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Summary

Wind energy is a source of collision fatalities for birds and bats. To evaluate the risk that wind
power development projects might pose to the conservation of protected species, it is essential
to quantify the impact of collisions on the dynamics of wild populations. To address this
challenge, two approaches are primarily employed: potential biological removal (PBR) and
population projection analysis (PPA). PBR is a decision rule designed to calculate a sustainable
fatality limit for a given population, whereas PPA relies on simulation-based modelling
to forecast a population’s future trajectory under various scenarios. In the context of
environmental impact assessments (EIAs), we argue that PPA offers a more suitable method
than PBR for evaluating population-level impacts resulting from collisions with wind turbines.
Unlike PBR, PPA can be focused on a single source of disturbance, aligning with the perspective
of the EIA process. By contrast, PBR necessarily adopts a population-centred perspective and is
therefore only relevant when considering all sources of mortality that jointly affect a population.
Furthermore, robust utilization of the PBR approach requires the definition of quantitative
conservation objectives and the implementation of a comprehensive management strategy
evaluation, neither of which is ever undertaken within the context of an EIA.

Introduction

Almost everywhere around the world, the development of wind energy stands as one of the
pillars of the energy transition (Teske et al. 2019). However, this mode of energy production is
also a source of negative impacts on biodiversity, particularly for birds and bats (Drewitt &
Langston 2006, Schuster et al. 2015, Barclay et al. 2017, Thaxter et al. 2017, Serrano et al. 2020).
Wind power plants can have two types of negative effects on these volant animals. First, birds
and bats are susceptible to direct mortalities caused by collisions with wind turbines or by
barotrauma (Barclay et al. 2017, De Lucas & Perrow 2017). Second, like all large artificial
infrastructures, wind power plants are responsible for indirect impacts, such as habitat loss,
disturbance and barrier effects (Drewitt & Langston 2006, Schuster et al. 2015, Fox & Petersen
2019). Wind energy is currently developing very rapidly around the world, and this rate is
projected to continue accelerating in the near future (Teske et al. 2019). In this context, assessing
and mitigating the harmful impacts that this development will have on wildlife has become a
primary concern for biodiversity conservation (Fox & Petersen 2019, Serrano et al. 2020, Durá-
Alemañ et al. 2023).

In many countries around the globe, the construction of wind power plants is regulated by
environmental protection laws, which usually require pre- and post-construction impact studies
to assess the extent of negative effects on wildlife, notably protected species (Saidur et al. 2010).
Regarding the risk of direct mortality of birds and bats, environmental impact assessments
(EIAs) have historically focused on estimating fatality risk at the individual level (May et al.
2019) by simply addressing the question as to howmany individuals of a given species are at risk
of dying from collision. However, for species conservation purposes, it is crucial to assess the
consequences that such mortality risk might have at the population level (May et al. 2019). So
far, the few EIA studies that have attempted to quantitatively assess population-level impacts
have usually relied on one of two approaches. Some studies have applied a decision rule called
‘potential biological removal’ (PBR) in an effort to calculate the quantitative limits of
‘sustainable’ collision fatalities (e.g., Poot et al. 2011, Leopold et al. 2014, Busch & Garthe 2016,
NIRAS 2016). Other studies have focused on simulating population trajectories to predict the
fate of populations exposed to collisions with wind turbines (e.g., Carrete et al. 2009, Masden
2010, García-Ripollés & López-López 2011, Poot et al. 2011, Rydell et al. 2012, Schaub 2012,
Sanz-Aguilar et al. 2015, Grünkorn et al. 2016, Korner-Nievergelt et al. 2016).

In this paper, we argue that PBR, as currently used in the context of EIA, is ill-adapted to the
task of assessing population-level impacts of wind energy infrastructures. On the other hand, the
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use of population projections, in combination with metrics of
relative impact as a decision rule, is much better suited to this task.

Potential biological removal

What is PBR?

PBR is a ‘harvest’ control rule that was originally developed as a
means to define sustainable limits of cetacean incidental catches by
commercial fishing vessels in data-poor situations (Wade 1998,
Moore et al. 2013). The harvest quota, expressed as the number of
individuals removed each year, is based on a simple formula
(Equation 1; Wade 1998):

PBR ¼ FR
Rmax

2
Nmin (1)

where Rmax corresponds to the theoretical maximum growth rate
of the population (i.e., when it is at low density and in the absence
of anthropogenic mortalities), Nmin is a conservative estimate of
the population size and FR is a coefficient between 0.1 and 1.0, often
referred to as the ‘recovery factor’ (Wade 1998, Dillingham &
Fletcher 2008). Rmax and Nmin are biological parameters that
must be estimated for the studied population. Parameter Nmin is
usually estimated from field data, and, for birds, Rmax is often
approximated using allometric relationships that only require
knowing the species’ average adult survival and its age at first
reproduction (Niel & Lebreton 2005). The recovery factor FR is not
a biological parameter but an adjustment parameter that must be
tuned to ensure that the PBR quota fulfils a predetermined
conservation objective even in the presence of uncertainties. The
tuning of FR requires simulating population trajectories under a
realistic demographic model, often called the ‘operational model’
(Moore et al. 2013), and testing the influence of a range of FR values
on the population’s fate (Wade 1998, Dillingham& Fletcher 2008).
Based on these simulation results, an FR value is chosen to ensure
that, when the associated PBR harvest rule is implemented, the
population will have a high probability of stabilizing at a level that
is equal to or greater than the predefined long-term conservation
objective (Fig. 1). This tuning and assessment procedure, the
purpose of which is to test the robustness of the PBR decision rule
in a specific context, is called a management strategy evaluation
(MSE; Bunnefeld et al. 2011). Implementing such a MSE not only
requires building an operational model for the species being
targeted but also implies that a quantitative conservation objective
has been clearly defined beforehand (e.g., Richard & Abraham
2013, Haider et al. 2017). This means setting a population size
threshold, often expressed as a fraction of the carrying capacity
(Wade 1998), with the intention of maintaining the population
above this threshold to in the long run (Moore et al. 2013). When
correctly implemented, the PBR approach can be effective at
preventing or reversing population collapses (Cooke et al. 2012,
Moore et al. 2013).

Why is PBR not suited to the context of EIA?

First, there is a fundamental difference of scope between EIA and
PBR. EIA is a disturbance-centred endeavour, in the sense that
it focuses on assessing the impact of a given infrastructure
development project. This means that the entry point of the impact
analysis is necessarily the source of disturbance itself, not the
population. On the other hand, PBR is a population-centred
approach, in which every source of disturbance affecting a given

population must be considered (Dillingham & Fletcher 2011).
Indeed, the rationale for the PBR approach is to find the total
amount of non-natural mortalities (removals) that a population
can sustain (Wade 1998). Using the PBR decision rule in an EIA
context is thus a gross oversimplification because it considers a
single source of anthropic mortality, ignoring all others that
populations suffer (Green et al. 2016, O’Brien et al. 2017).

Second, because EIA lacks a population-centred perspective,
no quantitative conservation objective is usually defined for
the impacted population. This deficiency has been consistently
observed (e.g., Poot et al. 2011, Leopold et al. 2014, Busch &Garthe
2016, NIRAS 2016) in studies that employed the PBR formula as a
decision-making tool within the context of wind energy’s impact
on bird populations. As highlighted above, using PBR as a decision
criterion first requires the establishment of such an objective
because it constitutes a vital component of the MSE framework,
within which the effectiveness of the decision rule can be rigorously
evaluated.

Third, in the context of EIA, the PBR decision rule has been
used without implementing an operational model and without
conducting simulations to assess its robustness to uncertainties
and to tune the value of the recovery factor FR (e.g., Poot et al. 2011,
Leopold et al. 2014, Busch & Garthe 2016, NIRAS 2016). Instead,
generic values of FR, which were derived in a completely different
context (marine mammal bycatch in North America; Wade 1998),
have been blindly applied. Therefore, there is no guarantee that the
harvest quota computed through this formula would effectively
align with the conservation objective, assuming such an objective
would have been defined for the population under consideration.

Finally, it is important to keep in mind that the PBR method as
formulated by Wade (1998) implicitly assumes the existence of
a compensatory density-dependence relationship, which means
that the population growth rate is expected to increase in response
to the removal of individuals, thus partially compensating for
anthropogenic mortalities (Rose et al. 2001, Beverton & Holt
2012). This density-dependent mechanism is what allows a
population to stabilize at some new equilibrium when facing a
sustainable level of mortalities (Wade 1998). In the absence of such
a mechanism, a population exposed to additional mortalities will
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Figure 1. Theoretical trajectories of two populations with two different initial states
(red, green) suffering the same rate of annual mortality, which is equal to the potential
biological removal (here, with FR= 1). Independently from their initial state, each
population tends towards the same equilibrium, which is equal to half the carrying
capacity (K/2, blue horizontal line). The black horizontal line represents the full
carrying capacity K.
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constantly decline, necessarily reaching extinction at some point.
In birds, however, this type of compensatory mechanism cannot
always be evidenced (Horswill et al. 2017). Applying removal
quotas based on the PBR approach in such situations could trigger
or reinforce an unstoppable population decline and therefore have
catastrophic consequences (O’Brien et al. 2017, Miller et al. 2019).

Population projection analysis

Population projection analysis (PPA), also sometimes referred to
as population viability analysis (PVA), is a simulation-based
method to predict the future trajectory of a population under
various scenarios (Boyce 1992, Beissinger & McCullough 2002).
PPA relies on a demographic model that bears resemblance to the
operational models utilized within the MSE framework to evaluate
decision rules such as PBR.

In our opinion, the PPA method is well suited for assessing
population impacts in the context of EIA because it can easily be
framed as a disturbance-centred assessment exercise, in complete
alignment with the EIA framework (Green et al. 2016). To frame a
PPA as a disturbance-centred analysis, the most relevant approach
consists in running population projections under two alternative
scenarios: (1) a baseline scenario without collisions; and (2) an
impact scenario that includes additional mortalities due to
collisions (Cook & Robinson 2017). The comparison of population
trajectories under each of these two scenarios allows for calculation
of various metrics of impact induced specifically by the infra-
structure (Fig. 2). In the absence of a clear population conservation
objective, which is the usual situation in EIA, we recommend using
metrics of relative impact, such as the proportional difference in
population size after a given time (e.g., 25 years) between the two
scenarios (Green et al. 2016). This comparative and relative
approach, referred to as the ‘counterfactual of impacted to
unimpacted’ population (CIU), has been shown to be less sensitive
to uncertainties (Cook & Robinson 2017). Indeed, if some model
parameters are inaccurate or some model assumptions happen to
be violated, their influence on the final result will be limited
because they apply equally to both scenarios.

In the context of EIA, the use of the CIU approach also has the
advantage of not requiring the definition, a priori, of a quantitative

population objective – namely, a threshold of critical population
size (Green et al. 2016). The lack of a quantitative conservation
objective is not an inherent feature of the PPA method but rather
reflects the regulatory framework governing the EIA process
(Wathern 2013). Indeed, in this framework, the quantification of
impact is separated from the decision of what level of impact
qualifies as ‘significant’ or not (Schrage 2008).

Finally, when using the CIU approach based on PPA, the
impact assessment does not necessarily rely on the assumption
of compensatory density dependence. The consequences of
collision mortalities can thus be explored in situations in which
the population would not be expected to stabilize at a new
equilibrium. Overall, the PPA method offers a great deal of
flexibility regarding the assumptions and the level of complexity
of the demographic model being used, which allows for the right
balance to be found between realism and practicality (Boyce 1992,
Morris & Doak 2002).

Conclusion

PBR is not simply a formula that can be applied ex nihilo to any
species or situation (Moore et al. 2013, O’Brien et al. 2017). It must
be applied from a population-centred perspective, where all
sources of non-natural mortalities are being considered, and it
must be embedded in a MSE framework with a clear and
quantitative conservation objective (Wade 1998, Dillingham &
Fletcher 2008, Bunnefeld et al. 2011). Our experience indicates that
within the EIA process for wind energy projects, the PBR decision
rule has often been utilized mechanically, without much
consideration for these constraints (Poot et al. 2011, Leopold
et al. 2014, Busch & Garthe 2016, NIRAS 2016). From our
perspective, it appears that using PPA to quantify relative metrics
of impact is better suited to the EIA process, which has a
disturbance-centred perspective. With the PPA approach, one can
readily keep the impact assessment and decision steps separate, as
is usually done in EIA. However, this approach should not lead to
neglect of the definition of clear decision-making rules, as an
absence of decision is often detrimental to population conservation
(Cooke et al. 2012).
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Figure 2. Example of possible population trajectories according to two scenarios:
(1) without collision mortality (in green) and (2) with collision mortality due to the
presence of a wind power plant (in black). The impact can be defined as the relative
difference in population size between these two scenarios after some time (e.g., 30
years).
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