; however, the sum defining B(t) is uniformly convergent
(thanks to (51)) and hence B(t) is at least continuous. From Lemma 12(ii), we
have the lower bound

∂t ′B(t ′) > −8B(t ′)2

(cf. [11, Lemma 2.5]) in the weak sense for Λ < t ′ 6 0. In particular, if there
exists a time Λ < t− < t such that

sup
t−6t ′6t

B(t ′) = B(t−) = 2B(t),

then we have
B(t)− B(t−) > −8B(t)2(t − t−),

which rearranges as

t − t− >
1

8B(t)
.

By continuity, we conclude that B(t ′) cannot attain or exceed the value 2B(t)
anywhere in the interval (−Λ, t] ∩ (t − 1

8B(t) , t), that is to say that

B ′(t) < 2B(t)
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whenever
t −

1
8B(t)

,Λ < t ′ 6 t.

By hypothesis, this is a range of size at least

min
(
Λ

2
,

1
16B(t)

)
�

1
1+ B(t)

.

On the other hand, for t ′ in the above range, we see from Lemma 12(iv) that

∂t ′ A(t ′) = 4|K |2(|K | − 1)+ O(B(t ′)A(t ′))

= 4|K |2(|K | − 1)+ O(B(t)A(t ′))

and hence by Gronwall’s inequality, one has

A(t)�
4|K |2(|K | − 1)

1+ B(t)
,

giving the claim.

Now we fix a time Λ/2 6 t 6 0 and drop the dependence on t . For any finite
set K ⊂ Z∗ with |K | > 2, set δ(K ) := maxk,k′∈K |xk − xk′ | to be the largest gap
in K . Then ∑

k,k′∈K : k 6=k′

(xk − xk′)
2 6 |K |2δ(K )2,

and so from the above lemma, we have

1+
∑
k∈K
j 6∈K

Ek j > |K |−5δ(K )−2.

In particular, if δ(K ) 6 c|K |−5/2 for a sufficiently small absolute constant c > 0,
then we have ∑

k∈K
j 6∈K

Ek j > |K |−5δ(K )−2,

and hence by the pigeonhole principle, there exists k ∈ K such that∑
j 6∈K

Ek j � |K |−6δ(K )−2.

From (52) and (58), we have∑
j 6∈K

Ek j � 1+ (log2
+
ξk)min

j 6∈K
|xk − x j |

−2.
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We conclude that if δ(K ) 6 c|K |−3 for a sufficiently small c > 0, then there
exists k ∈ K such that

(log2
+
ξk)min

j 6∈K
|xk − x j |

−2
� |K |−6δ(K )−2

or equivalently
min
j 6∈K
|xk − x j | � |K |3δ(K ) log

+
ξk .

Now suppose that K is a discrete interval [k−, k+]Z∗ for some 1 < k− < k+. Then

min
j 6∈K
|xk − x j | > min(|xk− − xk−−1|, |xk+ − xk++1|),

and thus (assuming that δ(K ) 6 c|K |−3) we have

min(|xk− − xk−−1|, |xk+ − xk++1|)� |K |3δ(K ) log
+

k+,

which implies that
δ(K ′)� |K |3 log(k+)δ(K ) (60)

whenever δ(K ) 6 c|K |−3, where K ′ is either the interval K ′ = [k−− 1, k+]Z∗ or
K ′ = [k−, k+ + 1]Z∗ . In either case, we call K ′ an enlargement of K .

Now we can prove Proposition 13. By symmetry, we may assume j is positive.
We can also assume j is large, as the claim follows from compactness for
bounded j . As before, we suppress the dependence on t . It thus suffices to show
that

log
1

|x j+1 − x j |
� (log2 j) log log j

for large positive j .
By iterating (60) at most log j times starting from the interval K1 := [ j, j +

1]Z∗ , we can find a sequence

[ j, j + 1]Z∗ = K1 ⊂ K2 ⊂ · · · ⊂ Kr

of discrete intervals Ki = [k−,i , k+,i ]Z∗ for some 1 6 r 6 log2
+
ξ j with the

following properties:

(i) For each 1 6 i < r , Ki+1 an enlargement of Ki with δ(Ki+1) �

|Ki |
3δ(Ki) log

+
k+,i .

(ii) Either δ(Kr ) > c|Kr |
−3 or r + 1 > log2

+
ξ j .
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Since |Ki | 6 r + 1 � log2
+
ξ j � log2 j and k+,i 6 j + r � j , we have from

property (i) that
δ(Ki+1)� j log2 jδ(Ki)

for all 1 6 i < r , and hence

δ(Kr )� exp(O(log2 j log log j))δ(K1).

On the other hand, from property (ii), using the bound |Kr | 6 r + 1� log2 ξ j in
the first case and (52) and the pigeonhole principle in the second case, we have

δ(Kr )� log−6 ξ j � log−6 j.

Combining the two estimates, we obtain the claim.

6. A weak bound on integrated energy

In addition to truncations of the Hamiltonian, we will also need to control
truncations of the energy

∑
j 6=k E jk(t). Although Proposition 13 provides some

control on the summands here, it is too weak for our purposes (being of worse
than polynomial growth in j, k), and we will need the following integrated bound
that, while still weak, is at least of polynomial growth.

PROPOSITION 15 (Weak bound on integrated energy). Let J > 0. Then∫ 0

Λ/2

∑
J6 j<k62J

E jk(t) dt � J 2 logO(1)
+

J.

We will use this bound to justify an interchange of a derivative and an infinite
series summation in the next section.

Proof. We may take J to be large, as the claim is trivial for J in the compact
region J = O(1). For any discrete interval I , let Q I denote the quantity

Q I :=

∫ 0

Λ/2

∑
j,k∈I : j 6=k

E jk(t) dt.

From (52), we have a crude lower bound

Q[J,2J ]Z∗ � J log−O(1) J

while from Proposition 13 we have an extremely crude upper bound

Q[0.5J,3J ]Z∗ � exp(O(log2 J log log J )).
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The ratio between Q[0.5J,3J ]Z∗ and Q[J,2J ]Z∗ is thus less than (1+ J−0.1)0.5J/J 0.1 . By
the pigeonhole principle, we can then therefore find an interval K := [J−, J+]Z∗
containing [J, 2J ]Z∗ and contained in [0.5J + J 0.1, 3J − J 0.1

]Z∗ such that

QK ′ 6 (1+ J−0.1)QK , (61)

where K ′ := [J−− J 0.1, J++ J 0.1
]Z∗ is a slight enlargement of K . Next, we apply

Lemma 12(v) and use the fundamental theorem of calculus to obtain the identity∑
k,k′∈K : k 6=k′

Hkk′(Λ/2)− Hkk′(0)

= 4QK − 2
∫ 0

Λ/2

∑
j 6∈K

k,k′∈K : k 6=k′

1
(x j(t)− xk(t))(x j(t)− xk′(t))

dt.

From Proposition 13, the left-hand side is O(J 2 logO(1) J ); thus

QK � J 2 logO(1) J +
∫ 0

Λ/2

∑
j 6∈K

k,k′∈[J−,J+]Z∗ : k 6=k′

1
(x j(t)− xk(t))(x j(t)− xk′(t))

dt.

Using ab � a2
+ b2, we thus have

QK � J 2 logO(1) J +
∫ 0

Λ/2

∑
j 6∈K
k∈K

1
(x j(t)− xk(t))2

dt.

Using (52), the contribution to the integral of those j outside of K ′ may be
crudely bounded by O(J 2 logO(1) J ) (in fact, one can improve this bound to
O(J logO(1) J ) if desired, although this will not help us significantly here). The
contribution of those j inside K ′ may be bounded by

QK ′ − QK 6 J−0.1 QK ,

thanks to (61). We conclude that

QK � J 2 logO(1) J

, and the claim follows.

7. Strong control on integrated energy

As discussed previously, the strategy to establish convergence to local
equilibrium is to study (a suitable variant of) the formal Hamiltonian

H(t) =
∑

j,k∈Z∗: j 6=k

H jk(t)
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and its derivatives, with the intention of controlling (suitable variants of)
integrated energies such as ∫ 0

Λ/4

∑
j,k∈Z∗: j 6=k

E jk(t) dt.

Unfortunately, even with the bound just obtained in Proposition 13, the above
expression is far from being absolutely convergent. To address this issue, we
need to mollify and renormalize the Hamiltonian and the energy in a number
of ways. We renormalize the inverse square function x 7→ 1

|x |2 for x 6= 0 that
appears in the definition of the energy interactions E jk(t) by introducing the
modified potential

V (x) :=
1
|x |2
− 1+ 2(|x | − 1),

which (for positive x) is 1
x2 minus the linearization 1− 2(x − 1) of that function

at x = 1. As 1
x2 is convex, V is non-negative, and one can verify the asymptotics

V (x) �
1
|x |2

for |x | 6 1/2

V (x) � (|x | − 1)2 for 1/2 < |x | 6 2
V (x) � |x | for |x | > 2.

(62)

For any distinct j, k and any Λ/2 6 t 6 0, we define the renormalization

Ẽ jk(t) :=
1

|ξk − ξ j |
2

V
(

xk(t)− x j(t)
ξk − ξ j

)
of the interaction energy E jk(t); we observe that

Ẽ jk(t) = E jk(t)−
1

|ξk − ξ j |
2
+ 2

(xk(t)− ξk)− (x j(t)− ξ j)

(ξk − ξ j)3
. (63)

For any discrete interval I ⊂ Z∗, we define the renormalized energy

Ẽ I (t) :=
∑

j,k∈I : j 6=k

Ẽ jk(t);

this is clearly a non-negative quantity that is nondecreasing in I . It can also be
simplified up to negligible error as follows.
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LEMMA 16. If I = [I−, I+]Z∗ is a discrete interval and Λ/2 6 t 6 0, then

Ẽ I (t) =

( ∑
j,k∈I : j 6=k

E jk(t)−
1

|ξk − ξ j |
2

)
+ O(logO(1)

+
(|I−| + |I+|)).

Proof. By symmetry and the triangle inequality, we may assume without loss of
generality that 0 6 I− 6 I+; we may then assume that I+ is large, as the claim is
trivial for I+ in the compact region I+ = O(1). By (63), it suffices to show that∑

j,k∈I : j 6=k

(xk(t)− ξk)− (x j(t)− ξ j)

(ξk − ξ j)3
� logO(1) I+.

We may desymmetrize the left-hand side as

2
∑
j∈I

(x j(t)− ξ j)
∑

k∈I : k 6= j

1
(ξk − ξ j)3

.

By (50), it thus suffices to show that

∑
j∈I

∣∣∣∣∣ ∑
k∈I : k 6= j

1
(ξk − ξ j)3

∣∣∣∣∣� logO(1) I+. (64)

Consider the inner sum
∑

k∈I : k 6= j
1

(ξk−ξ j )3
. From (44), we see that the contribution

to this inner sum of those k with |k − j | > 1
2 j (say) is O

( logO(1) I+
j2

)
. For the

remaining range |k − j | < 1
2 j , we can use (45) to estimate

1
(ξk − ξ j)3

=
log3 ξ j

(4π)3
1

(k − j)3
+ O

(
logO(1) I+
j (k − j)2

)
,

and so on summing we obtain

∑
k∈I : k 6= j

1
(ξk − ξ j)3

=
log3 ξ j

(4π)3
∑

k∈I : 0<|k− j |< 1
2 j

1
(k − j)3

+ O
(

logO(1) I+
j

)
.

As k 7→ 1
k− j is odd around j , the sum on the right-hand side can be estimated as

O( 1
max(| j−I−|,|I+− j |)2 ). Using this bound, we obtain (64).

In this section, we will establish the following significant improvement to
Proposition 15.
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THEOREM 17. For any T > 0, one has∫ 0

Λ/4
Ẽ [0.5T log T,3T log T ]Z(t) dt = oT→∞(T log3

+
T ). (65)

The remainder of this section is devoted to a proof of Theorem 17. The claim
is trivial for T in any compact region T = O(1), so we may assume without
loss of generality that T is large. Recall the notation X / Y or X = Õ(Y )
for X � Y logO(1) T introduced in the notation section of the paper; this will
be convenient to use in the argument that follows. (Typically, when we use this
notation, we will also have some sort of power gain T−c that will safely absorb
all the logO(1) T factors.) Let ψT : Z∗→ R+ be the weight function

ψT ( j) :=
(

1+
| j |

T log T

)−100

. (66)

This is a smooth positive weight that is mostly localized to the region j =
O(T log T ) and fairly rapidly decaying away from this region.

We introduce the smoothly truncated renormalized energy

ẼT (t) :=
∑

j,k∈Z∗: j 6=k

ψT ( j)ψT (k)Ẽ jk(t) (67)

for Λ/2 6 t 6 0. This is clearly non-negative, and from Proposition 15, (66),
(62) and Fubini’s theorem, we see that ẼT is absolutely integrable in time (in
particular, it is finite for almost everyΛ/2 6 t 6 0). Since E jk are non-negative,
we see from (66) that to prove (65) it will suffice to show that∫ 0

Λ/4
ẼT (t) dt = oT→∞(T log3

+
T ). (68)

We have an analogue of Lemma 16.

LEMMA 18. For almost every Λ/2 6 t 6 0, one has

ẼT (t) =

 ∑
j,k∈Z∗: j 6=k

ψT ( j)ψT (k)
(

E jk(t)−
1

|ξk − ξ j |
2

)+ Õ(1).

Proof. For almost every t , one sees from Proposition 15, (66) and Fubini’s
theorem (and (51)) that the series∑

j,k: j 6=k

ψT ( j)ψT (k)
(

E jk(t)+
1

|ξk − ξ j |
2
+
|x j(t)| + |xk(t)|
|ξk − ξ j |

3

)
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is absolutely convergent. Thus, by Fubini’s theorem and (63), it will suffice to
show that ∑

j,k∈Z∗: j 6=k

ψT ( j)ψT (k)
(xk(t)− ξk)− (x j(t)− ξ j)

(ξk − ξ j)3
/ 1.

We may desymmetrize the left-hand side (again using Fubini’s theorem) as

2
∑
j∈Z∗

ψT ( j)(x j(t)− ξ j)
∑

k∈Z∗: k 6= j

ψT (k)
(ξk − ξ j)3

,

and so it will suffice to establish the bound∑
k∈Z∗: k 6= j

ψT (k)
(ξk − ξ j)3

/
1
| j |
+

1
T

for all j ∈ Z∗.
As in the proof of Lemma 16, we see from (44) that the contribution of those

k with |k − j | > 1
2 j is acceptable. For the remaining range |k − j | < 1

2 j , we
again use (45) to estimate

1
(ξk − ξ j)3

=
log3 ξ j

(4π)3
1

(k − j)3
+ Õ

(
1

j (k − j)2

)
and similarly

ψT (k) = ψT ( j)+ Õ
(
|k − j |

T

)
,

and the claim follows by direct computation using the fact that k 7→ 1
k− j is odd

around j .

Recall that two indices j, k ∈ Z∗ are said to be nearby, and we write j ∼T k,
if one has

0 < | j − k| < (T 2
+ | j | + |k|)0.1.

This is clearly a symmetric relation.
Next, for Λ/2 6 t 6 0, we define the smoothly truncated renormalized

Hamiltonian

H̃T (t) :=
∑

j,k∈Z∗: j∼T k

ψT ( j)ψT (k)
(

H jk(t)− log
1

|ξ j − ξk |

)
. (69)
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From (66), Proposition 13 and (45), we see that the sum here is absolutely
convergent for every Λ/2 6 t 6 0. We can also express it in terms of non-
negative quantities plus a small error, in a manner similar to Lemma 18, as
follows. We first introduce the renormalization

L(x) := log
1
|x |
+ |x | − 1

of the logarithm function x 7→ log 1
|x | ; this is a convex non-negative function on

R\{0} that vanishes precisely when |x | = 1 and obeys the asymptotics

L(x) � log
+

1
|x |

for 0 < |x | 6 1/2

L(x) � (|x | − 1)2 for 1/2 < |x | 6 2
L(x) � |x | for |x | > 2.

(70)

For any Λ/2 6 t 6 0 and distinct j, k ∈ Z∗, we define the normalization

H̃ jk(t) := L
(

x j(t)− xk(t)
ξ j − ξk

)
(71)

of the Hamiltonian interaction H jk(t); this is symmetric in j, k and non-negative,
vanishing precisely when xk(t)− x j(t) = ξk − ξ j .

LEMMA 19. For every Λ/2 6 t 6 0, one has

H̃T (t) =
∑

j,k∈Z∗: j∼T k

ψT ( j)ψT (k)H̃ jk(t)+ oT→∞(T log3
+

T ).

Proof. From (71), one has

H̃ jk(t) = H jk(t)− log
1

|ξ j − ξk |
−
(x j(t)− ξ j)− (xk(t)− ξk)

ξ j − ξk
,

so by (69) it suffices to show that∑
j,k∈Z∗: j∼T k

ψT ( j)ψT (k)
(x j(t)− ξ j)− (xk(t)− ξk)

ξ j − ξk
= oT→∞(T log3

+
T ).

Note from (43), (45), (51) and (66) that the sum here is absolutely convergent.
Desymmetrizing, it suffices to show that

∑
j∈Z∗

ψT ( j)|x j(t)− ξ j |

∣∣∣∣∣∣
∑

k∈Z∗: j∼T k

ψT (k)
ξ j − ξk

∣∣∣∣∣∣ = oT→∞(T log3 T ).
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The inner sum can be crudely bounded by Õ(1) for all j thanks to (66) and (45).
By (43), (50) and (66), it thus suffices to show that∑

k∈Z∗: j∼T k

ψT (k)
ξ j − ξk

= oT→∞(log T ) (72)

whenever T 0.5 6 | j | 6 T 1.5 (say). For j ∼T k, one has ψT (k) = ψT ( j) +
Õ(T−0.8), and the contribution of the error term is acceptable by (45), so it
suffices to show that ∑

k∈Z∗: j∼T k

1
ξ j − ξk

= oT→∞(log T ) (73)

whenever | j | > T 0.5. But from (45), we have

ξ j − ξk =
4π

log ξ j
( j − k)+ O

(
| j − k|2

| j | log2
+
ξ j

)
,

and hence
1

ξ j − ξk
=

log ξ j

4π
1

j − k
+ O

(
1
| j |

)
. (74)

As k 7→ log ξ j

4π
1

j−k is odd around j and the set {k : j ∼T k} is very nearly
symmetric around j , it is then easy to establish (73) as required.

In contrast to the non-normalized interaction H jk(t), the quantity H̃ jk(t) is
well controlled when k and j are far apart.

LEMMA 20 (Long-range decay of H̃ jk). Let j, k be distinct elements of Z∗, and
let t be in the range Λ/2 6 t 6 0. There exists a quantity ε( j) that goes to zero
as | j | → ∞, such that if |k − j | > ε( j)−1 log2

+
ξ j , then

H̃ jk(t)�
log4
+
(| j | + |k|)
|k − j |2

,

and if ε( j) log2
+
ξ j 6 |k − j | 6 ε( j)−1 log2

+
ξ j , one has the refinement

H̃ jk(t)� ε( j)2
log4
+

j
|k − j |2

.

Finally, in the remaining region |k − j | < ε( j) log2
+
ξ j , one has the crude bound

H̃ jk(t)� (log2
+

j) log
+

log
+

j.
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Proof. First, suppose that |k − j | > 1
2 | j | (so in particular |k − j | � | j | + |k|).

From (50), one has

xk(t)− x j(t) = ξk − ξ j + O(log
+
(| j | + |k|))

while from (44), one has

|ξk − ξ j | �
| j | + |k|

log
+
(| j | + |k|)

and thus
xk(t)− x j(t)
ξk − ξ j

− 1�
log2
+
(| j | + |k|)
| j | + |k|

,

and the claim then follows from (70) (noting that the case | j | + |k| = O(1) can
be treated by compactness).

Now suppose that ε( j)−1 log2
+
ξ j 6 |k− j | < 1

2 | j |. By symmetry, we can take
j positive; we may also assume j to be large, as the bounded case j = O(1)
may be treated by compactness. From (50), one then has

xk(t)− x j(t) = ξk − ξ j + O(log j)

and from (44), one has

|ξk − ξ j | �
|k − j |
log j

(75)

and hence
xk(t)− x j(t)
ξk − ξ j

− 1�
log2( j)
|k − j |

6 ε( j).

The claim then follows from (70).
Next, suppose that ε( j) log2

+
ξ j 6 |k − j | 6 ε( j)−1 log2

+
ξ j . In this case, from

(52) (iterated O(ε( j)−1) times) and (45), we have

xk(t)− x j(t) = ξk − ξ j + o j→∞(ε( j)−1 log j)

while from (44) we continue to have (75), and hence

xk(t)− x j(t)
ξk − ξ j

− 1 = o j→∞

(
ε( j)−1 log2( j)

|k − j |

)
,

with the decay rate in the o j→∞ notation independent of the choice of function
ε(). For ε( j) going to zero sufficiently slowly, the claim once again follows from
(70).

Finally, for the remaining case |k − j | < ε( j) log2
+
ξ j (which implies xk(t)−

x j(t) � log2
+

j thanks to (52)), the claim follows from Proposition 13 and (70).
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We call a (time-dependent) quantity moderately sized if it is of the form
O(T log3

+
T+ ẼT (t)), and negligible if it is of the form oT→∞(T log3

+
T+ ẼT (t)).

The following lemma gives some examples of moderately sized and negligible
quantities.

LEMMA 21. Let t be in the range Λ/2 6 t 6 0.

(i) The quantity ∑
j,k∈Z∗: j 6=k

ψT ( j)ψT (k)
|x j(t)− xk(t)|2

is moderately sized.

(ii) The quantity

(log
+

T )
∑

j,k∈Z∗: j 6=k

ψT ( j)ψT (k)
|x j(t)− xk(t)|

is moderately sized.

(iii) For any absolute constants C, c > 0, the expression

(logC
+

T )
∑

j,k∈Z∗: | j |,|k|6T 1−c

ψT ( j)ψT (k)
|x j(t)− xk(t)|

is negligible.

(iv) For any absolute constants C, c > 0, the expression

(logC
+

T )
∑

j,k∈Z∗: | j |,|k|>T 1+c

ψT ( j)ψT (k)
|x j(t)− xk(t)|

is negligible.

We have this similarly if xi(t) are replaced by ξi throughout.

Proof. For brevity, we omit the explicit dependence on the time t . Also, all
summation indices i, j, k are understood to range in Z∗.

From (44), we see that ∑
k: k 6= j

1
|ξ j − ξk |

2
� log2

+
j
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for all j ∈ Z∗, and hence∑
j,k: j 6=k

ψT ( j)ψT (k)
1

|ξ j − ξk |
2
� T log3

+
T .

From this and Lemma 16, we conclude (i). Using

log
+

T
|x j(t)− xk(t)|

6
1

|x j(t)− xk(t)|2
+ log2

+
T,

we then obtain (ii). If instead we use

logC
+

T
|x j(t)− xk(t)|

6
1

log
+

T
1

|x j(t)− xk(t)|2
+ log2C+1

+
T,

we obtain (iii) and (iv). We have this similarly if xi are replaced by ξi throughout.

We now have the following crucial derivative computation.

PROPOSITION 22. In the range Λ/2 6 t 6 0, the function HT is absolutely
continuous, and the derivative ∂tH̃T (t) is equal to−4ẼT (t) plus negligible terms
for almost all t . In other words, one has

∂tH̃T (t) = −4ẼT (t)+ oT→∞

(
T log3 T + ẼT (t)

)
(76)

for almost every t.

REMARK 23. This may be compared with Lemma 12(v) or indeed the formal
identity (57). That the right-hand side is approximated in terms the renormalized
energy, rather than just the energy, may be thought of heuristically as being a
result of ∂tH vanishing when the zeros x j settle on an equilibrium, being spaced
like the points ξ j .

Proof. As before, we omit the explicit dependence on t , and all summation
indices are understood to lie in Z∗. By (56), we have

∂t H jk(t) = −
2

xk − x j

(
′∑

i : i 6=k

1
xk − xi

−

′∑
i : i 6= j

1
x j − xi

)
. (77)

If we formally insert this into (69) and desymmetrize in j and k, we would obtain
the identity

∂tH̃T = −4
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

′∑
i : i 6=k

1
xk − xi

. (78)

https://doi.org/10.1017/fmp.2020.6 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.6


The De Bruijn–Newman constant is non-negative 49

However, we need to justify the interchange of the derivative and the infinite
summation. First, we use the fundamental theorem of calculus to rewrite (77) in
integral form as

H jk(0)− H jk(t0)

= −2
∫ 0

t0

1
xk(t)− x j(t)

(
′∑

i : i 6=k

1
xk(t)− xi(t)

−

′∑
i : i 6= j

1
x j(t)− xi(t)

)
dt

for any Λ/2 6 t0 6 0. Multiplying by ψT ( j)ψT (k), we conclude that

HT (0)−HT (t0) = −2
∑

j,k: j∼T k

ψT ( j)ψT (k)
∫ 0

t0

1
xk(t)− x j(t)

×

(
′∑

i : i 6=k

1
xk(t)− xi(t)

−

′∑
i : i 6= j

1
x j(t)− xi(t)

)
dt.

By the dominated convergence theorem, we can interchange the outer sum and
the integral as soon as we can show that the expression∑

j,k: j∼T k

ψT ( j)ψT (k)

×

∫ 0

t0

1
|xk(t)− x j(t)|

(∣∣∣∣∣
′∑

i : i 6=k

1
xk(t)− xi(t)

∣∣∣∣∣+
∣∣∣∣∣
′∑

i : i 6= j

1
x j(t)− xi(t)

∣∣∣∣∣
)

dt

is finite. By symmetry in j and k, it suffices to show that∑
j,k: j∼T k

ψT ( j)ψT (k)
∫ 0

t0

1
|xk(t)− x j(t)|

∣∣∣∣∣
′∑

i : i 6=k

1
xk(t)− xi(t)

∣∣∣∣∣ dt (79)

is finite. But using (50) and (52), we can crudely bound∣∣∣∣∣
′∑

i : i 6=k

1
xk(t)− xi(t)

∣∣∣∣∣ ,
1

|xk(t)− x j(t)|
� logO(1)

+
(k)

(
1

|xk(t)− xk−1(t)|
+

1
|xk(t)− xk+1(t)|

)
(using the convention x0(t) = 0), so expression (79) may in turn be crudely
bounded by∑

k

ψ2
T (k)(T + |k|)

0.1 logO(1)
+

(k)
∫ 0

t0

1
|xk(t)− xk−1(t)|2

+
1

|xk(t)− xk+1(t)|2
dt,
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and this will be finite thanks to Proposition 15 and (66). We conclude (after
desymmetrizing in j and k) that

HT (0)−HT (t0)=−4
∫ 0

t0

∑
j,k: j∼T k

ψT ( j)ψT (k)
1

xk(t)− x j(t)

′∑
i : i 6=k

1
xk(t)− xi(t)

dt.

The above analysis also shows that the integrand is absolutely integrable in time.
From the Lebesgue differentiation theorem, we conclude that H̃T is absolutely
continuous and that (78) holds at almost every time t .

To conclude the proof of the proposition, it will thus suffice to show that

∑
j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

′∑
i 6=k

1
xk − xi

(80)

is equal to ẼT plus negligible terms. We can split this expression as X1 + X2 +

X3 + X4, where

X1 :=
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

(xk − x j)2

X2 :=
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

∑
i : i∼T j,k

1
xk − xi

X3 :=
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

∑
i : i∼T k; i 6∼T j; i 6= j

1
xk − xi

X4 :=
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

xk − x j

′∑
i : i 6∼T k; i 6=k

1
xk − xi

.

We first claim that X4 is negligible. From (50), we have

xk − xi = ξk − ξi + O(log
+
(|i | + |k|))

and hence (by (44)),

1
xk − xi

=
1

ξk − ξi
+ O

(
log2
+
(|i | + |k|)
|k − i |2

)
,

which implies that

′∑
i : i 6∼T k; i 6=k

1
xk − xi

=

′∑
i : i 6∼T k; i 6=k

1
ξk − ξi

+ Õ(T−0.1).
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From (44), we may crudely bound this sum by Õ(1). By Lemma 21(iii), this
shows that the contribution to X4 of those k for which |k| 6 T 0.9 or |k| > T 1.1

(say) is negligible, so we may assume T 0.9 6 |k| 6 T 1.1. Let A > 2 be a large
constant. Using (44), we may write

′∑
i : i 6∼T k; i 6=k

1
ξk − ξi

=

∑
i : T 0.26|k−i |6A|k|

1
ξk − ξi

+

∑
i : |i |>A|k|

1
ξk − ξi

+ O
(

log T
A

)
.

For the first sum on the right-hand side, we use (45) (as in the proof of (74)) as
well as (43) to conclude that

1
ξk − ξi

=
log ξk

4π
1

k − i
+ OA

(
1
|k|

)
,

where the subscript in the OA notation means that the implied constant can
depend on A. As i 7→ log ξk

4π
1

k−i is odd around k, we conclude that∑
i : T 0.26|k−i |6A|k|

1
ξk − ξi

= OA(1).

Meanwhile, combining the i and −i terms and using (43) and (44), we have∑
i : |i |>A|k|

1
ξk − ξi

= −2ξk

∑
i : i>A|k|

1
ξ 2

i − ξ
2
k

= O
(

log T
A

)
.

Sending A slowly to infinity, we conclude that

′∑
i : i 6∼T k; i 6=k

1
xk − xi

= oT→∞(log T ),

and the negligibility of X4 then follows from Lemma 21(ii).
Now we claim that X2 is negligible. Thanks to the restrictions on i, j, k, we

see that
ψT (i), ψT ( j) = (1+ Õ((T + |k|)−0.8))ψT (k),

and hence

ψT ( j)ψT (k) = ψT (i)2/3ψT ( j)2/3ψT (k)2/3 + Õ((T + |k|)−0.8ψT ( j)ψT (k)).

The sum ∑
i, j,k: j∼T k; i∼T j,k

ψT (i)2/3ψT ( j)2/3ψT (k)2/3

(xk − x j)(xk − xi)
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symmetrizes to zero, and hence

X2 /
∑

i, j,k: j∼T k; i∼T j,k

(T + |k|)−0.8 ψT ( j)ψT (k)
|xk − x j ||xk − xi |

.

Estimating 1
|xk−x j ||xk−xi |

�
1

|xk−x j |2
+

1
|xk−xi |2

and performing the i or j summation
respectively, we conclude that

X2 /
∑

j,k: j∼T k

(T + |k|)−0.6ψT ( j)ψT (k)
|xk − x j |

2
,

and so X2 is negligible thanks to Lemma 21(i).
We have shown that expression (80) is equal to X1+ X3 plus negligible terms.

A similar argument (replacing xi with ξi throughout) shows that the expression∑
j,k: j∼T k

ψT ( j)ψT (k)
1

ξk − ξ j

′∑
i : i 6=k

1
ξk − ξi

(81)

is equal to X ′1 + X ′3 plus negligible terms, where

X ′1 :=
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

(ξk − ξ j)2

X ′3 :=
∑

j,k: j∼T k

ψT ( j)ψT (k)
1

ξk − ξ j

∑
i : i∼T k; i 6∼T j; i 6= j

1
ξk − ξi

.

From Lemma 18, we see that ẼT is equal to

X1 − X ′1 +
∑

j,k: j 6∼T k; j 6=k

ψT ( j)ψT (k)
(

1
(xk − x j)2

−
1

(ξk − ξ j)2

)
(82)

up to negligible terms. From (43) and (44), we have

1
(xk − x j)2

−
1

(ξk − ξ j)2
/

logO(1)
+

(| j | + |k|)
|k − j |3

when j 6= k and j 6∼T k, so the final term in (82) is negligible. Thus, to complete
the proof of the proposition, it will suffice to show that expression (81) and the
difference X3 − X ′3 are both negligible.

Expression (81) may be rearranged as∑
k

ψT (k)

( ∑
j : j∼T k

ψT ( j)
ξk − ξ j

)(
′∑

i : i 6=k

1
ξk − ξi

)
.
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By (44), both inner sums are Õ(1), so the contribution of those |k| 6 T 0.5 or
|k| > T 1.5 (say) is negligible. For T 0.5 < |k| 6 T 1.5, we see from (72) that the
factor

∑
j : j∼T k

ψT ( j)
ξk−ξ j

is oT→∞(log T ), and from (44) and (73) and the triangle
inequality, we also see that

∑
′

i : i 6=k
1

ξk−ξi
= O(log T ). Thus (81) is negligible as

required.
Finally, we show that X3 − X ′3 is negligible. This quantity may be written as

∑
i, j,k: i, j∼T k; |i− j |>(T 2+|i |+| j |)0.1

ψT ( j)ψT (k)
(

1
(xk − x j )(xk − xi )

−
1

(ξk − ξ j )(ξk − ξi )

)
.

Observe that if |k− j | and |k− i | are both larger than or equal to T 0.1, then from
(44) and (50), one has

1
(xk − x j)(xk − xi)

−
1

(ξk − ξ j)(ξk − ξi)
�

logO(1)
+

(|i | + | j | + |k|)
T 0.1|ξk − ξ j ||ξk − ξi |

�
logO(1)
+

(|i | + | j | + |k|)
T 0.1|k − j ||k − i |

,

and so the contribution of this case is negligible. From the triangle inequality, we
see that it is not possible for |k − j | and |k − i | to both be less than T 0.1, so it
remains to treat the components∑

i, j,k: 0<| j−k|<(T 2
+| j |+|k|)0.1

0<|i−k|<T 0.1
; |i− j |>(T 2

+|i |+| j |)0.1

×ψT ( j)ψT (k)
(

1
(xk − x j)(xk − xi)

−
1

(ξk − ξ j)(ξk − ξi)

)
(83)

and ∑
i, j,k: 0<| j−k|<T 0.1

0<|i−k|<(T 2
+|i |+|k|)0.1; |i− j |>(T 2

+|i |+| j |)0.1

×ψT ( j)ψT (k)
(

1
(xk − x j)(xk − xi)

−
1

(ξk − ξ j)(ξk − ξi)

)
. (84)

Consider first (83). From the triangle inequality, we have | j − k| � T 0.2, and
hence by (50),

1
xk − x j

= (1+ Õ(T−0.2))
1

ξk − ξ j
.
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By Lemma 21(ii) and (44), we may thus replace 1
xk−x j

by 1
ξk−ξ j

at negligible cost
in (83), leaving us with∑

i, j,k: 0<| j−k|<(T 2
+| j |+|k|)0.1

0<|i−k|<T 0.1
; |i− j |>(T 2

+|i |+| j |)0.1

ψT ( j)ψT (k)
(

1
xk − xi

−
1

ξk − ξi

)
1

ξk − ξ j

up to negligible errors. But by (45) and the hypothesis |i − k| 6 T 0.1, one may
bound ∑

j : 0<| j−k|<(T 2
+| j |+|k|)0.1

|i− j |>(T 2
+|i |+| j |)0.1

ψT ( j)
|ξk − ξ j |

/ T−0.1ψT (k)

when T 0.9 6 |k| 6 T 1.1, and use the weaker bound∑
j : 0<| j−k|<(T 2

+| j |+|k|)0.1

|i− j |>(T 2
+|i |+| j |)0.1

ψT ( j)
|ξk − ξ j |

/ ψT (k)

for all other k, so this expression is also negligible by Lemma 21(ii), (iii),
(iv) (noting that ψT (k) and ψT (i) are comparable). A similar argument also
handles (84).

To use Proposition 22, we need estimates that ensure ẼT is large when H̃T is
large. To this end, we have the following lemma.

LEMMA 24. Let m be a natural number, and let Λ/2 6 t 6 0. Let T > 0, and
let δ = δ(T ) go to zero as T →∞ sufficiently slowly. If H̃T (t) > δmT log3

+
T ,

then ẼT (t)� δ22m T log3
+

T , where the implied constant is absolute.

Proof. As before, we suppress explicit dependence on t , and we may assume T
to be large as the claim is trivial from compactness for T = O(1). From Lemma
19, we have (for δ decaying sufficiently slowly) that∑

j,k∈Z∗: j∼T k

ψT ( j)ψT (k)H̃ jk(t) >
99
100

δmT log3 T .

From Lemma 20, we see that∑
k: j∼T k; |k− j |>ε( j) log2

+ ξ j

H̃ jk(t)� ε( j) log2
+

j
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for any j ∈ Z∗, which implies that∑
j,k: j∼T k; |k− j |>ε( j) log2

+ ξ j

ψT ( j)ψT (k)H̃ jk(t) 6
1
2
δT log3 T

if δ(T ) goes to zero slowly enough. By (69), we conclude that∑
j,k: j∼T k; |k− j |<ε( j) log2

+ ξ j

ψT ( j)ψT (k)H̃ jk(t)� δmT log3
+

T . (85)

We now claim that∑
j,k: j∼T k; |k− j |<ε( j) log2

+ ξ j
|x j−xk |>2−m

|ξ j−ξk |

ψT ( j)ψT (k)H̃ jk(t)� δ2mT log3 T (86)

(say). To see this, we use (45) and (70) to bound

L jk � m +
|x j − xk |

|ξ j − ξk |
� m +

|x j − xk |

| j − k|
log T

and also ψT ( j) � ψT (k) for j, k in the sum. Thus we may bound (86) by

m
∑

j,k: |k− j |<ε( j) log2
+ ξ j

ψT ( j)2 +
∑

j,k: 0<|k− j |<ε( j) log2
+ ξ j

ψT ( j)2
|x j − xk |

| j − k|
log T .

We may directly compute ∑
j,k: j∼T k; |k− j |<ε( j) log2

+ ξ j

ψT ( j)2 � δ2T log3 T

if δ = δ(T ) goes to zero slowly enough. Thus it will suffice to show that∑
j,k: 0<|k− j |<ε( j) log2

+ ξ j

ψT ( j)2
|x j − xk |

| j − k|
� δ2T log2 T . (87)

But for any natural number n, we see from telescoping series and (50) that∑
j : 2n6| j |<2n+1

|x j − x j+h| � |h|
2n

n

whenever |h| � 2n; summing over |h| < ε( j) log2
+
ξ j , we conclude that∑

j,k: 2n6| j |<2n+1

0<|k− j |<ε( j) log2
+ ξ j

|x j − xk |

| j − k|
� ε(2n)2nn,

which gives (87) if δ goes to zero slowly enough.
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From (85) and (86), we have∑
j,k: j∼T k; |k− j |<ε( j) log2

+ ξ j
|x j−xk |62−m

|ξ j−ξk |

ψT ( j)ψT (k)H̃ jk(t)� δmT log3 T .

But for j, k in this sum, we see from (62) and (70) that

H̃ jk(t)� log
|ξ j − ξk |

|x j − xk |
�

m2−2m
|ξ j − ξk |

2

|x j − xk |
2
� m2−2m Ẽ jk,

and the claim follows.

We can now shrink H̃T down to a reasonable size in finite time.

COROLLARY 25. One has H̃T (t) = O(δT log3
+

T ) for Λ/4 6 t 6 0.

Proof. We may take T to be large. From Proposition 22 and Lemma 24, we see
that for any natural number m, and for almost every time t for which one has

H̃T (t) > δmT log3 T,

one has
∂tH̃T (t) 6 −cδ22m T log3 T

for some absolute constant c > 0. In particular, if m is larger than some large
absolute constant m0, and Λ/2 6 t 6 Λ/4 is such that

δmT log3 T 6 H̃T (t) 6 δ(m + 1)T log3 T, (88)

then it is not possible (for m0 large enough) to have H̃T (t ′) > δmT log3 T for all
t 6 t ′ 6 t + c−12−2m , as this would violate the fundamental theorem of calculus
for absolutely continuous functions. Thus, by the intermediate value theorem,
there exists t 6 t ′ 6 t + c−12−2m such that

δ(m − 1)T log3 T 6 H̃T (t ′) 6 δmT log3 T,

and on iterating this we conclude (for m0 large enough) that there exists t 6 t ′′ 6
t + 2c−12−2m0 such that

H̃T (t ′′) 6 δm0T log3 T . (89)

We run this argument with t set equal to Λ/2, and m the unique integer obeying
(88), to conclude (for m0 large enough) that there exists Λ/2 6 t ′′ 6 Λ/4
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obeying (89). (Note that this conclusion is immediate if the initial value of m
was already less than m0.) On the other hand, from Proposition 22, we have
∂tH̃T (t) 6 O(δT log3 T ) for almost every t ′′ 6 t 6 0 if δ decays sufficiently
slowly. The claim now follows from the fundamental theorem of calculus
(absorbing m0 into the implied constants), recalling that H̃T is non-negative.

From Proposition 22 and the fundamental theorem of calculus for absolutely
continuous functions, one has

H̃T (Λ/4)− H̃T (0) = (4+ oT→∞(1))
∫ 0

Λ/4
ẼT (t) dt + oT→∞(T log3

+
T ),

and claim (68) now follows from Corollary 25. This concludes the proof of
Theorem 17.

8. Controlling the energy at time 0

In the previous section, we controlled a time average of the energy. Now, using
monotonicity properties of the energy, we can in fact control energy at time zero.

PROPOSITION 26 (Energy bound at time zero). Let T be large. Then

Ẽ [T log T,2T log T ](0) = oT→∞(T log3 T ).

Proposition 26 will be proven by iterating the following claim.

PROPOSITION 27 (Energy propagation inequality). Let T be large, let I = [I−,
I+] be an interval containing [T log T, 2T log T ] and contained in [0.5T log T,
3T log T ], and let Λ/4 6 t1 6 t2 6 0 be such that t2 6 t1 +

1
100 log2 T

. Then

Ẽ I ′(t2) 6 Ẽ I (t1)+ Õ(1),

where I ′ := [I− + log3 T, I+ − log3 T ] is a slightly shrunken version of I .

Recall that Õ(1) is any quantity that is O(logO(1) T ).
Let us assume Proposition 27 for the moment and finish the proof of

Proposition 26. From Theorem 17, we have∫ 0

Λ/4
Ẽ [0.5T log T,3T log T ](t) dt = oT→∞(T log3

+
T ),
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and so by the pigeonhole principle, we may find Λ/4 6 t0 6 0 such that

Ẽ [0.5T log T,3T log T ](t0) = oT→∞(T log3
+

T ).

Applying Proposition 27 O(log2 T ) times to get from t0 to 0, we conclude that

Ẽ [I−,I+](0) 6 oT→∞(T log3
+

T )

for some interval [I−, I+] containing [T log T, 2T log T ] and contained in
[0.5T log T, 3T log T ] (in fact, we have I− = 0.5T log T + O(log5 T ) and
I+ = 3T log T − O(log5 T )). Since Ẽ I (0) is monotone in I , Proposition 26
follows.

It remains to establish Proposition 27. We use an argument due to Bourgain
[2, Section 4] that combines local conservation laws (or, in this case, local
monotonicity formulae) with the pigeonhole principle.

The first step is to locate a good subset of particles indexed by an interval
close to [I−, I+] that does not gain too much energy due to interactions with
its environment because of the separation between these particles and the
environment. From (50) and the pigeonhole principle, one can find natural
numbers

I− 6 j− − 1 < j− 6 I− + log3 T 6 I+ − log3 T 6 j+ < j+ + 1 6 I+

such that
x j−(t2)− x j−−1(t2) >

1
log T

(90)

(say) and similarly

x j++1(t2)− x j+(t2) >
1

log T
.

From Lemma 12(iv) applied to K = { j− − 1, j−}, we have

∂t(x j−(t)− x j−−1(t))2 6 8

for all t1 6 t 6 t2. Since t2 − t1 6 1
100 log2 T

, we conclude from the fundamental
theorem of calculus and (90) that

x j−(t)− x j−−1(t)�
1

log T
(91)

for all t1 6 t 6 t2. Similarly

x j++1(t)− x j+(t)�
1

log T
. (92)
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The basic point is that because the particles x j−, . . . , x j+ never get too close to
the remaining particles x j , j < j− and x j , j > j+ in the system, the total energy
of the former set of particles will remain approximately conserved over short
periods of time thanks to Lemma 12. More precisely, let K denote the discrete
interval K := [ j−, j+], and define the un-normalized energy

E K (t) :=
∑

k,k′∈K : k 6=k′

Ekk′(t).

From Lemma 12, we have

∂t E K (t) 6
∑
j 6∈K

k,k′∈K : k 6=k′

4
(xk − xk′)2(xk − x j)(xk′ − x j)

for t1 6 t 6 t2. But from (50), (91) and (92), we have

∑
j 6∈K

k,k′∈K : k 6=k′

4
(xk − xk′)2(xk − x j)(xk′ − x j)

/ 1.

From the fundamental theorem of calculus, we conclude that

E K (t2) 6 E K (t1)+ Õ(1),

which by monotonicity of E K in K implies that

E I ′(t2) 6 E I (t1)+ Õ(1).

Applying Lemma 16, we conclude that

Ẽ I ′(t2) 6 Ẽ I (t1)+ Õ(1)+ 2
∑

j∈I\I ′
k∈I : j 6=k

1
(ξ j − ξk)2

.

But from (44), one has ∑
j∈I\I ′

k∈I : j 6=k

1
(ξ j − ξk)2

/ 1,

and Proposition 27 follows.
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9. Contradicting pair correlation

It remains to see that Proposition 26 is in contradiction with results that are
known to be the case for the points x j(0). Note in particular that∑

T log T6 j, j+162T log T

1
|ξ j+1 − ξ j |

2
V
(

x j+1(0)− x j(0)
ξ j+1 − ξ j

)
6 Ẽ [T log T,2T log T ](0).

In this range using (43) and (45), we have ξ j+1 − ξ j ∼ 4π/ log
+

T , and so
Proposition 26 implies that

log2 T
∑

T log T6 j, j+162T log T

V
(

x j+1(0)− x j(0)
ξ j+1 − ξ j

)
= oT→∞(T log3 T ).

By Markov’s inequality (see [28, Ch. 1]), this implies that

V
(

x j+1(0)− x j(0)
ξ j+1 − ξ j

)
= oT→∞(1)

for a fraction 1 − oT→∞(1) of j ∈ [T log T, 2T log T ]. But using the properties
(62) of the function V , this implies that

x j+1(0)− x j(0)
ξ j+1 − ξ j

= 1+ oT→∞(1)

or
x j+1(0)− x j(0) =

4π + oT→∞(1)
log T

(93)

for a fraction 1− oT→∞(1) of j ∈ [T log T, 2T log T ].
In particular, since the points x j(0) are twice the imaginary ordinates of

nontrivial zeros of the Riemann zeta function, this implies that the gaps between
the zeros of the zeta function are rarely much larger or smaller than the mean
spacing. But this contradicts perhaps most strikingly the results of Montgomery
[15], who determined on the Riemann hypothesis the pair correlation measure
for the zeros, measured against a class of band-limited functions. As noted by
Montgomery, his result implies that a positive proportion of zeros have a spacing
between them strictly smaller than the mean spacing. The proof of this claim is
not written down in [15], but Conrey et al. prove as their main result of [6] (using
different ideas) that for any λ > .77, there exists a constant c(λ) > 0 such that at
least a proportion c(λ) of j 6 T log T satisfy

x j+1(0)− x j(0) 6 λ
4π

log T
.

This contradicts (93) and therefore the assumption that Λ < 0.
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