K. Sawada Nagoya Math J. Vol. 79 (1980), 33-45

EXTENDED *f*-ORBITS ARE APPROXIMATED BY ORBITS

KEN SAWADA

Introduction

Let f be a C^r -diffeomorphism, $r \leq 1$, on a compact differentiable manifold M with dim $M \geq 2$. In [9] F. Takens introduced the concept of extended f-orbits and conjectured the following.

If f is an AS-diffeomorphism, then the set E_f of all extended f-orbits is equal to the set O_f of the closure of all f-orbits in C(M), where C(M)is the metric space of all non empty closed subsets of M.

In this paper we give an affirmative answer for this conjecture.

§1. Definitions and the main Theorem

We fix a metric d on M induced by a Riemannian metric, and we define a metric \overline{d} on the set C(M) of all non empty closed subsets of M as follows; for closed non empty subsets A and B of M,

$$\overline{d}(A, B) = \max\left(\max_{a \in A} d(a, B), \max_{b \in B} d(b, A)\right)$$

where $d(a, B) = \min_{b \in B} d(a, b)$. We identify a closed subset of M with an element of C(M). Here Z denotes the integers, N the natural numbers. For a diffeomorphism f and $x \in M$, we define the f-orbit of x, $O_f(x)$, to be the closure of $\{f^n(x) | n \in Z\}$. By definition, $O_f(x) \in C(M)$. Then we denote the closure of $\{O_f(x) | x \in M\}$ in C(M) by O_f . O_f is a closed subset of C(M). We say that a closed subset $A \subset M$ is an ε -orbit of f, $\varepsilon > 0$, if there is a sequence $\{x_j\}_{j \in Z}$ such that $d(f(x_j), x_{j+1}) < \varepsilon$ for any $j \in Z$ and $\{x_j\}_{j \in Z}$ is dense in A. We say that a closed subset $A \subset M$ is an ε -orbit A_{ε} of f such that $\overline{d}(A, A_{\varepsilon}) < \delta$. Note that extended f-orbits are identified with elements of C(M). Let E_f be the set of all extended f-orbits. By definition, E_f is a closed subset of C(M) and $O_f \subset E_f$. See [9]. We recall that f is an AS-diffeo-

Received September 18, 1978.

morphism if f satisfies Axiom A and strong transversality condition. Then our main result is

THEOREM. If f is an AS-diffeomorphism, then $E_f = O_f$.

We shall prove Theorem in section 5.

\S 2. More definitions and a sketch of the proof

In this section we give some notations and definitions used throughout the paper and give a sketch of the proof of Theorem.

The nonwandering set of a diffeomorphism f is denoted by $\Omega(f)$ or Ω and the set of the periodic points of f is denoted by $\operatorname{Per}(f)$. For $x \in M$, define $\alpha(x) = \alpha(x, f) = \{y \in M : \text{there is a sequence of integers } n_i \to \infty \text{ such}$ that $f^{-n_i}(x) \to y$ as $i \to \infty$ }. Let $\omega(x) = \omega(x, f) = \alpha(x, f^{-1})$. The nonwandering set of f satisfying Axiom A and no cycle property can be written as a disjoint union of closed subsets $\Omega(f) = \Omega_1 \cup \cdots \cup \Omega_m$ such that each Ω_i is invariant by f, and f is topologically transitive on each Ω_i . Then we call each Ω_i a basic set and may define an order on the set $\{\Omega_1, \cdots, \Omega_m\}$ as follows:

$$\Omega_i \leq \Omega_j \quad \text{if } W^u(\Omega_i) \cap W^s(\Omega_j) \neq \phi$$

where $W^{u}(\Omega_{i})$ and $W^{s}(\Omega_{j})$ are the unstable manifold and the stable manifold of Ω_{i} and Ω_{j} respectively. We may renumber Ω_{i} such that $\Omega_{j} \leq \Omega_{i}$ if i < j. Henceforth we shall assume that Ω_{i} is numbered as above for any diffeomorphism f satisfying Axiom A and no cycle property.

We say that a sequence $\bar{x} = \{x_j\}_{j=a}^{b}$ $(a = -\infty \text{ or } b = +\infty \text{ is permitted})$ of points in M is an ε -pseudo orbit if

$$d(f(x_j), x_{j+1}) < \varepsilon$$
 for any $j \in [a, b-1]$.

A point $x \in M$ δ -shadows a sequence \overline{x} if

$$d(f^{j}(x), x_{j+1}) < \delta$$
 for any $j \in [a, b]$.

See [1, Page 74].

We define a relation $\leq on M$, induced by f, as follows: $x, y \in M$, then $x \leq y$ if and only if for any $\varepsilon > 0$, there is an ε -pseudo orbit $\{x_j\}_{j=0}^n$ with $x_0 = x, x_n = y$ and $n \geq 1$. We define $N(f) = \{x \in M | x \leq x\}$. Note that $x \leq f^n(x)$ for any $n \geq 1$ and $N(f) \supset \Omega(f)$. See [9] for details.

Now let f be an AS-diffeomorphism and let A be an extended

f-orbit with $A \not\subset \Omega$. Then there are *k*-points $x_i \in M$ such that $A - \Omega = \bigcup_{i=1}^k \bigcup_{n \in \mathbb{Z}} f^n(x_i)$ and such that $\omega(x_i)$ and $\alpha(x_{i+1})$ belong to the same basic set Ω_{s_i} $(1 \leq s_0 < \cdots < s_k \leq m)$ by Proposition 3.6 in section 3. In section 4 we obtain that for $A_{s_i} = A \cap \Omega_{s_i}$, any $\delta > 0$ and small $\varepsilon > 0$, there is an ε -pseudo orbit $\overline{x} = \{x_j\}_{j=a}^b$ such that

$$\overline{d}(A_{s_i}, ext{ closure of } \{x_j\}_{j=a}^b) < \delta$$
 .

By [1, Proposition 3.6], \bar{x} is δ -shadowed by some $z \in \Omega_{s_i}$. We shall select $x' \in M$ such that

$$\overline{d}(O_f(x'), A_{s_0} \cup O_f(x_1) \cup A_{s_1}) < \delta$$

so that we can select $x \in M$ such that $\overline{d}(O_f(x), A) < \delta$ by induction. Hence $A \in O_f$. Since we obtain in section 5 that if A is an extended f-orbit with $A \subset \Omega$, then $A \in O_f$, therefore $A \in O_f$ for any extended f-orbit A. Since $O_f \subset E_f$, $O_f = E_f$.

§3. Nonwandering sets and extended f-orbits

In this section we give some results about N(f) and extended f-orbits. We recall that f has no C° - Ω -explosion if for each $\varepsilon > 0$, there is a neighborhood U(f) of f in Diff^r (M) with C° -topology such that $\Omega(g) \subset U_{\epsilon}(\Omega(f))$ for any $g \in U(f)$, where Diff^r (M) is the set of C^{r} -diffeomorphisms with C^{r} -topology and $U_{\epsilon}(.)$ is an ε -neighborhood of (.).

The following lemma is due to Z. Nitecki and M. Shub [6]. For the proof, the hypothesis dim $M \ge 2$ is needed.

LEMMA 3.1. Suppose a finite collection $\{(p_i, q_i) \in M \times M : i = 1, \dots, k\}$ of pairs of points on M is specified, together with a small positive constant $\delta > 0$ such that:

(i) For each i, $d(p_i, q_i) < \delta$

(ii) If $i \neq j$, then $p_i \neq p_j$ and $q_i \neq q_j$.

Then there exists a diffeomorphism $\eta: M \to M$ such that

- (a) $d(\eta(x), x) < 2\pi\delta$ for every $x \in M$
- (b) $\eta(p_i) = q_i$ for $i = 1, \dots, k$.

PROPOSITION 3.2. If f has no C° - Ω -explosion, then $N(f) = \Omega(f)$.

Proof. It is sufficient to show that $N(f) \subset \Omega(f)$. Let $x \in N(f)$ and

KEN SAWADA

 $\varepsilon > 0$ be given. Since f has no $C^{\circ} - \Omega$ -explosion, there is a neighborhood U(f) of f in Diff^r(M) with C° -topology such that $\Omega(g) \subset U_{\epsilon}(\Omega(f))$ for any $g \in U(f)$. Take $\delta > 0$ such that if $d(g(x), f(x)) < \delta$ for any $x \in M$, then $g \in U(f)$. From definition of N(f), there is a $(\delta/2\pi)$ -pseudo orbit $\{x_j\}_{j=0}^n$ with $x_0 = x$ and $x_n = x$. We may assume that $x_i \neq x_j$ if $i \neq j$. By Lemma 3.1, there is a diffeomorphism η on M such that $\eta(f(x_j)) = x_{j+1}$ and $d(\eta(x), x) < \delta$ for every $x \in M$. Then the composition $g = \eta \circ f$ is a diffeomorphism on M such that

- (a) $d(g(x), f(x)) < \delta$ for any $x \in M$
- (b) $g^n(x) = (\eta \circ f)^n(x_0) = x_n = x$.

Hence $g \in U(f)$ and $x \in Per(g)$. Since $x \in \Omega(g) \subset U_{\iota}(\Omega(f))$ and $\Omega(f)$ is closed, $x \in \Omega(f)$.

If f satisfies Axiom A and no cycle property, then f has no $C^{\circ}-\Omega$ -explosion [8]. Therefore we have

COROLLARY 3.3. If f satisfies Axiom A and no cycle property, then $N(f) = \Omega(f)$.

We shall assume throughout the remainder of this section that f satisfies Axiom A and no cycle property.

Lemma 3.4.

- (i) If $f^n(x) \prec y$ for any $n \in N$, then $u \prec y$ for any $u \in \omega(x)$.
- (ii) For any $x, y \in \Omega_i, x \prec y$ and $y \prec x$.

Proof. Let $a \in \omega(x)$ and $\varepsilon > 0$ be given. Since $f(a) \in \omega(x)$, $d(f(a), f^m(x)) < \varepsilon$ for some $m \in N$. Then there is an ε -pseudo orbit $\{x'_j\}_{j=0}^n$ with $x'_0 = f^m(x)$ and $x'_n = y$. Define a sequence $\{x_j\}_{j=0}^{n+1}$ by

$$x_0 = a, x_j = x'_{j-1}$$
 for any $1 \le j \le n+1$.

Then $\{x_j\}_{j=0}^{n+1}$ is an ε -pseudo orbit with $x_0 = u$ and $x_{n+1} = y$. As ε is arbitrary, $a \prec y$.

(ii) By [1, page 72], $\Omega_i = X_{1,i} \cup \cdots \cup X_{n_1,i}$ with $X_{j,i}$'s pairwise disjoint closed sets, $f(X_{j,i}) = X_{j+1,i}$ $(X_{n_i+1,i} = X_{1,i})$ and $f^{n_i}|X_{j,i}$ topological mixing i.e., for any open sets U, V of $X_{j,i}$ (i.e. in Ω), there is k > 0 such that $U \cap f^{k \times n_i}(V) \neq \phi$. Hence for any $x, y \in \Omega_i, x \prec y$ and $y \prec x$.

LEMMA 3.5. If $x, y \in W^{s}(\Omega_{i}) - \Omega_{i}$ and $x \prec y$, then $f^{n}(x) = y$ for some $n \in N$.

Proof. Suppose, on the contrary, that $f^n(x) \neq y$ for any $n \in N$. Clearly if $x \prec y$ and $f(x) \neq y$, then $f(x) \prec y$. Hence by induction, if $x \prec y$ and $f^n(x) \neq y$ for any $n \in N$, then $f^n(x) \prec y$. By Lemma 3.4 (i), we have

$$x \prec u \prec y \prec w$$
 for any $u \in \omega(x)$ and any $w \in \omega(y)$.

Since $u \in \omega(x) \subset \Omega_i$ and $w \in \omega(y) \subset \Omega_i$,

$$u \prec w$$
, $w \prec u$ by Lemma 3.4 (ii).

Hence $y \prec w \prec u \prec y$ and $y \in N(f) = \Omega(f)$, a contradiction.

PROPOSITION 3.6. For each $A \in E_f$ such that $A \not\subset \Omega$, there are k-point $x_i \in M$ $(k \leq m-1)$ such that

$$A-\Omega=\bigcup_{i=1}^k\bigcup_{n\in Z}f^n(x_i)$$

moreover there are s_0, \dots, s_k $(1 \le s_i \le m)$ such that $\alpha(x_1) \subset \Omega_{s_0}, \omega(x_k) \subset \Omega_{s_k}$ and both $\omega(x_i)$ and $\alpha(x_{i+1})$ are contained in Ω_{s_i} for any $1 \le i \le k-1$.

Proof. We define an equivalence relation on M before we prove. For $x, x' \in M$, we say that x is orbitally related or O-related to x' (write $x \sim x'$) if either $f^n(x) = x'$ or $f^{n'}(x') = x$ for some $n, n' \in N$. Let $A^i = W^s(\Omega_i) \cap (A - \Omega)$. Since $M = \bigcup_{i=1}^m W^s(\Omega_i), A - \Omega = \bigcup_{i=1}^m A^i$. By definition of extended f-orbits, if $x, y \in A$, then either $x \prec y$ or $y \prec x$. If $x, y \in A^i$, then $x, y \in W^s(\Omega_i) - \Omega_i$. Hence by Lemma 3.5, if $x, y \in A^i$, then $x \sim y$. Hence either $A^i = \{f^n(x) | n \in Z\}$ for some $x \in A^i$ or $A^i = \phi$ so that there are k-points x_i of M ($k \le m - 1$) such that

$$A-\varOmega=\bigcup_{i=1}^k\bigcup_{n\in Z}f^n(x_i)$$
.

Let Ω_{s_i} be the basic set with $\omega(x_i) \subset \Omega_{s_i}$ and let Ω_{t_i} be the basic set with $\alpha(x_i) \subset \Omega_{t_i}$. We may assume that $s_1 < s_2 < \cdots < s_k$. If $\alpha(x_i)$ and $\alpha(x_j)$ are contained in the same basic set, then $x_i \sim x_j$ by Lemma 3.5 applied to f^{-1} . Hence $\Omega_{t_i} \neq \Omega_{t_j}$ $(i \neq j)$. By the ordering on the basic sets, $\Omega_{t_i} \neq \Omega_{s_j}$ for $i \leq j$. Hence $\Omega_{t_1} \cap O_f(x_i) = \phi$ for $i = 2, \cdots, k$ and $\Omega_{t_2} \cap O_f(x_i) = \phi$ for $i = 3, \cdots, k$. Therefore there is $\delta > 0$ such that $O_f(x_i) \cap U_{2\delta}(\Omega_{t_1}) = \phi$ for $i = 2, \cdots, k$ and $O_f(x_i) \cap U_{2\delta}(\Omega_{t_2}) = \phi$ for $i = 3, \cdots, k$. We choose $\gamma > 0$ such that $U_{2\gamma}(\Omega_{t_1}) \subset f(U_{\delta}(\Omega_{t_1})) \cap U_{\delta}(\Omega_{t_1})$ for i = 1, 2. Then there is $N' \in N$ such that $f^{-n}(x_1) \in U_{\gamma/2}(\Omega_{t_1})$ and $f^{-n}(x_2) \in U_{\gamma/2}(\Omega_{t_2})$ for any $n \geq N'$. Since $N(f) = \Omega(f)$ and $f^{-N'}(x_i) \in \Omega(f)$ $(i = 1, 2), f^{-N'}(x_i) \neq u_i$ for any $u_i \in$

KEN SAWADA

 $\begin{array}{ll} \mathcal{Q}_{t\iota}. & \text{Hence there is } \varepsilon' > 0 \text{ such that there exists neither } \varepsilon'-\text{pseudo orbit } \{x_j\}_{j=0}^n \text{ with } x_0 = f^{-N'}(x_1) \text{ and } x_n = u_1 \text{ nor } \varepsilon'-\text{pseudo orbit } \{x_j\}_{j=0}^{n'} \text{ with } x_0' = f^{-N'}(x_2) \text{ and } x_n' = u_2. & \text{Let } \varepsilon = \min\{\gamma/2, \varepsilon'/2\} \text{ and let } A_{\iota} = \text{closure of } \{y_j\}_{j\in \mathbb{Z}} \text{ be an } \varepsilon\text{-orbit of } f \text{ such that } \overline{d}(A_{\iota}, A) < \varepsilon. & \text{Then there is } n \in \mathbb{Z} \text{ such that } y_n \in U_{\iota}(A \cap \Omega_{\iota_1}). & \text{Suppose that there is } \ell < n \text{ such that } y_\ell \in U_r(\Omega_{\iota_1}) \text{ and } y_{\ell-1} \in U_{\ell}(\Omega_{\iota_1}) \text{ because } f(y_{\ell-1}) \in U_{2r}(\Omega_{\iota_1}). & \text{Since } \overline{d}(A_{\iota}, A) < \varepsilon. \\ < \varepsilon, \text{ there is } z \in A \cap U_{\epsilon}(y_{\ell-1}). & \text{Clearly } z \in U_{r/2}(\Omega_{\iota_1}) \text{ and } z \in U_{2\delta}(\Omega_{\iota_1}). & \text{Since } O_f(x_i) \cap U_{2\delta}(\Omega_{\iota_1}) = \phi \text{ for } i = 2, \cdots, k, \ z = f^{-p}(x_1) \text{ for some } p < N'. & \text{Since } y_n \in U_{\epsilon}(A \cap \Omega_{\iota_1}), \text{ there is } u_1 \in A \cap \Omega_{\iota_1} \text{ such that } d(u_1, y_n) < \varepsilon. \\ \text{Now we define a sequence } \{z_j\}_{j=0}^J (J = p - N' + n - \ell + 1) \text{ as follows;} \end{array}$

$$(z_0, \cdots, z_J) = (f^{-N'}(x_1), \cdots, f^{-p-1}(x_1), y_{\ell}, \cdots, y_{n-1}, u_1)$$

Then $\{z_j\}_{j=0}^J$ is an ε -pseudo orbit with $z_0 = f^{-N'}(x_1)$ and $z_J = u_1$. Since $\varepsilon < \varepsilon'$, $\{z_j\}_{j=0}^J$ is an ε' -pseudo orbit with $z_0 = f^{-N'}(x_1)$ and $z_J = u_1$. This contradicts to the choice of ε' . Hence $y_j \in U_r(\Omega_{t_1})$ for any $j \leq n$. Now if $\Omega_{t_2} \neq \Omega_{s_1}$, then $O_f(x_i) \cap \Omega_{t_2} = \phi$ for $i = 1, 3, \dots, k$. We can assume that $O_f(x_i) \cap U_{2\delta}(\Omega_{t_2}) = \phi$ for $i = 1, 3, \dots, k$. We can assume that $O_f(x_i) \cap U_{2\delta}(\Omega_{t_2}) = \phi$ for $i = 1, 3, \dots, k$. Then applying the same argument in case of Ω_{t_1} , we have that there is $n' \in \mathbb{Z}$ such that $y_j \in U_r(\Omega_{t_2})$ for any $j \leq n'$. This contradicts to the fact that $y_j \in U_r(\Omega_{t_1})$ for any $j \leq n$. Hence $\Omega_{t_2} = \Omega_{s_1}$. Similarly $\Omega_{t_{i+1}} = \Omega_{s_i}$. We write s_0 for t_1 . Then $\alpha(x_1) \subset \Omega_{s_0}, \omega(x_k) \subset \Omega_{s_k}$ and $\omega(x_i) \cup \alpha(x_{i+1}) \subset \Omega_{s_i}$ for any $1 \leq i \leq k - 1$.

For simplicity, we write the Ω_i for the Ω_{s_i} in Proposition 3.6. Throughout the remainder of this paper we assume that there are k-points x_i of M ($k \leq m-1$) such that

$$A-\varOmega=\bigcup_{i=1}^k\bigcup_{n\in Z}f^n(x_i)$$

moreover $\alpha(x_1) \subset \Omega_0$, $\omega(x_k) \subset \Omega_k$ and $\omega(x_i) \cup \alpha(x_{i+1}) \subset \Omega_i$ for any $1 \leq i \leq k-1$.

§4. Extended f-orbits in nonwandering set

Let A be an extended f-orbit. Then there are k-points x_i of M such that $A - \Omega = \bigcup_{i=1}^k \bigcup_{n \in \mathbb{Z}} f^n(x_i)$ and $\omega(x_i) \cup \alpha(x_{i+1}) \subset \Omega_i$ and let $A_i = A \cap \Omega_i$

LEMMA 4.1. For any $\delta > 0$ and $\varepsilon > 0$, there is $\gamma > 0$ with $0 < \gamma < \delta$ such that for any $0 < \gamma' < \gamma$, there is an ε -orbit A, of f; A, = closure of $\{y_j\}_{j \in \mathbb{Z}}$ satisfying the followings;

- (1) $\overline{d}(A, A_{\bullet}) < \gamma'$
- (2) if y_m , $y_n \in U_{r'}(A_i)$, then $y_j \in U_{\delta}(A_i) = \text{for any } m < j < n$.

Proof. Let $\delta > 0$ and $\varepsilon > 0$ be given. There is $H \in N$ such that $f^n(x_i)$ $\in U_{\delta/2}(\omega(x_i))$ and $f^{-n}(x_{i+1}) \in U_{\delta/2}(\alpha(x_{i+1}))$ for any $n \ge H$. Then for any $u \in U_{\delta/2}(\omega(x_i))$ $\Omega_i, f^{H}(x_i) \leq u \text{ and } u \leq f^{-H}(x_{i+1}).$ Since $f^{H}(x_i)$ and $f^{-H}(x_{i+1})$ are not elements of Ω and $N(f) = \Omega(f)$, $u \prec f^{H}(x_{i})$ and $f^{-H}(x_{i+1}) \prec u$. Therefore there is ε_{1} > 0 such that there exists neither ε_1 -pseudo orbit $\{x_j\}_{j=0}^n$ with $x_0 = u$ and $x_n = f^H(x_i)$ nor ε_1 -pseudo orbit $\{x'_j\}_{j=0}^m$ with $x'_0 = f^{-H}(x_{i+1})$ and $x'_m = u$. We choose $\gamma_1 > 0$ such that for any pair (p, q) of points on M with d(p, q) < 1 $\gamma_1, \ d(f(p), f(q)) < \varepsilon_1/2.$ Let $\gamma = \min \{\delta/2, \ \varepsilon_1/2, \ \gamma_1\}$ and $\varepsilon' = \min \{\varepsilon, \ \varepsilon_1/2\}.$ By definition of extended f-orbits, for any $0 < \gamma' < \gamma$, there is an ε' -orbit $A_{\varepsilon'}$ of f; $A_{i'}$ = closure of $\{y_i\}_{i \in \mathbb{Z}}$ such that $\overline{d}(A, A_{i'}) < \gamma'$. Suppose that there are m, j and n with m < j < n such that y_m , $y_n \in U_{r'}(A_i)$ and $y_j \in U_{\mathfrak{s}}(A_i)$. Since $\overline{d}(A, A_{\epsilon'}) < \gamma'$, there is $z \in U_{\gamma'}(y_j) \cap A$. Clearly $z \in U_{\delta/2}(A_i)$ because $U_{r'}(y_j) \cap U_{\delta/2}(A_i) = \phi$. Then either $z \prec f^H(x_i)$ or $f^{-H}(x_{i+1}) \prec z$. We can assume that $z \prec f^{H}(x_{i})$ without loss of generality. Then there is an ϵ' pseudo orbit $\{x_j\}_{j=0}^s$ with $x_0 = z$ and $x_s = f^H(x_1)$. Since $y_m \in U_{r'}(A_i)$, there is $u \in A_i$ such that $d(y_m, u) < \gamma'$. Since $\gamma' < \gamma_1, d(f(y_m), f(u)) < \varepsilon_1/2$. Hence

$$d(f(u), y_{m+1}) < d(f(u), f(y_m)) + d(f(y_m), y_{m+1}) < \varepsilon_1/2 + \varepsilon' < \varepsilon_1$$

Now we define a sequence $\{z_j\}_{j=0}^L$ (L = j - m + s + 1) as follows;

$$(z_0, \cdots, z_L) = (u, y_{m+1}, \cdots, y_{j-1}, x_0, \cdots, x_s)$$

Then $\{z_j\}_{j=0}^L$ is an ε_1 -pseudo orbit with $z_0 = u$ and $z_L = f^H(x_i)$. This is a contradiction.

By Lemma 4.1, for $\delta > 0$, small $\gamma' > 0$ and small $\varepsilon > 0$, there is an ε -orbit A_{ε} of f; $A_{\varepsilon} = \text{closure of } \{y_{j}\}_{j \in \mathbb{Z}}$ satisfying the followings;

- (1) $\overline{d}(A_0, \text{ closure of } \{y_i\}_{i=-\infty}^{n_0}) < \delta$
- (2) $\overline{d}(A_i, \{y_j\}_{j=m_i}^{n_i}) < \delta$ for any $1 \leq i \leq k-1$
- (3) $\overline{d}(A_k, \text{ closure of } \{y_j\}_{j=m_k}^{+\infty}) < \delta$

where $m_i = \min \{j: y_j \in U_{r'}(A_i)\}$ for any $1 \leq i \leq k$, and $n_i = \max \{j: y_j \in U_{r'}(A_i)\}$ for any $0 \leq i \leq k-1$.

We denote y_{m_i} by $L_i^+(\gamma', \varepsilon)$ and y_{n_i} by $L_i^-(\gamma', \varepsilon)$.

LEMMA 4.2. If γ'_n and $\varepsilon_n \to 0$ as $n \to \infty$, then the cluster points of the sequence $L_i^+(\gamma'_n, \varepsilon_n)$ are contained in $\omega(x_i)$.

Proof. Let L_i^+ be the set of the cluster points of the sequence $L_i^+(\gamma'_n, \varepsilon_n)$,

 $y^{+} \in L_{i}^{+}$ and $\alpha > 0$ be given (α is sufficiently small). Now let $||T_{x}f|| = \sup \{||T_{x}f(v): v \in T_{x}M \text{ and } ||v|| \leq 1\}$ where ||.|| is the Riemannian metric on M. Let $K = \max \{||T_{x}f||, ||T_{x}f^{-1}||\}$. Then there is $\ell \in N$ such that $L_{i}^{+}(\gamma'_{\ell}, \varepsilon_{\ell})$ is in $U_{\alpha}(y^{+})$ and $\gamma'_{\ell}, \varepsilon_{\ell} < \alpha/4K$. For $L_{i}^{+}(\gamma'_{\ell}, \varepsilon_{\ell})$, there is $m_{i} \in Z$ such that $y_{m_{\ell}} \in A_{\epsilon_{\ell}} \cap U_{\gamma'_{\ell}}(A_{i})$ and $y_{m_{\ell-1}} \in A_{\epsilon_{\ell}} - U_{\gamma'_{\ell}}(A_{i})$. Since γ'_{ℓ} and ε_{ℓ} are small, there is $p \in N$ such that $f^{p}(x_{\ell}) \in U_{\gamma'_{\ell}}(y_{m_{\ell-1}})$. Then

$$d(y_{m_i}, f^{p+1}(x_i)) < d(y_{m_i}, f(y_{m_i-1})) + d(f(y_{m_i-1}), f^{p+1}(x_i)) < \varepsilon_{\ell} + K\gamma_{\ell} < lpha/2$$
 .

Hence

$$d(y^{\scriptscriptstyle +}, f^{p+1}(x_i)) < d(y^{\scriptscriptstyle +}, y_{m_i}) + d(y_{m_i}, f^{p+1}(x_i)) < lpha/2 + lpha/2 < lpha$$
 .

Since α is arbitrary $y^+ \in \omega(x_i)$. Hence $L_i^+ \subset \omega(x_i)$.

Similarly the cluster points of the sequence $L_i^-(\gamma_n, \varepsilon_n)$ are contained in $\alpha(x_{i+1})$.

LEMMA 4.3. For any $\delta > 0$ and $\varepsilon > 0$, there is an ε -pseudo orbit $\{x_j^i\}_{j=a}^b$ of $f \mid \Omega_i$, a and b depend on i, such that

- (1) $\overline{d}(A_i, \text{ closure of } \{x_j^i\}_{j=a}^b) < \delta$
- (2) $x_a^i \in \omega(x_i)$ for any $1 \le i \le k$
- (3) $x_b^i \in \alpha(x_{i+1})$ for any $0 \le i \le k-1$.

Proof. Let K be as in Lemma 4.2. For $\delta > 0$ and $\varepsilon > 0$, choose δ' and ε' such that $0 < \delta' < \delta/2$ and $0 < \varepsilon' < \varepsilon - (1 + K)\delta'$. As stated above, there is ε' -pseudo orbit $\{y_j\}_{j=a}^b$ such that

(i) $\overline{d}(A_i, \text{ closure of } \{y_j\}_{j=a}^b) < \delta'.$

(a and b are depend on i). By Lemma 4.2, we may assume that $y_a \in \omega(x_i)$ and $y_b \in \alpha(x_{i+1})$. By (i), there is $z_j \in A_i$ in $U_{\delta'}(y_j)$ for any a < j < b. Then we define a sequence $\{x_j^i\}_{j=a}^b$ as follows; $x_a^i = y_a$, $x_b^i = y_b$ and $x_j^i = z_j$ for any a < j < b. Since $d(f(x_j^i), f(y_j)) < K\delta'$,

$$egin{aligned} d(f(x^i_j), x^i_{j+1}) &< d(f(x^i_j), f(y_j)) + d(f(y_j), \, y_{j+1}) \ &+ d(y^i_{j+1}, x^i_{j+1}) < K \delta' + arepsilon' + \delta' < arepsilon \, . \end{aligned}$$

Since $U_{i'}(y_j) \subset U_i(x_j^i)$, $\{x_j^i\}_{j=a}^b$ is an ε -pseudo orbit of $f|\Omega_i$ satisfying (1), (2) and (3).

For any $1 \leq i \leq k-1$, a and b are finite. If i is equal to 0, then $a = -\infty$. If i is equal to k, then $b = +\infty$.

§5. Proof of Theorem

Throughout it is assumed that f is an AS-diffeomorphism and let $\Omega(f)$

 $= \Omega_1 \cup \cdots \cup \Omega_m \text{ such that if } i < j, \text{ then } \Omega_j \leq \Omega_i. \text{ The stable manifold of } x \text{ is the set } W^s(x, f) = W^s(x) = \{y \in M : d(f^n(x), f^n(y)) \to 0 \text{ as } n \to \infty\} \text{ for any } x \in M. \text{ Let } W^s_\delta(x) = \{y \in M : d(f^n(x), f^n(y)) < \delta \text{ for any } n \geq 0\}. \text{ The unstable manifold of } x \text{ is the set } W^u(x, f) = W^s(x, f^{-1}) \text{ and } W^u_\delta(x) = W^s_\delta(x, f^{-1}).$ For small $\delta > 0$ and $x \in \Omega$,

$$W^s_{\delta}(x) = \{ y \in M \colon d(f^n(x), f^n(y)) < \lambda^n \delta \text{ for any } n \ge 0 \}$$

where λ is a positive constant with $\lambda \in (0, 1)$. For small $\delta > 0$ there is a *u*-disc family \tilde{W}_{δ}^{u} through a compact neighborhood U_{i} of Ω_{i} in M which reduces to W_{δ}^{u} at Ω_{i} and semi-invariant in the sense that

$$ilde W^u_{\delta}(f(x)) \subset f(ilde W^u_{\delta}(x)) \qquad ext{for } x \in U_i \, \cap \, f^{-1}(U_i) \, .$$

See [2]. For $x \in M$, let $O_f^+(x) = \text{closure of } \{f^n(x) : n \ge 0\}$ and let $O_f^-(x) = \text{closure of } \{f^n(x) : n \le 0\}.$

The following proposition is due to R. Bowen [1].

PROPOSITION 5.1. For any $\delta > 0$, there is an $\varepsilon > 0$ so that every ε -pseudo orbit of $f \mid \Omega$ is δ -shadowed by some $z \in \Omega$.

COROLLARY 5.2. Let A be an extended f-orbit with $A \subset \Omega$. Then $A \in O_{f}$.

Proof. It is clear that $A \subset \Omega$ implies $A \subset \Omega_i$ for some $1 \leq i \leq m$. By Lemma 4.3, for any $\delta > 0$ and any $\varepsilon > 0$, there is an ε -pseudo orbit \overline{x} of $f \mid \Omega$ such that

$$\overline{d}(A, \text{ closure of } \overline{x}) < \delta/2$$
.

By Proposition 5.1, taking sufficiently small $\varepsilon > 0$, \bar{x} is ($\delta/2$)-shadowed by $z \in \Omega_i$. Hence

$$ar{d}(A,\,O_{\scriptscriptstyle f}({m z})) < ar{d}(A,\, ext{closure of }ar{x}) + ar{d}(O_{\scriptscriptstyle f}({m z}),\, ext{closure of }ar{x}) \ < \delta/2 + \delta/2 < \delta \ .$$

Since δ is arbitrary and O_f is closed, $A \in O_f$.

Remark 5.3. Let $z \in \Omega$ δ -shadows ε -pseudo orbit $\{x_j\}_{j=a}^{\delta}$ of $f \mid \Omega$. Then we may assume that

(1) if a and b are finite, then $z \in W^u_{\alpha}(x_a)$ and $f^{b-a}(z) \in W^s_{\alpha}(x_b)$ for small $\alpha > 0$

(2) if $b = +\infty$, then $z \in W^u_{\alpha}(x_a)$

(3) if $a = -\infty$, then $z \in W^s_{\alpha}(x_b)$. See [1].

We shall need the following lemma before we prove Theorem.

LEMMA 5.4. Let $y \in \Omega_i$, $t \in W^s_{\delta}(y)$ $(\alpha(t) \subset \Omega_j, j \neq i)$ and let $y' \in \omega(y), z \in W^u_{\delta}(y') \cap \Omega_i$ for small $\delta > 0$. Then for any r > 0, any u-disc D which is C¹-close to $W^u(t) \cap B_r(t)$ and any s-disc D' which is C¹-close to $W^s_{\delta}(z) \cap B_r(z)$, there is $v \in D$ such that $f^n(v) \in D'$ for some $n \in N$. Moreover

$$d(f^{j}(v), f^{j}(t)) < 2\delta$$
 for any $0 \leq j \leq n$

where $B_r(.)$ is an r-ball of (.), $u = \dim T_t(W^u(t))$ and $s = \dim T_s(W^s_s(z))$.

Proof. We shall first prove that for any r > 0, there is $v' \in W^u(t) \cap B_r(t)$ such that $f^n(v') \in W^s_\delta(z) \cap B_r(z)$ for some $n \in N$. By generalized λ -lemma [5, Proposition 2.3], there is *u*-disc \overline{D} in $W^u(t) \cap B_r(t)$ such that $f^n(\overline{D})$ is C^1 -close to $W^u_\delta(f^n(y))$ for large $n \in N$. Since $f^n(y)$ is near to y' ($y' \in \omega(y)$), $W^u_\delta(f^n(y))$ is C^1 -close to $W^u_\delta(y')$. Hence $f^n(\overline{D})$ is C^1 -close to $W^u_\delta(y')$ so that $f^n(\overline{D}) \cap (W^u_\delta(z) \cap B_r(z)) \neq \phi$. Taking sufficiently large $n \in N$, there is σ , $0 < \sigma < \lambda^n \delta$ such that $\tilde{W}^u_\delta(a) \cap f^n(\overline{D}) = \phi$ for any $a \in W^s_{\delta(n)}(f^n(y)) - W^s_\delta(f^n(y))$ because $f^n(\overline{D})$ is C^1 -close to $W^u_\delta(f^n(y))$. And there is $q \in W^s_\delta(f^n(y))$ such that

$$ilde W^u_{\delta}(q)\,\cap\,f^n(\overline D)\,\cap\,(W^s_{\delta}(oldsymbol{z})\,\cap\,B_r(oldsymbol{z}))
eq\phi\,.$$

Let $v' \in f^{-n}(\tilde{W}^u_{\delta}(q)) \cap \overline{D} \cap f^{-n}(W^s_{\delta}(z) \cap B_r(z))$. Then $f^j(v') \in f^j(f^{-n}(\tilde{W}^u_{\delta}(q))$ for any $0 \leq j \leq n$. By semi-invariance of *u*-disc family $\tilde{W}^u_{\delta}, f^j(v') \in \tilde{W}^u_{\delta}(f^{j-n}(q))$. Since *t* and $f^{-n}(q)$ are in $W^s_{\delta}(y), d(f^j(t), f^{j-n}(q)) < \delta$ for any $0 \leq j \leq n$. Hence $d(f^j(v'), f^j(t)) < 2\delta$ for any $0 \leq j \leq n$.

Secondly by strong transversality, there is $v \in D$ and $n \in N$ such that $f^n(v) \in D'$ for any u-disc D which is C^1 -close to $W^u(t) \cap B_r(t)$ and any s-disc D' which is C^1 -close to $W^s_{\delta}(z) \cap B_r(z)$. Moreover $d(f^j(v), f^j(t)) < 2\delta$ for any $0 \leq j \leq n$.

Proof of Theorem. Since $O_f \subset E_f$, it is sufficient to show that $E_f \subset O_f$. If A is an extended f-orbit with $A \subset \Omega$, then $A \in O_f$ by Corollary 5.2. Therefore we may assume that A is not contained in Ω . Then since AS-diffeomorphisms satisfy Axiom A and no cycle property, by Proposition 3.6 there are k-points $x_i \in M$ such that

$$A-\varOmega=\bigcup_{i=1}^k\bigcup_{n\in Z}f^n(x_i)$$

moreover $\alpha(x_1) \subset \Omega_0, \, \omega(x_k) \subset \Omega_k$ and $\omega(x_i) \cup \alpha(x_{i+1}) \subset \Omega_i$ for any $1 \leq i \leq i$

k-1. For small $\delta > 0$, we choose a compact neighborhood U_i of Ω_i such that there is *u*-disc family \tilde{W}^u_{δ} through U_i . Let $A_i = A \cap \Omega_i$.

By Lemma 4.3 for any $\delta > 0$ and small $\varepsilon > 0$, there is an ε -pseudo orbit $\{x_j^i\}_{j=a}^b$ of $f \mid \Omega_i$ $(1 \leq i \leq k-1, a \text{ and } b \text{ depend on } i, a \text{ and } b \text{ are finite})$ such that $x_a^i \in \omega(x_i), x_b^i \in (x_{i+1})$ and $\overline{d}(A_i, \{x_j^i\}_{j=a}^b) < \delta/2$. We denote x_a^i by y_i' and x_b^i by y_i'' . By Proposition 5.1, taking sufficiently small $\varepsilon > 0, \{x_j^i\}_{j=a}^b$ is $\delta/2$ -shadowed by $z_i \in \Omega_i$ with $z_i \in W_\delta^u(y_i'), f^{b-a}(z_i) \in W_\delta^s(y_i'')$. Hence

$$\overline{d}(A_i, \{f^j(z_i): 0 \leq j \leq b - a\}) < \delta.$$

Similarly for A_0 and A_k , there are $z_0 \in \Omega_0$ with $z_0 \in W^s_{\delta}(y_0'')$ $(y_0'' \in \alpha(x_1))$ and $z_k \in \Omega_k$ with $z_k \in W^u_{\delta}(y_k')$ $(y_k' \in \omega(x_k))$ such that

 $ar{d}(A_{\scriptscriptstyle 0}, ext{ closure of } \{f^{j}(z_{\scriptscriptstyle 0}) \colon j \in (-\infty, 0]\}) < \delta \ ar{d}(A_{\scriptscriptstyle k}, ext{ closure of } \{f^{j}(z_{\scriptscriptstyle k}) \colon j \in [0, +\infty)\}) < \delta \ .$

And there is $M_i \in N$ such that

(i) $f^n(x_i) \in U_{\delta/4}(\omega(x_i))$ for any $n \ge M_i$

(ii) $f^{-n}(x_{i+1}) \in U_{\delta/4}(\alpha(x_{i+1}))$ for any $n \ge M_i$. Similarly for $\alpha(x_i)$ and $\omega(x_k)$, there are M_0 , $M_k \in N$ such that

(i)' $f^{-n}(x_1) \in U_{\delta/4}(\alpha(x_1))$ for any $n \ge M_0$

(ii)' $f^n(x_k) \in U_{\delta/4}(\omega(x_k))$ for any $n \ge M_k$.

Then let $t_i = f^{M_i}(x_i)$ $(1 \le i \le k)$, and let $w_i = f^{-M_i}(x_{i+1})$ $(0 \le i \le k-1)$ By [3], there are y_i^* and $y_i^- \in \Omega_i$ such that $t_i \in W_i^s(y_i^+)$ and $w_i \in W_i^u(y_i^-)$. Since $\omega(t_i) = \omega(y_i^+)$ and $\alpha(x_{i+1}) = \alpha(y_i^-)$, $y_i' \in \omega(y_i^+)$ and $y_i'' \in \alpha(y_i^-)$. Hence by Lemma 5.4, for any r > 0, there is $v \in W^u(t_i) \cap B_r(t_i)$ such that $f^{n_i}(v) \in W_i^s(z_i) \cap$ $B_r(z_i)$ for some $n_i \in N$. Since $f^{n_i}(v) \in W_i^s(z_i) \cap B_r(z_i)$, $f^{n_i+b-a}(v)$ is near to $f^{b-a}(z_i)$ for sufficient small r > 0. Let $u_{i-1} = \dim T_{t_i}(W^u(t_i))$, $s_i =$ $\dim T_{z_i}(W_i^s(z_i))$ and $u_i = \dim T_{z_i}(W_i^u(z_i))$. Since $u_{i-1} + s_i \ge \dim M$ by strong transversality condition and $u_i + s_i = \dim M$ by the hyperbolicity of Ω , $u_{i-1} \ge u_i$. By generalized λ -lemma, we know that there is a u_i -disc D in $W^u(t_i) \cap B_r(t_i)$ such that

$$f^{n_i+b-a}(D)$$
 is C¹-close to $W^u_{\delta}(f^{b-a}(z_i))$.

The stable manifold and the unstable manifold of f are the unstable manifold and the stable manifold of f^{-1} respectively. Hence by Lemma 5.4 applied to f^{-1} , there is $v' \in f^{n_i+b-a}(D)$ such that $f^{n_i}(v') \in W^s(w_i) \cap B_r(w_i)$ $(W^s(w_i) \subset W^s(\Omega_{i+1}))$ for some $n'_i \in N$. Hence there is a u_i -disc in $W^u(t_i) \cap B_r(t_i)$ such that $f^{m'}(\overline{D})$ is C^1 -close to $W^u(w_i) \cap B_r(w_i)$, where $m' = n_i + m'$ $b - a + n'_i$. Therefore

(1) $f^{m'}(\overline{D})$ is C^1 -close to $W^u(w_i) \cap B_r(w_i)$ for any u_i -disc \overline{D} which is C^1 -close to \overline{D} .

And if r is small, then

(2) $\overline{d}(O_f^+(t_i) \cup A_i \cup O_f^-(w_i), \{f^j(p): 0 \leq j \leq m'\}) < 2\delta$ for any $p \in \overline{D}$.

We shall choose a point $x \in M$ such that $\overline{d}(A, O_j(x)) < 2\delta$. For any $1 \leq i \leq k$, let

$$Q_{\delta}(x_i) = \{y \in M : d(f^j(x_i), f^j(y)) < \delta \text{ for any } -M_i \leq j \leq M_i\}.$$

Then there is $r_1 > 0$ such that

$$B_{r_1}(t_i) \subset f^{M_i}(Q_i(x_i)), \ B_{r_1}(w_i) \subset f^{-M_i}(Q_i(x_{i+1})).$$

By Lemma 5.4 applied to f^{-1} , there is $\bar{v} \in W^u_{\delta}(z_0) \cap B_r(z_0)$ $(r < r_1)$ such that $f^{n_0}(\bar{v}) \in W^s(w_0) \cap B_r(w_0)$ for some $n_0 \in N$. Hence there is a u_0 -disc D'_0 in $W^u_{\delta}(z_0) \cap B_r(z_0)$ such that $f^{n_0}(D'_0)$ is C^1 -close to $W^u(w_0) \cap B_r(w_0)$. Since $D'_0 \subset W^u_{\delta}(z_0)$,

 $ar{d}(A_0, ext{ closure of } \{f^j(p') : -\infty < j \leq 0) < 2\delta ext{ for any } p' \in D_0' \,.$

Hence if r is small, then

(3) $\overline{d}(A_{\scriptscriptstyle 0} \cup O_{f}^{\scriptscriptstyle -}(w_{\scriptscriptstyle 0}))$, closure of $\{f^{j}(p^{\prime\prime}): -\infty < j \leq n_{\scriptscriptstyle 0}\}) < 2\delta$ for any $p^{\prime\prime} \in D_{0}'$.

If $f^{n_0}(D'_0)$ is sufficiently C¹-close to $W^u(w_0) \cap B_r(w_0)$, then

 $f^{n_0+M_0+M_1}(D'_0)$ is C¹-close to $W^u(t_1) \cap B_r(t_1)$.

Then by (1), there is a u_1 -disc D_1 in $f^{n_0+M_0+M_1}(D'_0)$ such that

 $f^{\scriptscriptstyle m(1)}(D_1)$ is C¹-close to $W^u(w_1) \cap B_r(w_1)$

 $(m(i) = n_i + |I_i| + n'_i$ where $|I_i| = b - a$ as $I_i = [a, b]$. Hence there is a u_1 -disc D_1 in D'_1 such that

$$f^{n_0+M_0+M_1+m(1)}(D_1)$$
 is C¹-close to $W(w_1) \cap B_r(w_1)$.

Therefore

$$f^{M(2)}(D_1)$$
 is C¹-close to $W^u(t_2) \cap B_r(t_2)$

where $M(j) = n_0 + M_0 + 2 \sum_{i=1}^{j-1} M_i + \sum_{i=1}^{j-1} m(i) + M_j$. By induction, there is a u_{k-1} -disc D_{k-1} in $W_{\delta}^{u}(z_0) \cap B_r(z_0)$ such that

$$f^{M(k)}(D_{k-1})$$
 is C¹-close to $W^u(t_k) \cap B_r(t_k)$.

https://doi.org/10.1017/S0027763000018912 Published online by Cambridge University Press

44

By Lemma 5.4, there is $y \in f^{M(k)}(D_{k-1})$ such that $f^{n_k}(y) \in W^s_{\delta}(z_k) \cap B_r(z_k)$. Hence

$$\overline{d}(A_k, ext{ closure of } \{f^j(y) \colon 0 \leqq j < +\infty\}) < 2\delta$$
 .

Let $x = f^{-M(k)}(y)$. Since $x \in W^u_{\delta}(z_0) \cap B_r(z_0)$,

 $ar{d}(A_{\scriptscriptstyle 0}, ext{ closure of } \{f^{j}(x) : -\infty < j \leqq n_{\scriptscriptstyle 0}\}) < 2\delta$

by (3). Since $f^{M(i)-M_i}(x) \in Q_i(x_i)$ for any *i* by the choice of r_1 and r < r,

 $ar{d}(f^j(x_i),f^j(f^{{}^{_{M(i)}-M_i}}(x)))<\delta \qquad ext{for any }-M_{i^{-1}}\leq j\leq M_i\,.$

By (2), for any $1 \leq i \leq k-1$,

$$d(O_f^+(t_i) \cup A_i \cup O_f^-(w_i), \{f^j(f^{M(i)}(x)): 0 \leq j \leq m(i)\}) < 2\delta$$
.

Hence $d(A, O_f(x)) < 2\delta$. Since δ is arbitrary and O_f is closed in C(M), $A \in O_f$. Hence $E_f \subset O_f$.

During the preparation of this paper, we heard that A. Morimoto gave a proof of Theorem [4] but our proof is a different from his.

The author wishes to thank Professors Hiroshi Noguchi and Kenichi Shiraiwa for helpful comments and suggestions and to thank Yoshio Togawa for conversations helpful to this paper.

References

- [1] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lec. Note in Math. 470, Springer.
- [2] M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhood of hyperbolic sets, Invention Math. 9 (1970), 121-134.
- [3] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Global analysis, Proc. Sympo. Pure Math. Vol. XIV, 133–165. Amer. Math. Soc., Providence, R. I. (1970).
- [4] A. Morimoto, Stochastically stable diffeomorphisms and Takens' conjecture, Local dynamical systems: Integral and differential equations. Lecture Notes No. 303 RIMS (1976), Kyoto University, 8-24.
- [5] S. Newhouse and J. Palis, Cycles and bifurcation theory, Asterisque 31 (1976), 44-140.
- [6] Z. Nitecki and M. Shub, Filtrations, decompositions, and explosions, Amer. J. Math. 97 (1976), 1029-1047.
- [7] S. Smale, The Ω-stability theorem, Global analysis, Proc. Sympo. Pure Math. Vol. XIV, 289-309. Amer. Math. Soc., Providence, R. I. (1970).
- [8] F. Takens, Tolerance stability, Dynamical systems-Warwick 1974, Lec. Notes in Math. 468, Springer, 293-304.

Waseda University