MRS COMMUNICATIONS

MRS Communications is a high-impact archival journal focusing on rigorous peer review and rapid publication of completed research with broad appeal to the materials community. Major article types include rapid communications (research letters), "prospectives" papers, correspondence, and commentaries. "Prospectives" are a unique feature of this journal offering succinct and focused publishing reviews of topics of interest to a broad materials research readership. This modern journal features advanced online publication, in full color, acceptance of supplemental materials, and multimedia content. MRS Communications leverages the deep technical expertise of leading MRS members among its editorial board and reviewers under the governance of a team of Principal Editors, and the expertise of leading MRS members among its editorial board and academic standing offered by Cambridge Journals.

Manuscript submissions that succinctly describe groundbreaking work in the broad field of materials research are encouraged. Examples of leading topical areas of interest to MRS Communications readers include:

- Nanomaterials and nanotechnology
- Carbon-based materials
- Complex oxides and their interfaces
- Materials for energy storage, conversion and environmental remediation
- Materials for nanophotonic and plasmonic devices
- Theory and simulation of materials
- Mechanical behavior at the nanoscale
- Nanocrystal growth, structures and properties, including nanowires and nanotubes
- Nanoscale semiconductor for new electronic and photonic applications
- New materials synthesis, templating and assembly methods
- New topics in metals, alloys and transformations
- Novel and in-situ characterization methods
- New catalysis and sensor materials
- Organic and hybrid functional materials
- Quantum matter
- Surface, interface and length-scale effects on materials properties

Author queries and submissions

MRS Communications operates a fully online author submission and peer review system, which can be found at http://mc.manuscriptcentral.com/mrcm

For questions related to MRS Communications, please contact mrc@mrs.org

MRS Communications Article Types

Prospectives

Forward-looking short reviews. Authoritative and balanced, but can deal with controversy on new and speculative areas of research for future consideration.

Technical Description:
- Generally invited by editorial board, although unsolicited short proposals will be reviewed by editorial board
- 500-1000 words, 1-2 printed pages
- Multi-fig or illustration
- Max. 10 references
- Supplemental data encouraged

Research Letters

A concise presentation of a study with broad interest, showing novel results.

Technical Description:
- 6000 word maximum, 5-6 printed pages
- Each figure or figure part is counted as 250 words
- Short 100 word abstract
- Max. 30 references
- Supplemental data encouraged

Editorials

Opinion, policy statement, or general commentary, typically written by the board of a publication or a guest of notable stature.

Technical Description:
- Generally written or invited by editorial board
- 500-1000 words, 1-3 printed pages
- Max. 15 references
- No supplemental data

Commentaries

An item whose subject is another article or articles: this article comments on the other article(s).

Technical Description:
- Generally invited by editorial board, although unsolicited commentaries may be reviewed
- Accessible and non-technical style
- 500-1500 words, 1-3 printed pages
- 1 fig or illustration
- Max. 15 references
- No supplemental data

Correspondence

Letter to the editor/publication, typically commenting upon a published item.

Technical Description:
- Flexible format of general interest to readership—policy debates, announcements or matters arising from published material
- 500-1000 words, 1-2 printed pages
- 1 fig or illustration
- Max. 10 references
- No supplemental data

MRS HEADQUARTERS

MRS Headquarters

TBD, Academic Affairs
A. Polman, Associate
K. Wiltshire, Government Affairs
T. Asaiaga, Meetings

MRS Communications Subscription Prices (2018)

Institutions
Online only: $828.00 / £517.00
Print-on-Demand available to online subscribers.
Inquire Customer Service.

MRS Communications (ISSN: 2155-6080) is published four times a year by Cambridge University Press for the Materials Research Society.

Individual member subscriptions are for personal use only.

About the Materials Research Society

The Materials Research Society (MRS) is a non-profit scientific association founded in 1973 to promote interdisciplinary goal-oriented basic research on materials of technological importance. Membership in the Society includes over 14,000 scientists from industrial, government, and university research laboratories in the United States and abroad. The Society’s interdisciplinary approach to the exchange of technical information is qualitatively different from that provided by single-discipline professional societies because it promotes technical exchange across the various fields of science affecting materials development. MRS sponsors three major international annual meetings encompassing many topical symposia, as well as numerous single-topic scientific meetings each year. It recognizes professional and technical excellence, conducts tutorials, and fosters technical exchange in various local geographical regions through Section activities and Student Chapters on university campuses.

Disclaimer: Authors of each article appearing in this Journal are solely responsible for all contents in their article(s) including accuracy of the facts, statements, and citing sources. Facts and opinions are solely the personal statements of the respective authors and do not necessarily represent the views of the editors, the Materials Research Society, or Cambridge University Press.

MRS Communications is a high-impact journal focusing on rapid publication of completed research with broad appeal to the materials community.

MRS is an affiliated Society of the American Institute of Physics and participates in the International arena of materials research through associations with professional organizations such as the International Union of Materials Research Societies.

For further information on the Society’s activities, contact MRS Headquarters, 506 Keystone Drive, Warrendale, PA 15086-7573; telephone (724) 779-3025; fax (724) 779-8133; e-mail mrs@mrs.org; web site http://www.mrs.org.
MRS Communications

Volume 8, Number 1, March 2018

Prospective Articles

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–14</td>
<td>Paper as a scaffold for cell cultures: Teaching an old material new tricks</td>
<td>Xinchen Wu, Sanika Suvarnapathaki, Kierra Walsh, Gulden Camci-Unal</td>
</tr>
<tr>
<td>15–28</td>
<td>Temperature-dependent nanoindentation response of materials</td>
<td>Saeed Zare Chavoshi, Shuozi Xu</td>
</tr>
</tbody>
</table>

Commentaries

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>29–34</td>
<td>Water photonics, non-linearity, and anomalously large electro-optic coefficients in poled silica fibers</td>
<td>John Canning</td>
</tr>
</tbody>
</table>

Research Letters

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>35–39</td>
<td>Colon cancer cells adhesion on polymeric nanostructured surfaces</td>
<td>Angelo Accardo, Victoria Shalabaeva, Rosanna La Rocca</td>
</tr>
<tr>
<td>40–48</td>
<td>Metal organic framework-modified nitrogen-doped graphene oxygen reduction reaction catalyst synthesized by nanoscale high-energy wet ball-milling structural and electrochemical characterization</td>
<td>Shiqiang Zhuang, Bharath Babu Nunna, Eon Soo Lee</td>
</tr>
<tr>
<td>49–58</td>
<td>Nanostructured substrates for multi-cue investigations of single cells</td>
<td>Joseph A. Christodoulides, Marc Christophersen, Jinny L. Liu, James B. Delehanty, Deepa Raghu, Michael Robitaille, Jeff M. Byers, Marc P. Raphael</td>
</tr>
<tr>
<td>59–64</td>
<td>Synthesis of nanosized zirconium dioxide and its solid solutions with titanium dioxide from the CO2 supercritical fluid</td>
<td>I.E. Sokolov, I.A. Konovalov, R.M. Zakalyukin, D.V. Golubev, A.S. Kumskov, V.V. Fomichev</td>
</tr>
<tr>
<td>65–70</td>
<td>Effect of the spacer arm on non-specific binding in membrane affinity chromatography</td>
<td>Eleonora Lalli, Giulio C. Sarti, Cristiana Boi</td>
</tr>
<tr>
<td>71–78</td>
<td>Rapid microwave synthesis and optical activity of highly crystalline platinum nanocubes</td>
<td>Clare Davis-Wheeler Chin, Sara Akbarian-Tefaghi, Juana Reconco-Ramirez, John B. Wiley</td>
</tr>
<tr>
<td>79–87</td>
<td>Self-patterning of graphene-encapsulated gold nanoparticles for surface-enhanced Raman spectroscopy</td>
<td>Yuan Li, Kelly Burnham, John Dykes, Nitin Chopra</td>
</tr>
<tr>
<td>88–94</td>
<td>Fabrication of nickel and nickel carbide thin films by pulsed chemical vapor deposition</td>
<td>Qun Guo, Zheng Guo, Jianmin Shi, Lijun Sang, Bo Gao, Qiang Chen, Zhongwei Liu, Xinwei Wang</td>
</tr>
<tr>
<td>95–99</td>
<td>Silver nanostructures evolution in porous SiO2/p-Si matrices for wide wavelength surface-enhanced Raman scattering applications</td>
<td>Dmitry Yakimchuk, Egor Kaniukov, Victoria Bunduyukova, Liubov Osminkina, Steffen Teichert, Sergey Demyanov, Vladimir Sivakov</td>
</tr>
<tr>
<td>100–106</td>
<td>Synthetic biology with nanomaterials</td>
<td>Sanhita Ray, Ahana Mukherjee, Pritha Chatterjee, Kaushik Chakraborty, Anjan Kr Dasgupta</td>
</tr>
</tbody>
</table>

https://doi.org/10.1557/mrc.2018.26 Published online by Cambridge University Press
<table>
<thead>
<tr>
<th>Page Range</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>107–112</td>
<td>Surface plasmon resonance-enhanced photoelectrochemical sensor for detection of an organophosphate pesticide chlorpyrifos</td>
<td>Treenet Thepudom, Chutiparn Lertvachirapai, Kazunari Shinbo, Keizo Kato, Futao Kaneko, Teerakiat Kerdcharoen, Akira Baba</td>
</tr>
<tr>
<td>113–121</td>
<td>Investigation of the phase equilibria at 773 K and metallic glass regions in the Ag–Al–Zr ternary system</td>
<td>Hsien-Ming Hsiao, Yung-Chin Lan, Gita Novian Hermana, Hao Chen, Yee-Wen Yen</td>
</tr>
<tr>
<td>132–136</td>
<td>Focused ion beam characterization of deformation resulting from nanoindentation of nanoporous gold</td>
<td>Nicolas J. Briot, T. John Balk</td>
</tr>
<tr>
<td>137–144</td>
<td>Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO₂</td>
<td>Sowbaranigha Chinnusamy, Ravneet Kaur, Anuja Bokare, Farlín Erogbogbo</td>
</tr>
<tr>
<td>145–151</td>
<td>Determination of adsorption-controlled growth windows of chalcogenide perovskites</td>
<td>Stephen A. Filippone, Yi-Yang Sun, R. Jaramillo</td>
</tr>
<tr>
<td>152–159</td>
<td>Surface modification of microporous carbonaceous fiber for the growth of zinc oxide micro/nanostructures for the decontamination of malathion</td>
<td>Ashitha Gopinath, Krishna Kadirvelu</td>
</tr>
<tr>
<td>160–167</td>
<td>A non-noble Cr–Ni-based catalyst for the oxygen reduction reaction in alkaline polymer electrolyte fuel cells</td>
<td>P. Faubert, I. Kondov, D. Qazzazie, O. Yurchenko, C. Müller</td>
</tr>
<tr>
<td>168–177</td>
<td>Polypropylene films modified by grafting-from of ethylene glycol dimethacrylate/glycidyl methacrylate using γ-rays and antimicrobial biofunctionalization by Schiff bases</td>
<td>G.G. Flores-Rojas, F. López-Saucedo, J.E. López-Barriguete, T. Isoshima, M. Luna-Straffon, E. Bucio</td>
</tr>
<tr>
<td>178–182</td>
<td>Mechanical finishing and ion beams application to cold working tool steels: consequences for scratch resistance</td>
<td>Witold Brostow, Sven Loehse, Allison T. Osmanson, Daniel Tobola, Duncan L. Weathers</td>
</tr>
<tr>
<td>183–188</td>
<td>Insulator–metal transition and the hopping transport in epitaxial Sm₀.₆Nd₀.₄NiO₃ thin films</td>
<td>Badr Torrioss, Joëlle Margot, Mohamed Chaker</td>
</tr>
<tr>
<td>189–193</td>
<td>Carbon-chain inserting effect on electronic behavior of single-walled carbon nanotubes: a density functional theory study</td>
<td>Hao Cui, Qingjuan Li, Guibao Qiu, Jian Wang</td>
</tr>
<tr>
<td>194–198</td>
<td>Enhancement transmittance of a metamaterial filter based on local surface plasma resonance</td>
<td>Chao Chen, Fei Wang, Yuping Sheng, Jun Wang</td>
</tr>
<tr>
<td>199–206</td>
<td>Grafting of glycerol methacrylate onto silicone rubber using γ-rays: derivatization to 2-oxoethyl methacrylate and immobilization of lysozyme</td>
<td>G.G. Flores-Rojas, F. López-Saucedo, M. Quezada-Miriel, E. Bucio</td>
</tr>
</tbody>
</table>