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I. The motorist problem

1.1 INTRODUCTION

Let us consider the following problem.
A motorist has decided to effect an accident insurance under the

following conditions. The insurance runs for one year. The premium
for the first year amounts Eo. If no damages have been claimed
during i successive years, i = i, 2 or 3 the premium is reduced to
E{. After four years of damagefree driving no further premium
reduction is granted, so the premium remains £3. The premium
is due on the first day of the year *). The own risk amounts ao.

The number of accidents of our motorist during a time period T is
assumed to be Poisson distributed with parameter \T. The extent
of the damage s 2) has distribution function F(s) with finite mean
and variance.

The problem of our motorist will be to decide whether to claim a
damage or not. He will have to develop a strategy that specifies
his decisions in every possible situation. His strategy will be called
optimal if it minimizes the expected costs in the long run.

We may expect that in view of the premium reduction, it will
be unprofitable to claim damages which are not much larger than
ao. Once a damage is claimed it will be profitable to claim all fol-
lowing damages that exceed ao during the remaining part of the year.

Hence his decisions will also depend on the time of the year and
the premium paid at the beginning of that year. So we distinguish
between four types of years, for each premium one.

It is no restriction to assume that this is January 1st.
Random variables are underlined.
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Our task will be to determine for each type of year a function s(t)
with the following property: If at time t an accident occurs with
damage s and no damages have been claimed since the last payment
of premium, then s should be claimed if s > s(t).

The strategy is completely fixed by this function.
The optimal strategy will be the function s(t) that minimizes the

expected costs of the motorist.
In this paper, a mathematical method, called Markov-program-

ming, is developed that yields the function s(t) under the assumptions
stated above. Before presenting a review of the method in part 2 and
its application to the motorists problem in part 3, some numerical
results will be given first.

1.2 NUMERICAL RESULTS

Suppose the following numerical data are given

Eo = 1.6
Ei = 1.4

E2 = 1.2

E3 = 1.1

«o = 0.4

Primarily the effect of the damage distribution F(s) on the op-
timal strategy is investigated. Three different types of distributions
have been used:

a) the exponential distribution with density function

f(s) = 1*-™

1

and expectation: E s = -
V-

1

variance: Var 5 = —
.,2
l/Var s

coefficient of variation: a = y ._ . = 1
' {E i)2

b) the gamma distribution with density function
tx* skl -asf(s\ H L -vs
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(only integer values of k were considered here)
and expectation:

k
Es = -

variance: Var s = —

coefficient of variationiation: a = 1/ Var

ft
c) The lognormal distribution with density function

(ins-v-Y

= ~YT= e

Var s

and expectation: E s = e*+

variance: Var s = e

coefficient of variation : a =

We compare five distributions with the same expectation. Their
density functions are sketched in figure 1.2.1. They are identified as
follows:

Number of
curve

. 1

2

3
4
5

Type of distribution

exponential
gamma
lognormal
lognormal
lognormal

expectation

1

1

1

1

1

coefficient of
variation

1

i/3
1

i/3
3

The number of accidents in a year is Poisson distributed with
expectation X = 2. The corresponding optimal strategies are pre-
sented in figure 1.2.2. From these results it can be deduced that at
least for the distributions considered with the same mean and va-
riance the optimal strategies are nearly the same. Further, in-
creasing the variance leads to less conservative claiming in these
cases.
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Fig. 1.2.1. The five used damage distributions
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Fig. 1.2.2. The optimal strategy for these distributions.
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Secondly the effect of the expected number of accidents is in-
vestigated. In figure 1.2.3 the optimal strategy is given for X = 2
(curve 1) and X = 4 (curve 6). In both cases the damage distribution
is exponential with expectation 1. An increase of the number of
accidents leads to more conservative claiming especially in the
beginning of the year.

0,8

0.7

0,6

0,5

->• Mn y e a n

Fig. 1.2.3. The optimal strategy for two accident rates.

2. Markov-programming

In problems of the type to which Markov-programming can be
applied there is always a question of a physical system. In our
case the system comprises the car and the accident insurance.

At each point of time t the system is in some state x. In the
mathematical model the state x is represented by a point in a
finite dimensional Cartesian space, called the state space X.
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Apart from deterministic transformations the state of the system
is subject to random transitions. Owing to these transitions the sys-
tem performs a random walk through the state space X. If the
decisionmaker does not intervene, such a walk is said to be a reali-
sation of the natural process. A condition for application of Markov-
programming is that for each initial state the underlying natural
process can be described by a stationary strong Markov-process.

A stationary Markov-process is characterized by the following
property: "Suppose the system will be in state x at a fixed time t
then the probability of being in some set of states A at time t -\- s
depends only on A, x and s". In formula:

P* + • (A; *, t) = P*(A ;x,o) = PS(A ; x). (2.1)

In this paper a stationary Markov-process is called strong if the
above relation remains true when t is not given beforehand but will
be fixed by the random time the system enters an arbitrary but
given closed set of states in X. In other words: states, assumed by
the system before the state x is reached, are irrelevant for future
transitions when x is completely specified. Further the distribution
of the transition probabilities is independent of t, even if t is random
in the sense we mentioned above.

In our motorist problem, the natural process results from the
passage of time and the occurence of accidents. The assumption
that the number of accidents in a time interval T is Poisson dis-
tributed with constant parameter and the assumed independence
between successive damages together imply that the natural process
in our problem is a stationary strong Markov-process.

In general the decisionmaker will try to influence the natural
process by interventions, basically a finite number in a finite
interval. After such an intervention the system is transferred into
some other state. Between interventions the system is subject
to the natural process. For that reason the natural process has
to be defined for each initial state. It is convenient to assume that
at each point of time a decision is made. The decision will be pri-
marily to decide whether to intervene or not and secondly which
intervention to choose. In the case the decision is not to intervene
we will speak of a null-decision. Once it is decided to intervene
in some state x we will have to decide among the different possi-
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bilities which intervention is going to be effected. We shall assume
that in every state x there exists a set D(x) of possible decisions d.
Mathematically a decision is defined by the probability distribution
of the state into which the system is transferred (by the decision!).
A null-decision in the state x is a probability distribution con-
centrated in x itself. In the motorist problem decisions lead to
deterministic transitions. Consequently, these decisions are also
defined by "concentrated" probability distributions but now in the
new state. As soon as to every state a decision (including null-
decisions) has been attached we have a strategy. Hence a strategy
shall specify the set of states where the decisionmaker will intervene
and in addition to this for each intervention state it determines the
probability distribution of the state just after the intervention.

The resultant of the natural process and the transitions dictated
by the strategy is called the decision-process. Under certain general
conditions it can be proved that the decision-process is also a
stationary strong Markov-process.

With regards to the decision-process in the state space a set of
socalled transient states can be differentiated from one or more
simple ergodic sets. The set of transient states has the property
that with probability i the system will never return to this set once
it has left it. Ergodic sets are characterized by the fact that once
the system assumes a state of such a set it remains in that set
forever with probability i.

A simple ergodic set cannot be subdivided into disjunct ergodic
sets. In general a decomposition of the state space in a set of
transient states and simple ergodic sets is not completely unique.

The set of intervention states plays a prominent part in the
decisionprocess. For a strategy z the set of intervention states will
be denoted by Az.

Let In (n = i, 2, . . .) be the sequence of future intervention
states, if the strategy z is applied. The sequence In (n = i, 2, . . .)
constitutes a stationary Markov-process with a discrete time para-
meter. The probability distribution of In, given the initial state x,
will be denoted by

(A; z; x) n = 1, 2, . . .*) (2.2)
2) A is some set of states in Az.

This probability distribution can be extended to the whole space by taking
pW (A ; z; x) = pW (Af]Az; z; x).
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Often it can be proved that the stationary distribution of the
"intervention state IJ' exists and is given by

4 > { A ; z ; x ) = l i m - 2 p <*> ( A ; z ; x ) . (2.3)

It can also be proved that, if x\ and X2 are initial states from the
same simple ergodic set, the stationary distributions are equal; i.e.

(f>{A; z; xi) = <f>(A; z; xz). (2.4)

The optimal strategy has to be chosen according to some criterion
Which criterion has to be used ? Let us consider a realization of
the process. Such a walk w through the state space X may be
represented by a point w in the space of all possible walks D.
Applying strategy z during walk w we denote the costs in a time
period T by A? {w; z). If T -> 00, in most cases lim kT (w; z) = 00.

T—>cc

Another disadvantage is that the walk w is not known in advance.
By considering the average costs per time unit we can overcome
these objections. For this criterion one can prove the following
theorem:
If w denotes a walk of the system, starting in x0, being a state of
a simple ergodic set, then

lim -T-f^~ (2-5)

exists with probability 1 and is equal to

J (f>(dl; z; xo) k(I; z)

/ " # * / ; z; xo) t(I; z) ( 2 - 6 )

where k(I; z) denotes the expected costs during- and t(I; z) the
expected length of- the time period between the intervention state
/ and the next intervention state assumed by the system. In this
paper the criterion for optimality deals with the average costs
per unit of time and is denoted by the function r(z; Xo), where z
is the applied strategy and x0 is the initial state. If x0 belongs to
a simple ergodic set, the criterion function is defined by

J (f>(dl; z ; xo) k(I; z)

r(z; xo) = Af ,IJT ^—77—r (2.7)
v ' ' J <f>(dl; z; xo) t(I; z) v
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For two states xi and xz of the same simple ergodic set we have
[c.f. (2.4)]

r(z; xi) = r(z; xz). (2.8)

If Xo is a transient state the limit (2.5) still exists with probability
1 but is unknown until one of the simple ergodic sets has been en-
tered; the limit (2.5) is equal to that of the entry state.

Consequently, if xo is a transient state, (2.5) is at xo a random
variable.

Let us assume that there are m simple ergodic sets, denoted by
Er (r = 1, 2, . . . , m). It is easily verified that the probability of
entering the ergodic set Er, starting in xo, is given by <f>(Er; z; xo).

If xo is a transient state the expected average costs per unit of
time are given by

m

S <f> (Er; z; x0) r{z; er), (2.9)
r = 1

where er is some state in Er [c.f. (2.8)].
Obviously, (2.9) is identical with

j w . *; y) Hi;]?)

>z-xo) j m; *; y) t[i; z) (2'I0)

A,

We now define the criterion function r{z; xo) by

r(z; xo) = lj{dy; z; x0)

This definition comprises (2.7).

A strategy is called optimal with respect to a class Z of strategies,
if for each x

r(zQ; x) = min r(z; x)
zeZ K '

To determine the criterion function r(z; x) we need to know the
functions k{I; z) and t(I; z). These two functions still depend on the
strategy z. We now show that it is possible to define the function
r(z; x) with the aid of two somewhat different functions k(x; d)
and t(x; d). Both functions do not depend on the strategy applied,
but apart from the state x only on the decision d made in x.
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To this end we consider a set Ao, not empty. The set Ao consists
of states where each strategy zeZ dictates an intervention. Hence,
if A z is the intervention set of an arbitrary strategy zeZ,

AzoA0. (2.13)

In this paper it is assumed that in the natural process from each
initial state the set Ao can be reached within a finite time with
probability 1. For each state x and every decision deD{x) we
consider two walks denoted by W° and Wd. During W° the system
will be subject to the natural process until a state of Ao has been
reached.

During Wd the decision d transforms the system to the random
state u (with probability distribution d). From state u the walk
Wd will be subject to the natural process. It follows from (2.13)
that for each strategy z the system will reach the set Ao via or
in an intervention state IeAz (figure 2.1).

Aa

Fig. 2.1. Schematical representation of the walks W° and W<*.

Let for the PF°-walk ko(x) and U{x) be the expected costs and the
expected duration respectively. Let for the Wd-walk fa (x; d) and
h (x; d) be the expected costs and the expected duration respecti-
vely. We now define the functions k(x; d) and t(x; d) to be the
difference in expected costs and expected duration between the
walks Wd and W°. In formula:

k(x; d) = fa (x; d) — ko(x). i2-1^)

t(x; d) = h (x; d)—h{x). (2.15)

For null-decisions Wd and W° are identical and consequently:

k(x; d) = 0. i2-1^)

t(x; d) = o O2-1?)
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Note that the functions k(x; d) and t\x\ d) do not depend on a
particular strategy.

It follows from their definitions that k(Ij z) and t(Ij z)
are identical to the expected cost and duration of the part of the
walk Wd between the intervention states /_ and Ia+1 (see figure 2.2)1).

Both states Im and /oo + 1 are distributed according to the same
limiting distribution (f>(A; z; y). Hence, with respect to the initial
state y, the expected costs (duration) from Ix and those (that)
from Ia+1 to Ao are (is) equal.

Fig. 2.2. Schematical representation of the walks Wd and W.

This implies:

J WIK; z; y) ( / . ; z) = J <f>(dlj z; y). k{Ix; z(IJ) (2.18)

\ y) (2.19)

where z(IJ denotes the decision dictated by the strategy in state
Ia. It follows from (2.18) and (2.19) that instead of (2.11) the
criterion function r(z; xo) can also be defined by

J +(dl; z; y) k{I; z(I))

r(z; xo) = J <f>{dy; z; xo)
J ; z; y)

(2.20)

It follows from (2.8) that the criterion function r(z; x) does not
pronounce upon the most profitable initial state. We like a pref-
erence function c(z; x) having the property that for two states xi
and x2 in the same simple ergodic set the difference in total expected
costs is given by

c(z; xs)—c(z; xi). (2.21)

What is in a notation ?
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If the state space can be decomposed in a set of transient states
and m disjunct simple ergodic sets Ej and if states ej are arbitrarily-
chosen states in Ej, let a function c(z; x) be defined by

c(z; x) = k(x; z\x)) —r(z; x) t(z; z(x)) + (2.22)

+ J>(D (dl; z; x) c(z; I).

c(z; e}) = o j = i, 2, . . . , m. (2.23)

It can be proved that a preference function c(z; x) of the type
mentioned above is defined by

c(z; x) = c(z; x) -\- ko(x) —r(z; x) to{x). (2.24)

Presently it will appear that the functions r(z; x) and c(z; x) are
all-important. They can be obtained simultaneously by solving the
following functional equations:

r(z;x) = J pM(dI;z;x)r(z;I), (2.25)

c(z; x) = k(x; z(x)) —r(z; x) t(x; z(x)) + (2.22)

c(z; ej) = 0 j = 1,2, . . . ,m, (2.23)

where ej is an arbitrarily chosen state in the simple ergodic set Ej.
Summarizing: Independent of the strategy to apply the functions
k(x; d) and t(x; d) can be defined. As soon as a strategy z and a set
of points ej e Ej (j = 1, . . . , m) have been chosen, the functions
r(z; x) and c(z; x) are unambiguously defined by (2.25), (2.22) and
(2.23). Note that, if x does not belong to Az [c.f. (2.16) and (2.17)]
we have

c(z; x) = J pW (dl;z; x) c(z; I). (2.26)

Now the properties of the optimal strategy will be outlined.
Further based on these properties an iteration procedure will be
constructed.

The iteration procedure yields a sequence of strategies z<*>
(i = 1, 2, . . .) of which, under certain conditions, the following
interesting properties can be proved:

a) r(zW;x) <r(z«+D;«)

b) lim r(zW>; x) = min r(z; x) (2-27)
<-*» zez
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where Z is the class of all admissible strategies. Proofs and con-
ditions are given in [i] and will be omitted here. We will restrict
ourselves to some definitions and to a glance at the procedure. We
start with a bare catalogue of definitions. Suppose that in the initial
state x the decision d is made. If decision d transforms the system
into the random state u and if after d the strategy z is applied, then
functions r(d.z; x) and c(d.z; x) are defined as follows:

r[d.z\x) d2f E{r{z; u)\d) (2.28)

c(d.z; x) d§f k(x; d)—r{d.z; x) t{x; d) + E{c(z; u)\d}, (2.29)

We easily verify that for both null-decision and d = z(x), we have

r(d.z; x) = r(z; x) (2.30)

c(d.z; x) = c(z; x) (2.31)

Suppose the system is now in x and let v be the first state in a
closed set A assumed by the system, then the functions r(A .z; x) and
c(A.z; x) are defined by:

r(A.z; x) d | f E{r(z; v)\x; A} (2.32)

c(A.z; x) dl f E{c{z; v)\x; A}. (2.33)

Besides we define the class Kz of all closed sets A3 Ao satisfying:

{x\r(A.z; x) < r{z; x)}U (2.34)

\J{x\r(A.z;x) = r(z;x);c{A.z; x) < c(z; x] = X)},

where X denotes the state space. We easily verify that AzeKz.
Finally we define the following subsets:

Dt{x)i«{d\deD{x);r{d.z:x)= min r{d*.z;x)} (2.35)
d*eD[x)

and

K = n A- (2-36)

In order to gain an insight into the principle of solution, we
consider the following problem:

Suppose a decisionmaker has to make his decisions in accordance
with a strategy z. In the initial state however he is free to choose a
decision d. Which decision is the most profitable ?
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The decisionmaker certainly looks for that particular decision
which minimizes the expected average costs per unit of time.
Each fall in these costs leads to an infinite saving in an infinite
period of time.

If he selects in x a decision d, the expected average costs per unit
of time are given by r(d.z; x). So the decisionmaker has to solve the
problem [c.f. (2.28)]

min r(d.z; x). (2-37)

With respect to the effect of the initial state in the total expected
costs we introduced a preference function c(z; x); this function can
be defined by (2.24). With respect to the effect of a decision d in the
initial state x we need a preference function c(d.z; x) such that the
difference in the total expected costs can be expressed by

c(d.z; x) — c(z; x). (2-38)

This difference has to be attributed to the decision d. It can be
proved that the difference is also measured by [c.f. (2.29)]:

c(d.z; x) — c(z;x) (2.39)

A possible fall in costs will in general be finite.
Consequently, if more than one decision d minimizes r(d.z; x),

the decisionmaker can use his freedom by minimizing (2.39) with
respect to these equivalent decisions; or, what is the same, by
minimizing the function c(d.z; x) with respect to deDz(x). [c.f.

{2.35)]-
Summarizing: Essentially the decisionmaker has to solve the

following two problems:

1) To minimize the ^-function r(d.z; x) with respect to deD(x).

2) To minimize the d-iunction c(d.z; x) with respect to deDz (x).
If these two problems have been solved for each x, then to each x a
minimizing decision d can be added. If z(x) belongs to Dz(x) and also
minimizes c(d.z; x), let the decision z{x) be chosen. The relation
between states and decisions is nothing else than a strategy. Let
this strategy be denoted by z\. The following important result can
now be proved:

r(zi; x) <: r(z; x) (2.40)
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So the solution of the decisionproblem mentioned above also
offers a new strategy; a strategy being at least as good as strategy z.
Let us examine the new strategy. It follows from (2.30) and (2.31)
that all intervention states of strategy z are also intervention states
of strategy zi.

Hence

AzpAz. (2.41)

In other words in the initial state the decisionmaker can change
but not defer the intervention dictated by the original strategy z.

This important result leads us to a second decisionproblem.
Suppose that the decisionmaker has to make his decisions in ac-
cordance with a strategy z. But he is allowed to determine the
point of time whereupon the strategy comes into operation. This
will be done by choosing a closed set A; the strategy comes into
operation at the moment the system is in the set A for the first
time. Which set is the most profitable ? The decisionmaker certainly
looks for a delay that minimizes the expected average costs per
unit of time. This implies that sets A will be considered which
satisfy for each x [c.f. (2.32)]

r(A.z; x) < r(z; x). (242)

Again each fall in the average costs leads to an infinite saving in
an infinite period of time. With respect to the effect of a delay in
the total expected costs we need a preference function c(A.z; x) such
that the difference in expected costs, measured by

c(A.z; x) — c(z; x), (2.43)

can be attributed to the delay. It can be proved that this differ-
ence is also given by [c.f. (2.33)]

c(A.z;x) — c(z;x). (2.44)

Consequently, sets A which satisfy for each x

r(A.z; x) = r(z; x) (2.45)

and
c(A.z; x) <c(; x) (2.46)

will also be considered.
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Summarizing: Closed sets A having the property [c.f. (2.34)]

X = {x\r(A.z; x) < r(z; x)}U{x\r(A.z; x) =

= r{z; x); c(A.z; x) ^ c(z; x)} ^ ' ^

will be considered. If Kz is the class of all closed sets A satisfying
(2.47) and if

A'.= n A (2.48)

belongs to Kz, then obviously the set A'z is the solution of the second
decision problem.

It can be proved that the strategy zi defined by

[ z(x) if xeA'z
(2.49)

null-decisions otherwise

satisfies:

r{zz; x) < r(z; x). (2.50)

From the solutions of the two decision problems considered here
above we now deduce the following properties of the optimal stra-
tegy z0:

min r(d.z0; x) = r(z0; x) (2.51)

min c(d.Zo) x) = c(zo] x) (2.52)

A'z0 = Az0- (2-53)

The iteration procedure runs as follows:

Preparatory part

Determine the (x; rf)-functions k(x; d) and t(x; d).

Iterative approach

Let 2<M-D be the strategy obtained at the («-i)th th cycle of the
iteration procedure.

1) Determine the function r{z<n-v>; x) and c(z(-n-1'>; x) by solving
the functional equations (2.25), (2.22) and (2.23).
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2) a) Determine the functions r(d.z^nl'>; x) and c(d.z^n-1')] x) by
using the relations (2.28) and (2.29).

b) Determine for each xeX the subset of minimizing decisions
Dz(n-i) (x).

c) Minimize for each xeX the ^-function c(d.z(n-V; x), subject
to dsDz(n-i) (x).

d) Add to each state x a solution of c). If zto-D^) is a solution
of c), this decision will be added to the state x. [This instruc-
tion has been made in order to advance the convergence of the
sequence of strategies {z^\ zW, . . .}].

As soon as the operation d) has been performed a new strategy
zi <nl> has been constructed.

3) Determine the functions r(2i<n"1>; x) and c^i*"-1); x) by using
the functional equations (2.25), (2.22) and (2.23).

4) Determine the subset A'z (M_i). The new strategy z <») is given by

[ zi ("-1) (x) if xeA'Z(n.i)
(2.27)

null-decision otherwise

End of the nthcycle.
The functions r(z(-n-1'>; x) and c(z(n~1'>; x) are determined by func-

tional equations. If these equations cannot be solved analytically
they often can be solved numerically by Monte Carlo methods.

The way in which the set A'z (n-\) can be determined depends
heavily on the structure of the decision problem considered. In
the boundary points of the minimizing set A'z it will often be in-
different whether to intervene or not. In the motorist problem,
by example, we will see that this property leads to a differential
equation for the optimal boundary of the set of states in which
claims should be suppressed.

3. APPLICATION TO THE MOTORISTS PROBLEM

In this section it is shown how the motorist problem can be solved
with Markov-programming.

Primarily we shall have to define in detail the state space, the
natural process, the set of intervention states and the set Ao.
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Secondly we shall determine the k- and ^-functions and finally
the c-functions from which the optimal strategy is established.

3.1 DEFINITION OF THE STATE SPACE

At each point of time the following information will be of interest:

(1) whether an eventual damage is covered or not.
(2) whether an accident happens or not.
(3) the amount of the last paid premium E{, i = o, 1, 2, 3.
(4) the date and time of the day considered.
(5) the extent of the damage.
(6) whether a damage has been claimed since the last payment of

premium or not.

The following state space is suggested:

13 14 21 22 23 24

Fig. 3.1. The state space.

At the ^-axis we distinguish:
a) Four points, namely Eo, £1, £2 and Ea. In these states the

corresponding premium has to be paid (January 1); damages
are no longer covered by insurance.

b) Four intervals of one year 1), namely l i < t < i i + 1 (*' =
1, 2, 3, 4). The ^-component of the state runs through it < t
< it + 1, if and only if the last premium paid was Ei-i, one
or more damages have been claimed that year and the coming
losses are still covered by insurance.

c) Four intervals of one year, namely zi < t < 2i + 1 (*' = 1,
2, 3, 4). The ^-component of the state runs through 2i < t <
ii + 1, if and only if the last premium paid was E%.\, no damages
have been claimed that year and the coming damages are still
covered by insurance.

ii = 12, if i = 2.
ii = 13, if i — 3.
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The s-variable is zero unless at least one damage has been claimed
that year and moreover the coming damages are still covered by
insurance. In that case the s-component denotes the extent of the
last claim.

The u-variable is zero unless at least one damage has been claimed
that year and moreover the coming damages are still covered by
insurance. In that case the w-component denotes the time elapsed
since the first claim that year.

Note that the s- and w-components of the state can only be dif-
ferent from zero if ii < t < xi + i (i = i, 2, 3, 4). Consequently
the state space consists of

a) 4 points Eo, Ei, E2, Ea.
b) a 3-dimensional subspace (t, s, u) with 11 < t < 15.
c) i-dimensional interval 21 < t < 25.

We are now in the position to describe the natural process. This
process can start in each state of the state space. In accordance
with the premium paid the system runs through one of the time-
intervals zi < t < zi + 1 (i = 1, 2, 3, 4), if no damage has been
claimed that year. If no accident will happen during the rest of the
year, at the end of the year the system is transferred to Ei. Since
in the natural process no premiums are paid the system will stay
there for ever x).

However, if at t' (f < zi + 1) an accident occurs the system is
transferred to (f — 10, s', 0), where s' denotes the loss incurred.
Since during the natural process, irrespective of their extents, all
losses are claimed, the system will stay in the 3-dimensional part
of the state space for the rest of the year. From now on the u-
component is increasing with time. The s-component will only
change if a second, third etc. accident happens. At the end of the
year the system is transferred to Eo where it stays for ever.

If in the initial state (t, s, u) a damage has already been claimed
that year and coming damages are still covered by insurance the

l) In the natural process no premiums will be paid. On the other hand
the system can start in such a state that losses are covered by insurance for
some time. This is no contradiction! It would, be a contradiction if we had
said: In the natural process no premiums have been paid.
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description of the development in the state of the system is similar
to that of the final part of a walk considered here above.

We now consider the decision-mechanism.
a) In the points Eo, Ei, E% and E3 two decisions are feasible:

the null-decision and the decision that involves the payment of
the premium E%. Respective transformations are E% —> Et and
E{ -> (21 + i, o, o).

b) In the 3-dimensional space (t, s, u) only null-decisions are feasible,
unless u = 0. If u = 0 an accident just occurs and consequently
the decisionmaker can suppress the claim if he wants. In that
case the system is transferred back to (t + 10, 0, 0). Note that
a claim corresponds with a null-decision. This is in accordance
with the fact that in the natural process all damages are claimed.
Since the M-component denotes the time elapsed since the
first claim, it may happen that an accident occurs when u > 0.
The decision not to claim the damage is of course a bad decision
and for that reason it is considered to be infeasible.

c) To states satisfying 21 < t < 21 -\- 1 (i = 1, 2, 3, 4), only
null-decisions are added.
In figure 3.2. states have been marked with more than one
feasible decision.

21 22 23 24

Fig. 3.2. States with more than one feasible decision.

From now on we shall only consider strategies which dictate
payment of premium in the states Ei, i = o, 1, 2, 3. Consequently
these states may be chosen as elements of the set Ao. We may add
if we want the set of states (t, s, u) for which li < t < \i + 1,
s < a0 and u = 0, because every possible strategy will dictate a
suppression of the claim in this set. However restriction of the set
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Ao to the states Ef, i = o, i, 2, 3, leads to more simple expressions
for the k(x; d) and t(x; d) functions. So we choose;

Ao=UEi. (3.1.1)

3.2 THE DETERMINATION OF THE k(x; d) AND t(x; d) FUNCTIONS

Let us consider the intervention which results from an accident
occuring T time units after paying premium itj-i and suppose that
no damage has been claimed during the time interval [(o, T)].

After the accident has occured the system will be in state x =
(li + T, s, o) and the decision not to claim transfers it back into state
2* + T, hence d = 21 + T. We note first that the VF -̂walk after the
decision d = 21 + T and the TF°-walk are both subject to the
natural process until at the end of the year the set Ao is reached.
The walk Wd terminates either in state Ei or in state Eo and the
W°-walk in Eo. In both cases however the expected costs and the
expected duration are equal. The only difference in expected costs
is given by the decision costs of no claiming which amount s — ao
Us > «o and 0 if s < ao. Consequently we have

t{x; d) = h(x; d) — h{x) = o (3.2.1)

[
S-&Q S J> Gt>o

(3-2-2)
0 s < ao

Secondly we need to consider the intervention of the payment of
premium. The system will be in state Et.i and the decision of
paying premium transfers it to state 21. Because Ei-i e Ao the
expected duration as well as the expected costs in the walk are zero.

During the W^-walk after the payment of premium E%.\ the
system is subject to the natural process until at the end of the year
the set Ao is reached by means of state E% or state Eo. Hence the
expected duration will be one year. Because in the natural process
all damages are claimed we have for the expected costs per accident,
denoted by k(a0),

k(a0) = J sdF(s) + a0] dF{s). (3.2.3)
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Consequently the expected costs in the natural process during
the interval [0,1] are \k(ad).

t{x; d) = 1 (3.2.4)

k(x; d) = Et.i + XA(ao). (3.2.5)

3.3 DETERMINATION OF THE OPTIMAL STRATEGY

It is easily verified for all strategies zeZ the Markov process in
Az has only one simple ergodic set. Consequently for every strategy
z and feasible decision d, we have

r(d.z; x) = r(z; x) = r(z). (3.3.1)

Hence it is sufficient to consider only the functional equation

c(z; x) = k(x; z(x))—r(z) t{x;z(x)) + J>D (dl; z;x) c(z;I). (3.3.2)

In order to obtain a unique solution we put

c(z; Eo) = 0. (3.3.3)

Let us first consider the solution in state x = (t, s, o) with t =
ii + T and s > ao. Suppose we are applying an arbitrary strategy
z. If z dictates to claim (null decision!) in x then the next interven-
tion state is Eo. So we have

c{z;x) =c{z; Eo) = 0 . (3.3.4)

If we decide not to claim and future decisions are taken in ac-
cordance with strategy z, then the function c(d.z; x) is given by

c(d.z; x) = s — a0 + c(z; t + 10). (3-3-5)

From now on we consider only the optimal strategy zo. Let the
boundary of Az be given by the function s = s(t). For zo holds:

c(zo] x) = min c(d.zo) x). (2.52)
d€D(x)

For «o '< s < s(t) it will be profitable not to claim; thus d =
zo{x) = t + 10. It follows from (3.3.4) and (2.52)

c(z0] x) < c(z0; Eo) = o. (3-3-6)

https://doi.org/10.1017/S051503610000221X Published online by Cambridge University Press

https://doi.org/10.1017/S051503610000221X


84 DRIVING WITH MARKOV-PROGRAMMING

According to the fact that c(d.zo]x) is a linear function of s it will
be indifferent on the boundary s(t) of Az whether to claim or not,
hence for s = s(t) we have:

c(z0; (t, s o)) = o. (3.3.7)

From (3.3.5) and (3.3.7) it follows that

c(z0; (t, s(t), o)) = s(t) — ao + c(z0; t + 10) = 0. (3-3-8)

Consequently:

c(z0; t + 10) = a0 — s(t) (3-3-9)

and in accordance with (3.3.5), by virtue of (3.3.9), for s > ao:

c(z0; (t, s, o)) = s — s(t). 3-3-io)

For s < a0 by (3.2.1) and (3.2.2):

c(z0; (t, s, 0)) = c(z0; t + 10) = ao — s(t). (3-3-n)

Furthermore holds for the states Ei, i = 1, 2, 3:

c(z0; Et) = lim c(zo;t) (3-3-12)
t t 2i + 1

or

c(zo;Ei) = ao— lim s(t). (3-3-13)

Summarizing:

c(z0; x) =

- o, x e £0U{ii < t < 15, s >s(£), M = o}U
{11 < t < 15, s > 0, u > 0}

3

-ao— lim s(<), x e U Et (3-3-14)

—«o — s(t), x e {11 < t < 15, s < ao, u = 0}
- s — s(t), x e {11 < < < 15, «o < s < s(2), « = 0}

ao — s(t, —10) x e {21 < t < 25}

From the functional equation (3.3.2) it follows for E%-\, i = 1, 2,
3.4:

c(z0; Ei-i) = £ ( £ M ; 21) — r(z0) t(Et.i; 21) + c{z0; 21) (3.3.15)
or

c(z0; Ei-i) — c(z0; 21) = £ M + lk(a0) — r(z0). (3-3-i6)
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Using the relations (3.3.13) and (3.3.14) for x = £ M , i = 1, 2, 3, 4

s (11) = £ 0 + \k{aQ) — r{za) + a0 (3-3-*7)

s(ii) = lim s{t) + Et.i + Xk(a0)—r(z0), i = 2, 3, 4 (3-3-i8)

lim s(t) = lim s(t) (3-3-19)
tfli

For x = (<, s, 0) with s > ao and if = ii -\- 1 follows from (3.3.2)

c(zo) [t, s, o)) = k((t, s, 0); t + 10) —r(.?o) t((t, s, 0); t + 10)

+ J c(zo;Et) Xe-X\ ixi (3-3-20)
1 - *

U + l - t S(t + T , )

+ J Ae~XTi dxi J c(zo'f [t -\- xi, y, o))dF(y)
0 0

l t + 1 - t co

-|- f X̂ "̂ Ti dxi J C(ZQ\ Eo)dF(y)
0 f f f + Tj^)

According to (3.2.1), (3.2.2) and (3-3-14):

c(z0; (t, s, 0)) == s — «o + e"x(1* + 1'*) (a0 — lim s(t))

+ J Xc- ,̂ i n J ' {y —s{t + 1)) iF(y) (3-3-2i)

l i + 1 - t a0

+ J X^"XTI dri I (ao —• s(t -\- TI)

If T2 = < + n , then

c(z; (̂ , s, 0)) = s — a0 + g-Mi« + i-<) (fl0 _ lim s(t))

+ e*t J xe-** dT2 ] (y — sfa))dF(y) (3-3-22)

1( + 1

+ ext J Xe-XT2 F(ao) (ao — S(T2))^T2.
t

After substituting s = s(t) and using (3.3.7) the differentiation
of (3.3.22) with respect to t leads to

= x J (y - ao) iF(y) - X J (y - s(0) iF(y). (3-3-23)
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By partial integration this equation can also be written in the
more simple form

d sit) ««»
- ^ = X J (i - F(y))dy. (3.3-24)

Except for a translation in the t direction the boundary s(t) is
determined by (3.3.24). In other words the boundary of Az for
1 = 1, 2, 3, 4 are in the ^-direction translated parts of one of the
curves satisfying (3.3.24). The location of each part on this curve
has to be determined from the relations (3.3.17) through (3.3.19).
We will now show that this is possible.

Suppose that r(z0) is known, than s(n) is solved from (3.3.17).
From the curve s = s(t) we deduce lim s(t). From (3.3.18) for * = 2

we obtain -(12). Similarly we can compute lim s(t), -(13), lim s(t),
(tl3 tilt

s(i4) and lim s(t).

This implies that if r(zo) is known, the optimal strategy is com-
pletely specified. As r(zd) is not known its value is determined by
equation (3.3.19).

It should be noted that the differential equation (3.3.24) has an
analytical solution in the case the damage per accident is expo-
nentially distributed. We have then for F(s) = 1 — e-v*

l) (3-3-25)

which

s(t) =

leads

= a0 +

i

to
i

is(t)
dt

ln{\ +

X

Vi"o} zi <t < it + 1 i = 1,2,3,4

(3-3-26)

where the a, i = i, 2, 3, 4 are arbitrary integration constants.
Note that (3.3.26) determines a curve except for a translation in the
^-direction. If the distribution of the damage is not exponential
we have to solve equation (3.3.24) numerically in most cases. Of
course we may also use the iteration cycle described in §2.
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