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Circular milling, a stunning manifestation of collective motion, is found across the natural
world, from fish shoals to army ants. It has been observed recently that the plant-animal
worm Symsagittifera roscoffensis exhibits circular milling behaviour, both in shallow pools
at the beach and in Petri dishes in the laboratory. Here we investigate this phenomenon
experimentally and theoretically, from a fluid dynamical viewpoint, focusing on the effect
that an established circular mill has on the surrounding fluid. Unlike systems such as
confined bacterial suspensions and collections of molecular motors and filaments that
exhibit spontaneous circulatory behaviour, and which are modelled as force dipoles, the
front–back symmetry of individual worms precludes a stresslet contribution. Instead,
singularities such as source dipoles and Stokes quadrupoles are expected to dominate.
We analyse a series of models to understand the contributions of these singularities to the
azimuthal flow fields generated by a mill, in light of the particular boundary conditions
that hold for flow in a Petri dish. A model that treats a circular mill as a rigid rotating disc
that generates a Stokes flow is shown to capture basic experimental results well, and gives
insights into the emergence and stability of multiple mill systems.

Key words: micro-organism dynamics, Stokesian dynamics, pattern formation

1. Introduction

From the flocking of birds to the schooling of fish, collective motion, global group
dynamics resulting from the interactions of many individuals, occurs all across the natural
world. A visually striking example of this is collective vortex behaviour – the spontaneous
motion of large numbers of organisms moving in periodic orbits about a common centre.
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(b)(a)

1 mm 20 cm

Figure 1. The plant-animal worm Symsagittifera roscoffensis. (a) Magnified view of adult. (b) S. roscoffensis
in situ on the beach.

Studied for over a century since Jean-Henri Fabre (1899) first reported the spontaneous
formation of continuous loops in columns of pine processionary caterpillars, circular
milling has been observed in many species, including army ants (Couzin & Franks 2003),
the bacterium Bacillus subtilis (Cisneros et al. 2007; Wioland et al. 2013) and fish (Calovi
et al. 2014).

It has been discovered recently that the marine acoel worm Symsagittifera roscoffensis
(Bourlat & Hejnol 2009) forms circular mills, both naturally in rivulets on intertidal
sand (Sendova-Franks, Franks & Worley 2018), and in a shallow layer of sea water
in a Petri dish (Franks et al. 2016). S. roscoffensis, more commonly known as the
‘plant-animal worm’ (figure 1(a), Keeble 1910), engages in a photosymbiotic relationship
(Bailly et al. 2014) with the marine alga Tetraselmis convolutae (Norris, Hori & Chihara
1980). The photosynthetic activity of the algae in hospite under the worm epidermis
provides the nutrients required to sustain the host. The worms propel themselves through
the metachronal beating of many cilia (Bailly et al. 2014). They reside on the upper part
of the foreshore (regions which are typically underwater for around two hours before
and after high tide) of Atlantic coast beaches in colonies of many millions (figure 1b).
It is hypothesised that this circular milling allows worms to self-organise into dense
biofilms that, covered by a mucus layer, optimise the absorption of light by the algae for
photosynthesis (Franks et al. 2016).

Here, motivated by prior experimental work and in light of new results we consider
a range of issues surrounding the fluid dynamical description of mills, with particular
attention to the fluid velocity field that is generated by a circular mill and the effect that
this flow has on the mill itself. In § 2, we describe the parameters of field experiments
on mills performed on the Isle of Guernsey and outline the range of questions they
pose. Systems such as bacterial suspensions (Woodhouse & Goldstein 2012; Wioland
et al. 2013), collections of sperm cells near surfaces (Riedel, Kruse & Howard 2005) and
assemblies of molecular motors and biofilaments (Sumino et al. 2012) can spontaneously
form vortex-like patterns superficially similar to worm mills. However, their theoretical
descriptions (Saintillan & Shelley 2008) treat the constituents as force dipoles (stresslets).
The front–back symmetry of ciliated worms would suggest that a stresslet contribution
is small if not entirely absent and thus higher-order singularities such as source dipoles
ought to appear. Such is the case with the spherical alga Volvox whose flow field has
been measured in great detail (Drescher et al. 2010). As there has been little if any work
on the collective behaviour of suspensions of singularities beyond stresslets, § 3 provides
background theoretical considerations on this problem. First, a detailed examination of
the relationship between the cilia-generated flow over the surface of an individual worm
and the far-field flow behaviour is given within a prolate squirmer model, with which
we confirm the absence of a stresslet contribution for a suitably symmetric surface slip
velocity and show that the far field is dominated by the source dipole and force quadrupole
contributions. Insight into those singularity components that lead to azimuthal flow around
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The circular milling of plant-animal worms

a mill composed of such swimmers is obtained by averaging the far-field behaviour over a
circular orbit, which is equivalent to considering a ring of swimmers. Within the squirmer
model we find that it is the Stokes quadrupole that gives the leading-order contribution.
A model of a complete mill can be constructed from a suitable oblate squirmer, whose
far-field behaviour is that of a rotlet dipole. With the particular boundary conditions
that hold in a Petri dish the far field from this singularity decays exponentially with
z dependence sin (πz/2H), where H is the depth of fluid in the dish. Then in § 4, we
consider a model of a mill as a rigid disc with varying radius c = c(t) rotating in a
Stokes flow. A lubrication analysis of a highly simplified model of a mill is presented as
motivation, and to elucidate the effect of the boundary conditions for this system. Hence,
we vertically average the governing equations by setting the z dependence explicitly to
sin (πz/2H), deriving a Brinkman-like equation for the vertically averaged velocity flow
field. In general, further analytic progress cannot be made. However, in two particular
limits, namely when the mill is close to, and when the mill is far away from, the centre of
the Petri dish, an analytic solution for the fluid velocity field and hence for the force that
the flow exerts on the disc can be derived. In § 5, we demonstrate the strong agreement
between what is predicted by the model and what is observed experimentally. In particular,
consistent with reversibility arguments for Stokes flow, the viscous force on the disc points
in the direction perpendicular to the line between the centres of the mill and of the Petri
dish. Hence, the centre of the disc will orbit on a circle with centre at the middle of the
Petri dish, precisely as observed experimentally.

Finally, in § 6 we extend the analysis to systems with more than one mill, focusing on the
simplest binary mill structure. We utilise the knowledge gained from § 4 to explain from
a purely fluid dynamical viewpoint a large raft of experimental observations, including
where a second mill forms and in what direction it rotates, and the conditions for which a
second mill will not form. We can also make predictions for the stability of the resulting
binary circular mill systems.

2. Experimental methods

Here, we describe field experiments done during 12–19 June 2019 in the Peninsula Hotel
Guernsey on the Isle of Guernsey, a channel island near the coast of France. Worms were
collected from a nearby beach (49◦29′45.3′′N 2◦33′14.3′′W) just prior to the experiments,
minimising the perturbations in the worms’ physiology and behaviour resulting from
removal from their natural environment. As shown in figure 2(a), Petri dishes of diameter
10 cm were filled with sea water up to a depth of 8 mm. Approximately ten thousand worms
were placed into the dish using 3 ml plastic Pasteur pipettes. The subsequent evolution
of the system, including the spontaneous formation of circular mills, was recorded at
25 f.p.s. using a Canon Eos 5d Mark II camera equipped with a Canon macro lens MP-E
65 mm f/2.8 providing a 1–5× magnification mounted above the dish on a copy stand. The
system was illuminated uniformly through by a light box below the Petri dishes and LED
lights located around them.

In some experiments, small drops of azo dye were injected into the Petri dish using a
plastic Pasteur pipette to act as a tracer to track the motion of the fluid. Figure 2(b) is a
montage showing the temporal evolution of a red dyed region of fluid, namely streaklines
of the flow. As can be seen, the circular mill generates a clockwise flow that is in the
opposite direction to the anti-clockwise direction of rotation of the worms, that is, a
backflow generated by the worms pushing themselves through the fluid.

An instantaneous image of a mill shows that its edge is not well defined. In order to
overcome this, every hundred frames (i.e. four seconds of footage) were averaged together
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Figure 2. Field experiments. (a) Set-up used to film milling behaviour in Guernsey.
(b) Montage of still images capturing streaklines produced by the flow.

to create a coarser time lapse video. This averaging sharpens the mill edges considerably
since this process differentiates between worms entering or leaving the mill and worms
actually in the mill. Then, the location and radius of the circular mill in each frame were
extracted manually, utilising a GUI interface in MATLAB to semi-automate this process.

Appendix A collects relevant information on the many experiments carried out in the
field. Selected videos are available at https://doi.org/10.1017/jfm.2020.1112.

Circular milling in this system has not previously been studied using the kinds of
methods now common in the study of active matter (Marchetti et al. 2013). There are
open experimental questions at various levels of organisation in this set-up that mirror
those that have been successfully answered for bacterial, algal and other microswimmer
systems, including measurements of flow fields around individual swimmers, pairwise
interactions between them, the temporal dynamics of mill formation from individuals, the
flow fields around the mills and the dynamics of the mills themselves within their confining
containers. Here, our focus experimentally is on the latter; the orbit of a mill centre within
a Petri dish and the formation of binary mill systems.

3. From individual worms to mills

We begin with fluid dynamical considerations at the level of individual worms to derive
key results that will then be utilised in § 4 to motivate a mathematical model for a circular
mill. Working in modified prolate spheroidal coordinates, we find that the leading-order
fluid velocity in the far field produced by the locomotion of a single worm can be expressed
in terms of fundamental Stokes flow point singularities as the superposition of a source
dipole and a Stokes quadrupole. Among other implications, this result shows that the
proper Reynolds number for worm locomotion in a fluid of kinematic viscosity ν is
given by the swimming speed U, length � and diameter ρ as U(�ρ2)1/3/2ν ≈ 0.36, so
worms swim in the viscous-dominated regime. We then consider two possible models for
a circular mill. Picturing a mill as the superposition of many rings of worms, we find
that the resulting net flow is azimuthal, that is, not in the vertical z direction. Alternately,
considering a mill as an oblate squirmer with axisymmetric swirl, we find that away from
the mill, the forcing can be expressed as a rotlet dipole and thus the flow has z dependence
of the form sin(πz/2H).

3.1. Locomotion of an individual worm
The individuals of S. roscoffensis studied in the present experiments have a broad
distribution of sizes; their length � is in the range ≈ 1.5–6 mm, with mean �̄ = 3 mm,
and diameters ρ falling in the range ≈ 0.2–0.6 mm, with mean ρ̄ ≈ 0.35 mm. Worm
locomotion arises from the collective action of carpets of cilia over the entire body surface,
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The circular milling of plant-animal worms

each ≈ 20 μm long, beating at ≈ 50 Hz. Muscles within the organism allow it to bend,
and thereby alter its swimming direction (Bailly et al. 2014). In unbounded fluid, the
average swimming speed of individuals is U ≈ 2 mm s−1.

To model the fluid velocity field produced by a worm, we follow (Pöhnl, Popescu &
Uspal 2020) and consider a spheroidal, rigid and impermeable squirmer (Lighthill 1952)
with semi-minor axis bx and semi-major axis bz swimming at speed U = Uez so the
z-axis lies along the major axis. The squirmer moves through prescribing a tangential
slip velocity us at its surface Σ . Neglecting inertia, the fluid flow in the swimmer frame u
satisfies

μ∇2u = ∇p, (3.1)

with boundary conditions

u|Σ = us, u(|r| → ∞) → −U, (3.2a,b)

together with the force-free condition∫
Σ

σ · n dΣ = 0, (3.3)

where σ is the stress tensor, p is the pressure, and μ is the dynamic viscosity of water.
We now switch to the modified prolate spheroidal coordinates (τ, ξ, ϕ), utilising the
transformations

τ = 1
2c
(

√
x2 + y2 + (z + c)2 +

√
x2 + y2 + (z − c)2), (3.4a)

ξ = 1
2c
(

√
x2 + y2 + (z + c)2 −

√
x2 + y2 + (z − c)2), (3.4b)

ϕ = arctan
(y

x

)
, (3.4c)

with c =
√

b2
z − b2

x and the squirmer boundary is mapped to the surface τ = τ0 = bz/c =
constant. In this coordinate system, assuming an axisymmetric flow u = uτ eτ + uξ eξ and
axisymmetric tangential slip velocity us = useξ , the Stokes stream function ψ satisfies

uτ = 1
hξhϕ

∂ψ

∂ξ
= 1

c2
√
(τ 2 − ξ2)(τ 2 − 1)

∂ψ

∂ξ
, (3.5a)

uξ = − 1
hτhϕ

∂ψ

∂τ
= − 1

c2
√
(1 − ξ2)(τ 2 − ξ2)

∂ψ

∂τ
. (3.5b)

Taking from Dassios, Hadjinicolaou & Payatakes (1994) the general separable solution for
the stream function in prolate spheroidal coordinates and applying the boundary conditions
given in (3.2a,b) and (3.3), as in Pöhnl et al. (2020), we obtain

ψ(τ, ξ) =
∞∑

n=2

gn(τ )Gn(ξ), (3.6)

where the gn satisfy

g2(τ ) = C4H4(τ )+ D2H2(τ )− 2c2UG2(τ ), (3.7a)

g3(τ ) = −C3

90
G0(τ )+ C5H5(τ )+ D3H3(τ ), (3.7b)

gn≥4(τ ) = Cn+2Hn+2(τ )+ CnHn−2(τ )+ DnHn(τ ), (3.7c)
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where Gn and Hn are Gegenbauer functions of the first and second kind respectively
and P1

n = −√
1 − x2 dPn/dx are the associated Legendre polynomials. The integration

constants Cn and Dn are set by the boundary conditions

gn(τ0) = 0 and
dgn

dτ

∣∣∣∣
τ=τ0

= τ0c2n(n − 1)Bn−1 for n = 2, 3 . . . . (3.8)

Here, the {Bn}n≥1 are the coefficients in the series expansion of us = τ0
∑

n≥1 BnVn(ξ)

using the set of functions {Vn = (τ 2
0 − ξ2)−1/2P1

n(ξ)}n≥1, which is a basis over the space
of L2 functions satisfying f (ξ = ±1) = 0 together with the inner product 〈〉w = ∫ 1

−1 w dξ
and the weight function w = τ 2

0 − ξ2. Furthermore, the swimming speed U can be
expressed in terms of the {Bn}n≥1 using

U = −τ0

2

∫ 1

−1

√
1 − ξ2√
τ 2

0 − ξ2
vs(ξ) dξ = τ 2

0
2

∑
n odd

BnUn where Un =
∫ 1

−1

P1
1P1

n

τ 2
0 − x2

dx,

(3.9)
namely only odd enumerated modes contribute to the squirmer’s swimming velocity.
Hence, from now on we only consider the case when the forcing is solely a linear
combination of the odd modes i.e. B2n+2 = 0 → g2n+1 = 0 → C2n+1 = D2n+1 = 0 ∀n ∈
Z

+. When the prescribed forcing arises purely from the first mode, i.e. us = τ0B1V1,
C2n : n≥1 and D2n : n≥1 simplify to become

D2 = −2B1c2τ0(τ
2
0 − 1) and C2n : n≥1 = D2n : n≥2 = 0. (3.10a,b)

When the forcing arises from a higher-order mode, i.e. us = τ0B2n+1V2n+1 where n ≥ 1,
D2 and C4 simplify to become(

C4
D2

)
= B2n+1c2U

H4(τ0)H′
2(τ0)− H2(τ0)H′

4(τ0)

×
⎛
⎝ 1

2
3

+ 5τ 4
0

4
− 25τ 2

0
12

− 5τ0

8
(1 − τ 2

0 )
2 log

(
τ0 + 1
τ0 − 1

) ⎞
⎠ , (3.11)

i.e. the only n dependence arises from the U. Moving into the laboratory frame, in the far
field (τ � 1) the dominant term in the expansion for ψ comes from H2(τ ) = 1/3τ + · · · ,
so

ψ = 1
3τ

(
D2

2
(1 − ξ2)− C4

8
(1 − 6ξ2 + 5ξ4)

)
+ · · · , (3.12a)

uξ = − 1

τc2
√

1 − ξ2

∂ψ

∂r
+ · · ·

= 1

3τ 3c2
√

1 − ξ2

(
D2

2
(1 − ξ2)− C4

8
(1 − 6ξ2 + 5ξ4)

)
+ · · · , (3.12b)

uτ = 1
τ 2c2

∂ψ

∂ξ
+ · · · = − ξ

3τ 3c2

(
D2 + C4

2
(5ξ2 − 3)

)
+ · · · . (3.12c)

914 A20-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1112


The circular milling of plant-animal worms

Converting this back to vector notation yields

u = − 1
2c2

[(
D2 + C4

6

)
uD + 5C4

36
uQ

]
+ · · · , (3.13)

where uD and uQ, the flows generated by a source dipole and a Stokes quadrupole
respectively, satisfy

uDi =
(c

r

)3
(

xix3

r2 − δi3

3

)
, (3.14a)

uQi = ∂

∂x2
3

(
xix3

r3 + δi3

r

)
= 3

(c
r

)3
(

5xix2
3

r2 − (2 + δi3)
xix3

r2 −
(

xix3

r2 − δi3

3

))
.

(3.14b)

Thus, the far-field fluid velocity field decays like 1/r3, consisting of a combination of
a source dipole and a Stokes quadrupole. The far-field fluid velocity generated by a
higher order than one odd mode squirmer contains both source dipole and quadrupole
components with the quadrupole component dominating as τ0 → 1.

Similarly, the far-field fluid velocity generated by a mode one squirmer is purely a source
dipole. Using Lauga (2020), this is the same as an efficient spherical squirmer (forcing
only arising from the first mode) with effective radius ã = c3τ0(τ

2
0 − 1). When τ0 → ∞,

namely the spherical limit, as expected ã → bx = bz = a, the radius of the sphere. When
τ0 → 1, the elongated limit, ã → (bzb2

x)
1/3. Thus, at the scale of an individual worm,

the Reynolds number Uã/ν in water (ν = 1 mm2 s−1) is ≈ 0.36 where ã = (bzb2
x)

1/3 =
(�̄ρ̄2)1/3/2 is the correct length scale for locomotion of an individual worm. Inertial effects
are modest and individual worms swim in the viscous-dominated regime.

3.2. Ring of spheroidal squirmers
Given the results above, it is natural to ask which singularities associated with individual
worms contribute to the azimuthal flow around a mill. This can be investigated by
averaging over the contributions from a swimmer in a circular orbit, as has been done
in the stresslet case (Michelin & Lauga 2010). Hence, consider a spheroidal squirmer
swimming clockwise horizontally in a circle of radius c, instantaneously located at
the point P = (c cos θ, c sin θ, 0) and orientated in the direction p = (sin θ,− cos θ, 0),
utilising a Cartesian coordinate system (x, y, z) with origin at the centre of the circle. If
each squirmer generates a source dipole uD, the fluid velocity uDX (c, θ) at X = (R, 0, 0)
is

uDX = c3

3r5

(
(2R2 − c2) sin θ − cR sin θ cos θ

(R2 + c2) cos θ − cR(3 − cos2 θ)

)
, (3.15)

where r = (R2 + c2 − 2cR cos θ)1/2. The total velocity uDring (R) at X due to a ring of
clockwise swimming worms of radius c with line density λring is then

uDring (R) = cλring

∫ π

−π
uDX (c, θ) dθ = 0. (3.16)

Hence, a ring of uniformly distributed source dipole swimmers generates no net flow
field outside of the ring. By contrast, the flow field uQring (R) due to a ring of clockwise
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swimming worms, each generating a Stokes quadrupole, is finite:

uQring (R) = cλring

( c
R

)3
Υ
( c

R

)
ey, (3.17)

where

Υ (x) =
∫ 2π

0

cos θ(4 − 23x2 − x4 + cos2 θ(17x2 − 5))
(1 + x2 − 2x cos θ)7/2

dθ

−
∫ 2π

0

x(12 − 13x2 + cos2 θ(9x2 − 31)+ 15 cos4 θ)

(1 + x2 − 2x cos θ)7/2
dθ. (3.18)

This decays in the far field as 1/R4. We conclude that, viewing the mill in terms of its
individual constituents, it is the Stokes quadrupole from individual swimmers that drives
the dominant azimuthal flow.

3.3. Oblate squirmer with swirl
Further insight into the flow field generated by a mill can be obtained by viewing it as a
single, self-propelled object with some distribution of velocity on its surface arising from
the many cilia of the constituent worms. With a shape like a pancake, it can be modelled
as an oblate squirmer with axisymmetric swirl. First, consider a prolate squirmer with
aspect ratio re = bx/bz rotating in the ϕ direction with imposed surface flow uϕ0(ξ) eϕ in
free space. Assuming that the generated fluid flow is purely in the ϕ direction with no ϕ
dependence, the ϕ component of the Stokes equations, μ(∇2u)ϕ = 0, becomes

(τ 2 − 1)
∂2uϕ
∂τ 2 + 2τ

∂uϕ
∂τ

− uϕ
τ 2 − 1

+ (1 − ξ2)
∂2uϕ
∂ξ2 − 2ξ

∂uϕ
∂ξ

− uϕ
1 − ξ2 = 0. (3.19)

This admits the general separable solution that tends to zero at infinity

uϕ =
∞∑

n=1

CpnP1
n(ξ)Q

1
n(τ ), (3.20)

where Cpn are constants and as before P1
n(ξ) and Q1

n(τ ) are associated Legendre
polynomials. Furthermore, since the squirmer is force and torque free, Cp1 = 0.
Decomposing uϕ0 using the basis {Vn(ξ)}, i.e. uϕ0 = ∑∞

n=2 Cn0Vn(ξ), we find that
Cpn = Cn0/Wpn(τ0) where τ0 = 1/

√
1 − (re)2 and re = bx/bz ≤ 1 is the aspect ratio of

the spheroid. Note that, in the spherical limit (re → 1, bx = bz = a) (3.20) simplifies to
become

uϕ =
∑
n=1

aC̄n
a

rn+1 Vn(ξ), (3.21)

where C̄n are constants, and we recover the general form for a spherical squirmer with
swirl (Pak & Lauga 2014; Pedley, Brumley & Goldstein 2016).

Returning to the general case, the dominant term in the far field arises from mode 2,

uϕ = −2Cp2

5τ 3 ξ

√
1 − ξ2 + · · · → u = 2Cp2

5

(c
r

)3 x × xk

r2 , (3.22)

where xk points in the z direction. This is a rotlet dipole. Now, using Dassios et al. (1994),
to compute the velocity fluid for an oblate squirmer with swirl of aspect ratio r′

e > 1, we

914 A20-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1112


The circular milling of plant-animal worms

translate the results from the prolate spheroidal coordinate system (τ, ξ, ϕ) to the oblate
spheroidal coordinate system (λ, ξ, ϕ) using the substitutions

τ = iλ, c = −ic̄, (3.23a,b)

where c̄ =
√

b2
x − b2

z and (λ, ξ, ϕ) can be expressed in terms of the Cartesian coordinates
(x, y, z) using

λ = 1
2c̄
(

√
x2 + y2 + (z − ic̄)2 +

√
x2 + y2 + (z + ic̄)2), (3.24a)

ξ = 1
−2ic̄

(

√
x2 + y2 + (z − ic̄)2 −

√
x2 + y2 + (z + ic̄)2), (3.24b)

ϕ = arctan
(y

x

)
. (3.24c)

Similarly to the prolate case, in the far field the second mode dominates, giving a fluid
velocity field also in the form of a rotlet dipole,

u = 2Cob2

5

(
c̄
r

)3 x × xk

r2 . (3.25)

This result is intuitive; in the absence of a net torque on the object there cannot be a
rotlet contribution, so analogously to the case of a single bacterium whose body rotates
opposite to that of its rotating helical flagellum, the rotlet dipole is the first non-vanishing
rotational singularity.

We close this section by asking how a free-space singularity of the type in (3.25) is
modified when placed in a fluid layer with the boundary conditions of a Petri dish. Here
we quote from a lengthy discussion (Fortune, Lauga & Goldstein 2021) of a number of
cases that complements earlier work (Liron & Mochon 1975) on singularities bounded by
two no-slip walls; the leading-order contribution in the far field to the fluid velocity from
an oblate squirmer with swirl at z = h between a no-slip lower surface at z = 0 and an
upper free surface at z = H is

up = 2π2Cob2

15

(
c̄
H

)3 x × k̂
ρ

cos
(

πh
2H

)
sin
( πz

2H

)
K1

(ρπ

2H

)
, (3.26)

where ρ2 = x2 + y2 and K1 is a modified Bessel function of the second kind. The flow
decays exponentially away from the squirmer with decay length 2H/π.

4. Mathematical model for a circular mill

4.1. Background
We now proceed to develop a model for the collective vortex structures observed
experimentally in § 2. A laboratory mill of the kind studied here typically has a radius
c in the range 5–20 mm and rotates roughly as a rigid body with period T = 2πc/U in
the range 15–60 s and angular frequency ω = U/c in the range 0.4–0.1 s−1 whereas in
§ 3.1 the average worm swimming speed U ≈ 2 mm s−1. Almost all the worms swim just
above the bottom of the Petri dish in a layer typically only one worm thick, with even in
the densest regions of the mill at most two or three worms on top of each other.

We observe minimal variation in the height H of the water in the Petri dish. Furthermore,
by tracking dye streaklines we also observe minimal fluid flow in the vertical (z) direction.
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G.T. Fortune and others

These observations are consistent with the considerations in § 3; we can picture a circular
mill as a superposition of many rings of worms, each of which lies in a horizontal plane.
Combining (3.13), (3.16) and (3.17), the far-field flow field for each ring is azimuthal, not
in the vertical direction, and thus the net flow for the circular mill is horizontal as well.

As a final reduced model, we make the further simplification of considering a mill as
a rotating disc with a defined centre b(t), radius c(t) and height d(t), quantities that are
allowed to vary as a function of time. To maximise swimming efficiency, isolated worms
away from the mill will propel themselves mostly from the first-order mode V1 given in
§ 3.1. Since this fluid velocity field decays rapidly away from a worm and using § 3.2 is zero
across a full orbit, we neglect the fluid flow generated by worms away from the mill. Since
a mill contains a high density of worms together with the interstitial viscoelastic mucus,
we assume that the disc is rigid. Finally, since the locomotion of the worms generates a
fluid backflow in the opposite direction to their motion, the disc is assumed to rotate in the
opposite angular direction to that of the worms.

A common mathematical tool for solving problems in a Stokes flow is to express the
forcing as the sum of a finite set of fundamental Stokes flow point singularities (Jeong
& Moffatt 1992; Crowdy & Or 2010). Given in § 3.3, by considering the circular mill
as a rigid oblate squirmer with swirl, the dominant contribution from the forcing can be
approximated as a rotlet dipole. However, from (3.26), the leading-order contribution in
the far field for a rotlet dipole trapped between a lower rigid no-slip boundary and an upper
free surface which deforms minimally has z dependence of the form sin (πz/2H). Hence,
we then vertically average the governing equations by setting the z dependence of u to be
precisely sin (πz/2H) i.e. we employ the factorisation

u = π

2
sin
( πz

2H

)
U(r), (4.1)

where U = U(r) is independent of z and the factor π/2 is for convenience.
Thus, a suitable rotational Reynolds number on the scale of a mill is Re ∼ UX/ν ≈

10 where X = 2H/π. Moreover, the dominant velocities are azimuthal, with gradients in
the radial direction. This suggests that the fluid dynamics of milling is certainly in the
viscous-dominated regime, and the neglect of inertial terms is justified.

4.2. Defining notation
As shown in figure 3 and in supplementary movie 1, we define a coordinate basis (x, y, z)
with origin at the centre of the Petri dish P, where the bottom of the dish is at z = 0 and
the free surface is at z = H, a constant. We model an established circular mill, rotating
a distance d0 above the bottom of a circular Petri dish with angular velocity −Ω , as a
rigid disc of radius c and height d with imposed angular velocityΩ , generating a flow in a
cylindrical domain with cross-sectional radius 1 where d0 � d � c, b,H. Let the centre
of the disc M have instantaneous position (−b, 0, d0 + d/2).

4.3. Lubrication picture
Insight into the mill dynamics comes first from an extremely simplified calculation within
lubrication theory in which the disc (mill) has a prescribed azimuthal slip velocity on its
bottom surface and a simple no-slip condition on its top surface, as if only the ventral
surfaces of worms have beating cilia. This artifice allows the boundary conditions at z = 0
and z = H to be satisfied easily. For the thin film of fluid between the bottom of the mill
and the bottom of the dish, namely {(x, y, z) : 0 ≤ z ≤ d0; , x2 + y2 ≤ c2}, let the imposed
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M

(a)

(c)

(b)

M

P

H

P
1

c

c

x

x

z

y

b

b

d

Ω

Ω

Figure 3. System containing a single mill. (a) Experimental view. (b,c) Plan and front views for the
corresponding schematic showing a disc, rotating with angular velocity Ω , which has radius c, thickness d
and centre M a distance b away from the centre P of a circular Petri dish of unit radius.

slip velocity at z = d0 be uslip = uslip(r)êθ . In the absence of any pressure gradients,
the general results of lubrication theory dictate a linear velocity profile for the flow ub
in the film,

ub(r, z) = z
d0
(uslip +Ωr)êθ , (4.2)

where Ω is the as yet unknown angular velocity of the disc. The flow in the region above
the mill is simply u(r, z) = Ωr, independent of z; it rotates with the disc as a rigid body.
The torque Tb on the underside of the mill is

Tb = 2πμ

d0

∫ c

0
r2 dr(uslip +Ωr), (4.3)

while there are no torques from the flow above because of its z-independence. Since the
mill as a whole is torque free, Tb = 0 and we deduce

Ω = − 4
c4

∫ c

0
r2 druslip(r). (4.4)

If uslip has solid-body-like character, uslip = u0r/c, then Ω = −u0/c and ub = 0. This
‘stealthy’ mill generates, at leading order, no net flow in the gap between the mill and the
bottom of the dish and it is analogous to the stealthy spherical squirmer with swirl that
generates no external flow (Lauga 2020). Any slip velocity other than the solid body form
will generate flow in the layer, and one notes generically that it is in the opposite direction
to the slip velocity. This is consistent with the phenomenology shown in figure 2 involving
the backwards advection of dye injected near a mill. Hence, from now on, we will assume
that the mill effectively imposes a constant velocity boundary condition at the edge of the
mill, (x + b)2 + y2 = c2.
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4.4. Full governing equations
Assuming Stokes flow with fluid velocity u = (ux, uy, w = 0), pressure p = p(x, y, z) and
viscosity μ, the governing equations are

μ∇2u = ∇p, ∇ · u = 0. (4.5a,b)

Employing no-slip boundary conditions (Batchelor 1967) at both the outer edge and the
bottom of the Petri dish yields

u = 0 at z = 0, u = 0 at r =
√

x2 + y2 = 1. (4.6a,b)

On the surface of the fluid, z = H, the dynamic boundary condition is

(σ f − σ a) · ẑ = 0, (4.7)

where σf and σa = −p0I are stress tensors for the fluid and the air respectively. Finally,
the boundary conditions on the surface of the mill become

u · et = Ω c̃ on Γ = {(x, y, z) : c̃2 = (x + b)2 + y2 ≤ c2, z = d0}, (4.8a)

u · et = Ωc on Γ = {(x, y, z) : (x + b)2 + y2 = c2, d0 ≤ z ≤ d0 + d}, (4.8b)

u · et = Ω c̃ on Γ = {(x, y, z) : c̃2 = (x + b)2 + y2 ≤ c2, z = d0 + d}, (4.8c)

where the tangent and normal vectors et and en satisfy

en = 1
(y2 + (x + b)2)1/2

((x + b)ex + yey), (4.9a)

et = 1
(y2 + (x + b)2)1/2

(−yex + (x + b)ey). (4.9b)

4.5. Vertically averaged governing equations
Defining r as the in-plane coordinates (x, y), as set out in § 4.1, we employ the factorisation

u = π

2
sin
( πz

2H

)
U(r) −→ ∇2u = π

2
sin
( πz

2H

)
(∇2 − κ2)U, (4.10)

where κ = π/2H plays the role of the inverse Debye screening length in screened
electrostatics, and the z-dependent prefactor guarantees both the lower no-slip and the
upper stress-free vertical boundary conditions. Vertically averaging, i.e. considering
H−1 ∫ H

0 · · · dz, gives the Brinkman-like equation

μ(∇2 − κ2)U = ∇p, ∇ · U = 0, (4.11a,b)

where U = Uxex + Uyey = Unen + Utet has a corresponding Stokes streamfunction ϕ
satisfying {

Ux = ∂ϕ

∂y
,Uy = −∂ϕ

∂x

}
−→ ∇4ϕ = κ2∇2ϕ, (4.12)
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The circular milling of plant-animal worms

together with boundary conditions

un = 0 at r =
√

x2 + y2 = 1, (4.13a)

ut = 0 at r =
√

x2 + y2 = 1, (4.13b)

un = 0 on Γ = {(x, y) : (x + b)2 + y2 = c2}, (4.13c)

ut = Ωc on Γ = {(x, y) : (x + b)2 + y2 = c2}, (4.13d)

i.e. no-slip is imposed at the edge of the Petri dish while a constant azimuthal velocity
boundary condition is imposed at Γ = {(x, y) : (x + b)2 + y2 = c2}. Using separation of
variables, the general series solution in polar coordinates to 4.12 is

ϕ = A0 + B0 log r + C0I0(κr)+ D0K0(κr)

+
∞∑

n=1

cos nθ(Anrn + Bnr−n + CnIn(κr)+ DnKn(κr))

+
∞∑

n=1

sin nθ(Ãnrn + B̃nr−n + C̃nIn(κr)+ D̃nKn(κr)), (4.14)

where {In(r),Kn(r)} are solutions of the first and second kind respectively for the modified
Bessel equation f ′′ + f ′/r − f (1 + n2/r2) = 0. In general, this system does not admit an
analytic solution. However, significant analytic progress can be made in two particular
limits, namely when the mill is close to and when the mill is far away from the centre of
the Petri dish.

4.6. Near-field perturbation analysis
Motivated by perturbative studies of screened electrostatics near wavy boundaries
(Goldstein, Pesci & Romero-Rochin 1990), we consider a small perturbation of the mill
centre away from the middle of the Petri dish, i.e. b = cε where ε � 1. Expanding in
powers of ε, i.e. for a given function f considering f = f 0 + εf 1 + ε2f 2 + . . ., (4.12)
becomes

∇4ϕi = κ2∇2ϕi for i = 1, 2, 3 . . . (4.15)

with corresponding boundary conditions at the edge of the Petri dish

∂ϕi

∂r
= ∂ϕi

∂θ
= 0 for i = 1, 2, 3 . . . . (4.16)

Furthermore, since Γ can be expressed in polar coordinates as

Γ =
{
(r, θ) : r = R(θ) = −b cos θ +

√
c2 − b2 sin2 θ

= c − εc cos θ − ε2 c sin2 θ

2
+ O(ε3)

}
, (4.17)
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while (4.9a) and (4.9b) expand to become

un = 1
r
∂ϕ

∂θ
+ ε

c sin θ
r

∂ϕ

∂r
− ε2c2

2r2

(
sin 2θ

∂ϕ

∂r
+ sin2 θ

r
∂ϕ

∂θ

)
+ O(ε3), (4.18)

ut = −∂ϕ
∂r

+ ε
c sin θ

r2
∂ϕ

∂θ
+ ε2c2

2r2

(
sin2 θ

∂ϕ

∂r
− sin 2θ

r
∂ϕ

∂θ

)
+ O(ε3), (4.19)

(4.13c) and (4.13d) reduce to

1
c
∂ϕ0

∂θ
+ ε

(
1
c
∂ϕ1

∂θ
+ sin θ

∂ϕ0

∂r
+ cos θ

c
∂ϕ0

∂θ
− cos θ

∂2ϕ0

∂r∂θ

)

+ ε2
(

1
c
∂ϕ2

∂θ
+ sin θ

∂ϕ1

∂r
+ cos θ

c
∂ϕ1

∂θ
− cos θ

∂2ϕ1

∂r∂θ
+ cos2 θ

c
∂ϕ0

∂θ

− 1 + cos2 θ

2
∂2ϕ0

∂r∂θ
− c sin 2θ

2
∂2ϕ0

∂r2 + c cos2 θ

2
∂3ϕ0

∂r2∂θ

)

+ O(ε3)|r=c = 0. (4.20)

− ∂ϕ0

∂r
+ ε

(
−∂ϕ

1

∂r
+ sin θ

c
∂ϕ0

∂θ
+ c cos θ

∂2ϕ0

∂r2

)

+ ε2

(
−∂ϕ

2

∂r
+ sin θ

c
∂ϕ1

∂θ
+ c cos θ

∂2ϕ1

∂r2 + sin2 θ

2
∂ϕ0

∂r
− sin 2θ

2
∂2ϕ0

∂r∂θ

+ sin 2θ
2c

∂ϕ0

∂θ
+ c sin2 θ

2
∂2ϕ0

∂r2 − c2 cos2 θ

2
∂3ϕ0

∂r3

)

+ O(ε3)|r=c = cΩ. (4.21)
Hence, at O(1), namely when the circular mill is concentric with the Petri dish, we find

∂ϕ0

∂r

∣∣∣∣
r=1

= ∂ϕ0

∂θ

∣∣∣∣
r=1

= ∂ϕ0

∂θ

∣∣∣∣
r=c

= 0,
∂ϕ0

∂r

∣∣∣∣
r=c

= −Ωc =⇒ (4.22)

ϕ0 = −(α0K0(κr)+ β0I0(κr)) =⇒ (4.23)

uθ = cΩ
I1(κr)K1(κ)− K1(κr)I1(κ)

I1(κc)K1(κ)− K1(κc)I1(κ)
, (4.24)

where

α0 = c
κ
Ω

I1(κ)

I1(κc)K1(κ)− K1(κc)I1(κ)
, (4.25a)

β0 = c
κ
Ω

K1(κ)

I1(κc)K1(κ)− K1(κc)I1(κ)
. (4.25b)

For comparison, the corresponding Couette solution is

uθ = c2Ω

1 − c2

(
1
r

− r
)
. (4.25c)

Figure 4(a), plots uθ (r) for both the Brinkman and Couette solutions when c = 10/45 and
H = 8/45 i.e. the Brinkman fluid velocity field decays much faster away from the mill
than the Couette fluid velocity field.
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Figure 4. (a) Azimuthal fluid velocity profile, plotted as a function of distance from the Petri dish centre r,
for both the Brinkman solution (black) and the corresponding Couette solution (blue) when c = 10/45 and
H = 8/45. (b) Perturbation fluid velocity profile, plotted as a function of distance from the Petri dish centre r,
showing both the radial (u1

r / sin θ , black) and tangential flow (u1
θ / cos θ , blue) when c = 10/45 and H = 8/45.

Similarly at O(ε), we obtain

∂ϕ1

∂r

∣∣∣∣
r=1

= 0,
∂ϕ1

∂r

∣∣∣∣
r=c

= c cos θ
∂2ϕ0

∂r2

∣∣∣∣
r=c

, (4.26a)

∂ϕ1

∂θ

∣∣∣∣
r=1

= 0,
∂ϕ1

∂θ

∣∣∣∣
r=c

= −c sin θ
∂ϕ0

∂r

∣∣∣∣
r=c

=⇒ (4.26b)

ϕ1 = − cos θ
(
α1K1(κr)+ β1I1(κr)+ γ1r + δ1

r

)
, (4.27)

where {α1, β1, γ1, δ1} are known functions of c and X which satisfy the following set of
simultaneous equations

α1K1(κ)+ β1I1(κ)+ γ1 + δ1 = 0, (4.28a)

α1K1(κc)+ β1I1(κc)+ γ1c + δ1

c
= Ωc2, (4.28b)

−α1(κK0(κ)+ K1(κ))+ β1(κI0(κ)− I1(κ))+ γ1 − δ1 = 0, (4.28c)

−α1

(
K0(c/X)

X
+ K1(c/X)

c

)
+ β1

(
I0(c/X)

X
− I1(c/X)

c

)
+ γ1 − δ1

c2

= κΩc2
(

− 1
κc

+ I0(κc)K1(κ)+ K0(κc)I1(κ)

I1(κc)K1(κ)− K1(κc)I1(κ)

)
. (4.28d)

Figure 4(b) plots u1
r/ sin θ and u1

θ / cos θ as functions of r when c = 10/45 and H = 8/45.
This perturbation flows also decays exponentially away from the mill i.e. the Brinkman
term still plays a key role. As will be shown in § 5.1, this perturbation flow leads to the
centre of the mill orbiting clockwise on a circle centred on the middle of the Petri dish.
That is, the stationary point where the mill and the Petri dish are concentric is unstable.

4.7. Far-field solution
When the circular mill is away from the centre of the Petri dish (b = O(1)), the boundary
conditions at the edge of the mill can no longer be expressed straightforwardly in terms of
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the polar coordinates (r, θ). Instead we switch to the bipolar coordinates (η, ξ) utilising
the transformations

x = a
sinh η

cosh η − cos ξ
+ d and y = a

sin ξ
cosh η − cos ξ

. (4.29a,b)

In particular, we can map the outer boundary, r = 1, to η = η1 and the disc boundary to
η = η2 by defining the constants a, d, η1 and η2 as satisfying

d = −a coth η1, b = a(coth η1 − coth η2), 1 = a
sinh η1

and c = a
sinh η2

,

(4.30a–d)

i.e.

η1 = ln (a +
√

a2 + 1), η2 = ln

(
a + √

a2 + c2

c

)
, (4.31a,b)

a = 1
2b
(
√
(1 + c2 − b2)2 − 4c2). (4.32)

In this basis, the system becomes

∇2(∇2 − κ2)ϕ = 0 where ∇2 = 1
h2

(
∂2

∂ξ2 + ∂

∂η2

)
and h = a

cosh η − cos ξ
,

(4.33a,b)

with boundary conditions

∂ϕ

∂ξ
=
{

0, η = η1
0, η = η2.

and
1
h
∂ϕ

∂η
=
{

0, η = η1
−Ωc, η = η2.

(4.34a,b)

Now, in general, this does not admit an analytic solution. However, for large mills away
from the Petri dish centre, namely 1/a > κ , the biharmonic term dominates and thus using
Melesko & Gomilko (1999), (4.33a,b) reduces to

∇4ϕ = 0 −→ ∂4Φ

∂ξ4 + 2
∂4Φ

∂ξ2∂η2 + ∂4Φ

∂η4 + 2
∂2Φ

∂ξ2 − 2
∂2Φ

∂η2 +Φ = 0 where Φ = ϕ

h
.

(4.35)
From Kazakova & Petrov (2016), this yields the analytic solution

ϕ = N(η)+ M(η)
cosh(η)− cos(ξ)

, (4.36)

where

N(η) = Aη − F cosh 2η − G sinh 2η,
M(η) = B sinh η + C cosh η + Eη sinh η + F cosh η cosh 2η + G cosh η sinh 2η.

}
(4.37)

914 A20-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1112


The circular milling of plant-animal worms

1.0(a) (b)

1.0

0.5

0.5

0

0
x

y

–0.5

–0.5
–1.0

–1.0

1.0

1.0

0.5

0.5

0

0
x

–0.5

–0.5
–1.0

–1.0

Figure 5. Streamlines of the flow highlighting the two distinct possibilities; namely, no stagnation points in
(a), where b = 0.25 and c = 0.2, and stagnation points in (b), where b = 0.373 and c = 0.298.

Here, A, B, C, E, F and G are constants which, letting α = η1 + η2 and β = η1 − η2,
satisfy

A = Ωca coshβ
sinhβ

β sinh η2 − sinhβ sinh η1

β(coshα coshβ − 1)− sinhβ(coshα − coshβ)
,

E = Ωca
coshβ cosh η1 − cosh η2

β(coshα coshβ − 1)− sinhβ(coshα − coshβ)
,

C = sinh η2

2
(E sinh η2 + A cosh η2 +Ωca)+ sinh η1

2
(E sinh η1 + A cosh η1),

B = −Eη2 − cosh η2(E sinh η2 + A cosh η2 +Ωca),

F = −A
2

sinhα
coshβ

, G = A
2

coshα
coshβ

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.38)

From Kazakova & Petrov (2016), this flow field takes one of two forms. When the mill
is relatively close to the centre of the Petri dish, the flow has no stagnation points and
the streamlines are circular (figure 5(a) gives a typical example). When the mill is close
to the boundary of the Petri dish, the flow has a stagnation point (figure 5(b) gives a
typical example). Mathematically, a stagnation point exists when uη = uξ = 0 i.e. ξ = 0
and η = η� where η1 < η� < η2 satisfies

V(η�) = 0 : V(η) = d
dη

(
N(η)+ M(η)

cosh η − 1

)
. (4.39)

Note that when ξ = π, although uη = 0, uξ /= 0 ∀ η ∈ (η1, η2). Without loss of generality,
let Ω > 0 i.e. V(η1) = 0 while V(η2) < 0. If V ′(η1) < 0, V decreases monotonically
and no such η ∈ (η1, η2) exists. Conversely if V ′(η1) > 0, V achieves positive values
in [η1, η2] and so by the intermediate value theorem, such a η ∈ (η1, η2) exists. Hence,
in {b, c} phase space, the critical curve separating the two regions satisfies V ′(η1) = 0.
Furthermore from Kazakova & Petrov (2016), a good approximation to the boundary is
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the interpolation curve

b(c) = 0.36(1 − c)+ 0.08c(c − 1). (4.40)

5. The orbit of the circular mill centre

The flow exerts a force F on the mill where F = Fxx̂ + Fyŷ satisfies

F =
∫ π

−π
(σηηη̂ + σηξ ξ̂)η=η2h dξ. (5.1)

Here, the bipolar basis vectors η̂ and ξ̂ satisfy η̂ = f x̂ + gŷ and ξ̂ = gx̂ − f ŷ where

f = 1 − cosh η cos ξ
cosh η − cos ξ

and g = − sin ξ sinh η
cosh η − cos ξ

, (5.2a,b)

while σηη and σηξ are components of the stress tensor σij = −pδij + μ(∂ui/∂xj + ∂uj/∂xi).
Since this is not a standard result given in the literature (Wakiya (1975) is the closest
reference which can be found), for completeness appendix B.1 gives the full form of
∂ui/∂xj when expressed in bipolar coordinates for general u.

This system, in a domain symmetric about the line θ = 0, is forced by a fluid flow even
in θ . Hence, since it admits a general separable form where each term is either even or odd
in θ (4.14), ϕ is even in θ and hence p and σrr are also even in θ . Similarly, σrθ is odd in θ
and hence from rewriting (5.1) in terms of cylindrical polar coordinates, we find Fx = 0,
a result to be expected from reversibility. This force causes the mill centre to slowly orbit
on a larger time scale than the period of rotation of a mill, maintaining a constant distance
from the centre of the Petri dish.

In general, Fy does not admit an analytic form. However, as in §§ 4.6 and 4.7, further
progress can be made analytically for circular mills both close to and far away from the
centre of the Petri dish.

5.1. Near-field circular mill
Building from § 4.6, substituting (4.23) and (4.27) into (4.11a,b) using standard properties
of modified Bessel functions and then integrating yields

p0 = p0, p1 = μκ2 sin θ
(
δ1

r
− γ1r

)
, (5.3a,b)

where p0 is a constant. Furthermore, since σrr = −p + 2μ∂ur/∂r while σrθ =
μ(∂uθ /∂r + (∂ur/∂θ)/r − uθ /r), we obtain

σ 0
rr = 0, σ 0

rθ = α0μ

(
κ2K0(κr)+ 2κK1(κr)

r

)
+ β0μ

(
κ2I0(κr)− 2κI1(r/X)

r

)
,

(5.4a,b)

σ 1
rr = μ sin θ

(
−2α1

(
κK0(κr)

r
+ 2K1(r/X)

r2

)
+ 2β1

(
κI0(κr)

r
− 2I1(κr)

r2

)

+ γ1κ
2r − δ1

(
κ2

r
+ 4

r3

))
, (5.5)
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σ 1
rθ = μ cos θ

(
α1

(
2κK0(κr)

r
+ K1(κr)

(
κ2 + 4

r2

))

− β1

(
2κI0(κr)

r
− I1(κr)

(
κ2 + 4

r2

))
+ 4δ1

r3

)
. (5.6)

Hence, the flow exerts a force F on the mill, where F = Fxx̂ + Fyŷ satisfies

F =
∫ π

π

(σrr r̂ + σrθ θ̂)

∣∣∣∣
r=c

c dθ =⇒ (5.7)

F0
x = F0

y = F1
x = 0, (5.8)

F1
y = πμκ2c

(
α1K1(κc)+ β1I1(κc)+ γ1c − δ1

c

)
= πμκ2c2

(
Ωc − 2δ1

c2

)
. (5.9)

Note that, in the front of this expression, we have (κc)2 rather than c2 i.e. the effective
radius of the mill is modulated by the screening length κ . For the values taken in figure 4,
F1

y is positive, i.e. the mill centre orbits clockwise in a circle centred on the middle of the
Petri dish.

5.2. Far-field circular mill
Since (4.11a,b) reduces in this case to the Stokes equations, Fx = 0 follows immediately
by utilising the properties of a Stokes flow. Reversing time and then reflecting in the x axis
returns back to the original geometry but with the sign of Fx flipped i.e. Fx = −Fx →
Fx = 0. Substituting (4.36) into (4.11a,b) and then integrating gives the pressure

p = 2μ
a2 (E sinh η sin ξ + F sinh 2η sin 2ξ − 2F sinh η sin ξ

+ G cosh 2η sin 2ξ − 2G cosh η sin ξ). (5.10)

Shifting the basis vectors back to Cartesian coordinates, the force can be expressed in the
form

F = μ

a2

∫ π

−π
( fxx̂ + fyŷ)η=η2h dξ, (5.11)

where fx and fy are explicit functions of η, ξ and {A,B,C,E,F,G}. However, fx is odd
with respect to ξ at η = η2 since
1
2
( fx(η, ξ)+ fx(η,−ξ))

= 2 sin2 ξ(1 − cosh η cos ξ)
(cosh η − cos ξ)2

(C cosh η+B sinh η + Eη sinh η+F cosh η(2 cosh2 η − 1)

+ 2G cosh2 η sinh η) = 0 at η = η2. (5.12)

Therefore, as expected, Fx = 0. Also, fy can be similarly simplified, removing the terms
odd in ξ , to give

F = μŷ
8a

4∑
i=0

gi(η2)Ii, (5.13)

where gi = gi(η) : i ∈ {0, 1, 2, 3, 4} are given for completeness in appendix B.2 while In
satisfies

In =
∫ π

π

cos (nξ)
(cosh η − cos ξ)3

dξ. (5.14)
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Figure 6. (a) The force that the flow exerts on the disc expressed as a function of c for a range of values of
b(0.85, 0.8, 0.65, 0.52, 0.4). (b) The critical radius c� expressed as a function of b. As b → 1, c� → 1 − b (the
red dashed line).

To investigate this force more quantitatively, we numerically calculate Fy from (5.13) as a
function of b and c by utilising MATLAB’s symbolic variable toolbox. Figure 6(a) plots
Fy as a function of c for a range of values for b (chosen to demonstrate the full phase space
of behaviour of Fy(b, c)). Large mills have positive Fy (in the grey region), i.e. the mill
centre orbits in the same angular direction as the worms. Small mills have negative Fy (in
the white region), i.e. the mill centre orbits in the opposite direction to the worms.

Hence, we define the critical radius c� = c�(b) as the mill radius at which Fy = 0
(plotted as a function of b in figure 6b). Note that when b is large the critical geometry is a
lubrication flow since b + c� → 1. Furthermore, c� has a maximum of 0.222 at b = 0.70.

5.3. Comparison with experiments
We now compare these predictions with experimental data for b(t) and c(t), generated
using the methodology given in § 2. Unlike the simple circle considered in the model, the
shape of a real circular mill is complicated. Not only does a mill at any one time consist
of thousands of individual worms but also, as the mill evolves, this population changes as
worms enter and leave. Hence, mills typically have constantly varying effective radii and
are not simply connected. Furthermore, the edges of a circular mill are not well defined,
leading to a greater uncertainty in measuring the mill radius. However, despite these
complications, the experimental results agree well with the predictions made above in § 5.
Within experimental uncertainty, b is constant i.e. the centres of the mills do indeed move
on circles centred at the middle of the arena. Furthermore, the direction of the movement
also concurs with the theory given in § 5.2 for the force on a mill in the far field.

To illustrate this, consider figure 7 which presents graphically the experimental data for
two representative experiments which sit at either end of the phase space of mill centre
trajectories. In the first experiment (figures 7a and 7b), the circular mill radius c decays
slowly over time, always being less than the critical radius c�(b) (in figure 7(b) the green
points lie below the red dashed line). Hence, we are in the white region of the phase space
in figure 6. Since the worms are moving clockwise, the model predicts that the mill centre
should orbit anti-clockwise, increasing in angular speed as time progresses. This is indeed
what we see in figure 7(a) with the darker, later-time points less clustered together than
the lighter, earlier-time points.

In contrast, we see much more variation in c in the second experiment (figures 7c and
7d) with points both above and below c� (in figure 7(d) green points lie either side of the
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Figure 7. Circular mill data for two different experiments, (a and b) and (c and d). In (a and c) the location
of the mill centre is plotted on the (x, y) plane. Points shaded a darker blue denote a later time, as quantified
by the colour bar. (b,d) Show b (orange filled circles), c (green filled circles) and the critical radius c�(b) (red
dashed line), plotted as functions of time. Here, {x, y, b, c, c�} have all been normalised by the Petri dish
radius (denoted R).

red dashed line). The predicted sign of Fy thus oscillates i.e. the model predicts that the
net orbit of the mill centre should be minimal. This is indeed what we see in figure 7(c)
with light and dark blue points equally scattered.

6. Binary circular mill systems

During the evolution of the system, multiple mills can emerge at the same time (figure 8
and supplementary movie 2). This is to be expected since the worms can only interact
locally with each other and hence cannot coordinate globally to produce a single mill.
Here, for simplicity, we will only consider the most common example of this phenomenon,
namely a pair of circular mills. Since the radii of the mills are of the same order of
magnitude as the distance between them, a perturbation expansion in terms of c is not
possible. Hence, the method utilised in § 4 cannot yield an analytic solution here.

However, using the insight revealed from § 4 regarding the flow field produced by
an individual mill, we can explain the experimentally observed behaviour from a fluid
dynamical viewpoint. In particular, we can explain both the location where the second mill
forms and the direction in which it rotates and predict the stability of the binary system.
Experimentally, we observed a total of nine binary circular mill systems (summarised
in appendix A). Figure 9(a–c) gives a snapshot from three of these experiments. Using the
theoretical model, streamlines for the flow produced by each of the two mills if they existed
in isolation were generated and superimposed on the same plot (figure 9d–f ).

The first important observation is that secondary mills only appear when the flow
produced by the first mill has a stagnation point, forming in the corresponding stagnation
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(a) (b)

Figure 8. Systems containing multiple mills. (a) Nine circular mills of different sizes observed ex situ (in
a tub). (b) Binary circular mill system observed in situ (on a beach). Both images are reproduced from
Sendova-Franks et al. (2018).

point region. All nine observed binary circular mill systems obey this hypothesis
while all observed circular mills which do not generate a stagnation point are stable
to the emergence of secondary mills. Note that this relation is not a one-to-one
correspondence between having stagnation points and secondary mills emerging. Many
other factors can prevent secondary mills forming e.g. a low density of worms swimming
in the stagnation point region.

Furthermore, the worms forming the secondary mill tend to swim in the direction of
the flow around the stagnation point i.e. the two mills tend to rotate in the same angular
direction. In seven of the nine binary circular mill systems examined, the mills rotate in
the same direction while the second mill in one of the other systems is seeded by a single
flotilla of worms who were tracking around the edge of the Petri dish.

Finally, we can gain a qualitative understanding of the stability of the binary system
from looking at the streamlines produced by the second mill. If these streamlines do not
have a stagnation point in the vicinity of the first mill (figures 9a and 9d), the system is
unstable as the first mill breaks up. Alternatively, if a stagnation point exists and aligns
with the first mill (figures 9b and 9e), the system will be stable. Figures 9(c) and 9(f ) show
the intermediate regime where the first mill is partly (but not fully) inside the second mill’s
stagnation region. The system is unstable over a much longer time scale. In this particular
case, since the first mill is much larger than the second mill, it dominates and the second
mill breaks up.

7. Milling conclusions

Vortex motions in animal groups have been studied for over a century in many animal
species. In this paper, we have demonstrated for the very first time that in order to
understand these behaviours in aquatic environments, of which the circular milling of
S. roscoffensis is a prime example, one has to understand the underlying fluid dynamics
of the system. From the orbit of the vortex centre to the formation of secondary vortices
and their subsequent stability, it is fundamentally the fluid flow processes that drive these
mesmerising and constantly evolving structures. Such a fluid velocity field may allow
nutrient circulation as well as providing an efficient method of dispersal of waste products
away from the main body of worms. Furthermore, it exerts a force on the circular mill
which causes the mill to orbit slowly. In particular, for a single mill in a circular arena,
the centre of the mill orbits on a circle whose centre is the middle of the arena, a result
consistent with considerations of reversiblity in Stokes flow.

We present a simple model for the system, (a rigid disc rotating in a Stokes flow),
parametrised by only two key variables; namely the radius of the mill c and the distance
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Figure 9. Snapshots of a binary circular mill system for three distinct experiments together with corresponding
streamline plots (first mill is light green with red streamlines, second mill is dark green with blue streamlines).
(a) and (d) Unstable with the second mill dominating, (b) and (e) stable, (c) and ( f ) unstable on a longer time
scale with the first mill dominating.

to the centre of the arena b. This fits the experimental results well, not only in terms of the
mill centre orbit direction but also the predicted streamlines. Utilising this understanding,
we are able to shed light on the fluid dynamical stability of circular mills. Secondary
circular mills form around stagnation points of the flow. The resulting system evolves to
one of two kinds of stable states; namely, a single mill with no nearby stagnation points or
a set of linked mills where each mill centre is located in the stagnation region of another
mill. Although in real life the geometry of the arena is more complicated than our circular
model, the same principle remains, namely that stagnation points of the flow occur near a
mill when that mill is close to a boundary. This allows the worm population passively to
organise towards the arena centre without needing to know the exact extent of the domain.
Typically the arena centre will be less shaded and more resource rich.

A next step is to estimate the speed of orbit of the mill centre. As each worm secretes
a layer of mucus around itself, creating a non-Newtonian boundary layer between the
mill and the bottom of the Petri dish, both the thickness of this boundary layer and the
mechanical properties of the mucus need to be quantified before one is able to calculate
this movement. A second line of enquiry should focus on the observation that a dense core
of stationary worms is often experimentally observed to form in the centre of a mill. This
core can be unstable and break up or it can take over the whole mill, forming a biofilm.
At a more microscopic level, it is of interest to examine the extent to which the formation
and breakup of mills can be captured by the kinds of continuum models that have been
used successfully to study collective behaviour in bacterial systems (Saintillan & Shelley
2008), where vortex formation is now well established (Wioland et al. 2013).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1112.
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Appendix A. Experimental data on binary circular mill systems

Table 1 gives collocated experimental data of the evolution of circular mills across
eighteen distinct experiments. The experimental net movement was obtained by plotting
the angle between the line through the centres of the mill and Petri dish and a fixed
reference line as a function of time. Linearly interpolating these data, if the magnitude
of the gradient of the plotted line is greater than 1.05 rad h−1 (i.e. changes by more than
10◦ during a experiment of typical duration 10 min), then we can definitively say that there
is a net movement i.e. clockwise if the gradient of the line is negative or anti-clockwise if
the gradient of the line is positive. Otherwise, we write none, since there is no observable
net movement within the bounds of experimental error. Similarly, the net direction of this
movement predicted by our theory was obtained by plotting c − c�(b) as a function of time.
If the mean of these data points is greater than one standard deviation, then we predict
that the mill should move clockwise. If the mean is less than zero but has magnitude
greater than on standard deviation, we predict that the mill should move anti-clockwise.
Otherwise, we predict that there should be no observable net movement within the bounds
of experimental error.

While the radius of a circular mill c varies considerably throughout its evolution, its
centre remains within experimental error at a constant distance b from the centre of the
Petri dish. For fourteen of the eighteen mills, the predicted net direction of movement of
the mill centre from the model (assuming that the mill centre moves in the direction of the
force that the flow imposes onto it) matches with the actual net direction. The discrepancy
in the other four experiments arises from inertial effects, which particularly come into play
for circular mills close to the centre of the Petri dish (experiments 8 and 9) where F from
(5.13) is small. Table 2 gives the corresponding data for nine distinct binary circular mill
systems.

Appendix B. Circular milling mathematical model

B.1. Expression for ∂ui
∂xj

in bipolar coordinates

∂ui

∂xj
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
h
∂uη
∂η

− sin ξ
a

uξ
1
h
∂uη
∂ξ

+ sinh η
a

uξ
∂uη
∂z

1
h
∂uξ
∂η

+ sin ξ
a

uη
1
h
∂uξ
∂ξ

− sinh η
a

uη
∂uξ
∂z

∂uz

∂η

∂uz

∂ξ

∂uz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦
. (B1)
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Exp. no.
Variation in b
(Min–Max)

Variation in c
(Min–Max) Mill orient.

Experimental net
mill centre
movement

Net mill centre
movement predicted

by theory Stag. points
Leads to binary

system

1 0.51–0.63 0.09–0.27 CW None None � �
2 0.66–0.71 0.13–0.24 CW None ACW � �
3 0.42–0.49 0.14–0.28 CW None None � ?
4 0.67–0.73 0.10–0.19 CW ACW ACW � ?
5 0.14–0.20 0.16–0.25 CW CW CW × ×
6 0.62–0.69 0.14–0.23 CW None ACW � ?
7 0.12–0.20 0.18–0.31 CW CW CW × ×
8 0.07–0.18 0.15–0.32 CW ACW CW × ×
9 0.07–0.12 0.22–0.32 CW None CW × ×
10 0.22–0.26 0.12–0.27 CW None None × ×
11 0.21–0.29 0.17–0.41 CW CW CW × ×
12 0.23–0.30 0.17–0.32 CW CW CW × ×
13 0.31–0.34 0.23–0.31 CW CW CW � ?
14 0.46–0.54 0.23–0.40 CW CW CW � ?
15 0.35–0.41 0.27–0.35 CW CW CW � ?
16 0.57–0.64 0.20–0.32 CW CW CW � ×
17 0.26–0.36 0.19–0.40 CW CW CW � ?
18 0.25–0.30 0.19–0.34 CW CW CW � ?

Table 1. Radius c, distance from the arena centre b and orientation data from the evolution of eighteen distinct circular mills. CW is clockwise while ACW is
anti-clockwise.
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Experiment
no.

Variation in
b1

(Min–Max)

Variation in
c1

(Min–Max)
First mill

orientation

Variation in
b2

(Min–Max)

Variation in
c2

(Min–Max)
Second mill
orientation

1 0.69–0.75 0.14–0.24 CW 0.38–0.42 0.15–0.22 CW
2 0.72–0.78 0.10–0.22 CW 0.27–0.34 0.19–0.36 CW
3 0.35–0.39 0.09–0.15 CW 0.05–0.11 0.21–0.33 CW
4 0.36–0.46 0.31–0.36 CW 0.26–0.33 0.13–0.20 ACW
5 0.66–0.72 0.23–0.30 CW 0.46–0.59 0.22–0.38 ACW
6 0.60–0.69 0.15–0.21 CW 0.22–0.28 0.21–0.31 CW
7 0.67–0.70 0.15–0.23 CW 0.41–0.49 0.16–0.22 CW
8 0.41–0.62 0.19–0.30 CW 0.21–0.29 0.23–0.28 CW
9 0.53–0.66 0.16–0.21 CW 0.22–0.29 0.18–0.24 CW

Table 2. Radius bi, distance from the arena centre ci and orientation data from the evolution of each of the two
mills (i ∈ {1, 2}) in nine experimentally observed binary circular mill systems. CW is clockwise while ACW is
anti-clockwise.

B.2. Expressions for gi and Ii

g0 = −28F cosh(η)+ 28E cosh(η)+ 16A sinh(η)+ 8B sinh(η)− 28G sinh(η)

+ 12E cosh(3η)− 32F cosh(3η)+ 8A sinh(3η)− 32G sinh(3η)

+ 8Eη sinh(η). (B2)

g1 = 2C − 24E + 15F − 2C cosh(2η)− 34E cosh(2η)− 2E cosh(4η)

+ 70F cosh(2η)+ 19F cosh(4η)− 26A sinh(2η)− 2A sinh(4η)

− 2B sinh(2η)+ 70G sinh(2η)+ 19G sinh(4η)− 2Eη sinh(2η). (B3)

g2 = −28F cosh(3η)− 4F cosh(5η)+ 4A sinh(3η)− 28G sinh(3η)

− 4G sinh(5η)+ 24E cosh(η)− 32F cosh(η)+ 12A sinh(η)

− 8B sinh(η)− 24G sinh(η)− 8Eη sinh(η). (B4)

g3 = −2C − 6E + 9F + 2C cosh(2η)+ 2E cosh(2η)+ 10F cosh(2η)

+ 5F cosh(4η)− 2A sinh(2η)+ 2B sinh(2η)+ 10G sinh(2η)

+ 5G sinh(4η)+ 2Eη sinh(2η). (B5)

g4 = −4F cosh(η)− 4G sinh(η). (B6)

I0 = 1 + 2 cosh2(η)

sinh5(η)
, I1 = 3 cosh(η)

sinh5(η)
, I2 = 3

sinh5(η)
. (B7a–c)

I3 = cosh(η)

sinh5(η)
(8 cosh4(η)− 20 cosh2(η)+ 15)− 8. (B8)

I4 = 3

sinh5(η)
(16 cosh6(η)− 40 cosh4(η)+ 30 cosh2(η)− 5)− 48 cosh(η). (B9)
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