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Beyond optimal disturbances: a statistical
framework for transient growth
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The theory of transient growth describes how linear mechanisms can cause temporary
amplification of disturbances even when the linearized system is asymptotically stable as
defined by its eigenvalues. This growth is traditionally quantified by finding the initial
disturbance that generates the maximum response at the peak time of its evolution.
However, this can vastly overstate the growth of a real disturbance. In this paper, we
introduce a statistical perspective on transient growth that models statistics of the energy
amplification of the disturbances. We derive a formula for the mean energy amplification
and spatial correlation of the growing disturbance in terms of the spatial correlation
of the initial disturbance. The eigendecomposition of the correlation provides the most
prevalent structures, which are the statistical analogue of the standard left singular vectors
of the evolution operator. We also derive accurate confidence bounds on the growth by
approximating the probability density function of the energy. Applying our analysis to
Poiseuille flow yields a number of observations. First, the mean energy amplification is
often drastically smaller than the maximum. In these cases, it is exceedingly unlikely to
achieve near-optimal growth due to the exponential behaviour observed in the probability
density function. Second, the characteristic length scale of the initial disturbances has a
significant impact on the expected growth, with large-scale initial disturbances growing
orders of magnitude more than small-scale ones. Finally, while the optimal growth scales
quadratically with Reynolds number, the mean energy amplification scales only linearly
for certain reasonable choices of the initial correlation.

Key words: shear-flow instability, transition to turbulence

1. Introduction

A natural approach for analysing the stability of a steady fluid flow is to linearize
and calculate the eigenvalues of the linearized Navier–Stokes operator. Underlying this
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analysis is the assumption that there will be disturbances to the steady flow, and although
their magnitude is difficult to know a priori, it is likely a value small enough that
nonlinear mechanisms are not relevant. This approach, known as modal stability theory,
is agnostic to the shape of any particular disturbance – if there is a positive eigenvalue,
any disturbance arising in a physical scenario will grow, otherwise, any disturbance will
decay asymptotically. However, the modal approach predicts stability when experiments
tell us otherwise. Famously, Reynolds found that, at high velocities, pipe flow transitions to
turbulence (Reynolds 1883). Efforts to ground this instability in modal theory floundered:
pipe flow has all stable eigenvalues. The same is true for Couette flow as well as plane
Poiseuille flow at low Reynolds numbers; these flows have only stable eigenvalues, but are
observed to transition (Tillmark & Alfredsson 1992).

The key to their instability can be, in fact, a linear mechanism (Schmid 2007). Perhaps
counterintuitively, a linearized Navier–Stokes operator with all stable eigenvalues can
lead to short-term growth in the magnitude of disturbances before they decay at the rate
prescribed by the least stable eigenvalue. This transient growth is possible only when the
linearized Navier–Stokes operator is non-normal, i.e. its eigenvectors are not orthogonal in
the energy norm. This permits one eigenvector to initially subtract from another, but this
cancellation can cease if one eigenvector vanishes faster than the other, leading to growth.
The magnitude of this growth can be remarkable – often more than one-thousand-fold
at its peak (Trefethen et al. 1993). While the initial disturbances are assumed to be too
small for nonlinear effects to be important, when they are amplified by three orders of
magnitude, the assumption of linearity may no longer hold, and nonlinearities may bring
the flow away from the laminar steady state. Rather than leading directly to transition, the
nonlinearities activated by the amplified disturbance might bring the flow to a new state.
Instability in this state, known as secondary instability, is more likely than the primary
growth to lead to turbulence (Schmid & Henningson 2001).

The metric reported in the literature to quantify transient growth is the ratio of kinetic
energy of the maximally amplified disturbance to its initial kinetic energy. This metric is
usually referred to as G(t), although in this paper we call it Gopt(t) to distinguish it from
suboptimal and mean growths. Significant effort has been devoted to studying Gopt(t)
both analytically and numerically. In channel flow, it can be shown to have quadratic
dependence on the Reynolds number Re when the product of the streamwise wavenumber
and Reynolds number is small, αRe � 1 (Gustavsson 1991). Under the same conditions,
the time at which the maximum occurs increases linearly with Re. Indeed, numerical
experiments show that there is quadratic scaling in the optimal growth and linear scaling
in the optimal time for plane Poiseuille (Trefethen et al. 1993), Couette (Trefethen et al.
1993), Blasius boundary layer (Butler & Farrell 1992; Hanifi, Schmid & Henningson 1996)
and pipe (Schmid & Henningson 1994) flows. In all of these cases, the optimal streamwise
wavenumber α is zero or very small, and the optimal spanwise wavenumber β is order
unity (Schmid & Henningson 2001).

Minimal seed theory (Pringle, Willis & Kerswell 2012; Cherubini, De Palma & Robinet
2015; Kerswell 2018) provides a nonlinear analogue of optimal transient growth analysis.
At each initial energy, it identifies the disturbance that achieves the greatest growth when
evolved according to the full nonlinear Navier–Stokes equations. When the initial energy is
just large enough that the optimal disturbance leads to sustained turbulence (when evolved
for a sufficiently long period), the disturbance is called the minimal seed – the smallest
disturbance leading to transition. Although minimal seeds are initially amplified by linear
mechanisms (Pringle et al. 2012), they can differ substantially in shape from the optimal
disturbances in linear transient growth (Pringle & Kerswell 2010). This gives a lower
bound for the energy level that disturbances must achieve to spark transition.
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In either the linear or nonlinear context, considering optimal disturbances gives an upper
bound on the growth experienced by disturbances that are not influenced by further forcing,
but we propose that a more complete picture of the possible growth is needed. In linear
transient growth, only the optimal initial disturbance experiences Gopt growth. Indeed,
if the initial disturbance were one of the eigenvectors of the linearized Navier–Stokes
operator, it would decay monotonically. Of course, real disturbances to the flow will
not exactly coincide with the optimally amplified disturbance, so in order to quantify
their growth, one needs to explore the space of suboptimal disturbances. Is most of this
space inhabited by disturbances that decay or by ones that grow? Is the growth of real
disturbances of the order of Gopt, on average? What is the probability that a random
disturbance will come close to Gopt?

Motivated by these questions, we investigate transient growth from a statistical
perspective in this paper. A statistical view serves both to model the uncertainty
and variation in the spatial form of initial disturbances and to fully explore the
high-dimensional space that these disturbances occupy. We derive an equation for the
mean energy of the amplified random disturbances, and dividing this by the mean initial
energy gives a metric for the mean energy amplification, which we term Gmean. This
depends on the statistics of the incoming disturbances, and the formula we report for
Gmean involves the correlation matrix of the initial disturbances. The correlation matrix of
initial disturbances is distinct from the correlation matrix one measures in an experiment
because the latter combines information about the initial disturbances and their evolution
under the linear dynamics. The correlation matrix at time t can also be derived in terms
of the initial correlations. Its eigendecomposition can be viewed as a particular variant of
proper orthogonal decomposition and provides the most statistically prevalent structures,
which serve as the statistical analogue of the left singular vectors of the evolution matrix.

Quantifying the likelihood that a disturbance grows beyond a particular level requires
knowledge of the probability density function (p.d.f.) of the energy amplification. Whereas
the mean energy amplification depends only on the correlation matrix of the incoming
disturbances, the entire distribution of incoming disturbances is needed to calculate the
p.d.f. of the growth. Moreover, there is no general formula relating the two. However, we
observe empirically that the p.d.f. is nearly exponential, and this leads to an approximation
strategy for it. We use the approximate p.d.f. to derive accurate confidence bounds on the
growth, i.e. energy levels which p% of the disturbances do not exceed, for some desired p.
The exponential behaviour of the p.d.f. also means that if Gmean is significantly below Gopt,
it is extremely unlikely for an initial disturbance to achieve near-Gopt growth. In particular,
if Gopt is k times larger than Gmean, the probability of near-optimal growth is e−k due to
the exponential p.d.f.

Throughout the paper, we demonstrate the statistical framework using plane Poiseuille
flow. Equipped with a statistical lens, numerous observations readily emerge. At each
wavenumber pair (α, β), the correlation length in the wall-normal direction has a dramatic
impact on Gmean, with correlation lengths of the order of the channel half-height growing
to nearly half of Gopt. If, however, the correlation length is short compared with the
channel half-height, Gmean can be orders of magnitude smaller than Gopt; Gopt and
Gmean achieve their maximum values at similar locations in wavenumber space, but
the peak is substantially narrower in α for Gmean. This indicates that three-dimensional
disturbances, ones which contain a range of wavenumbers, further undershoot Gopt. In the
three-dimensional case, Gmean is a function of the three-dimensional correlation matrix.
We observe that when this correlation is isotropic, Gmean is roughly 2.5 % of Gopt at
Re = 1000. Surprisingly, we find that Gmean scales nearly linearly with Re, so the gap
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between it and Gopt widens with increasing Reynolds number. Therefore, Gopt increasingly
overstates the growth of random disturbances.

Even considering disturbances near the optimal wavenumber pair (α = 0, β = 2), the
probability of exceeding certain levels of growth can be extremely low. We show that the
distribution of energy is nearly exponential, i.e. the probability of exceeding a particular
energy level decays exponentially. Therefore, if Gmean is relatively small relative to Gopt,
there is little chance of observing growth of the order of the optimal value. For a correlation
length of one fourth the channel half-height, fewer than 0.01 % of disturbances achieve
Gopt/2 growth for Re = 1000.

The combined effects of the non-normality of the linearized Navier–Stokes operator and
randomness have been analysed before. In particular, Farrell & Ioannou (1993, 1994, 1996)
and later Fontane, Brancher & Fabre (2008) considered the linearized Navier–Stokes
equations forced continuously by white-in-time noise with some spatial correlation. They
showed that the expected energy, once statistical stationarity is reached, can be obtained by
solving a Lyapunov equation involving the linearized Navier–Stokes operator. Our study
is distinct from this work in two ways. First, rather than using a continuously forced
model, we use the physical model of transient growth, wherein the linearized equations
are impulsively disturbed at t = 0, and the disturbance evolves without further forcing.
Second, we explore the effect of different initial disturbance statistics, whereas Farrell
& Ioannou (1993, 1994, 1996) assume a temporally white forcing and do not assess the
impact of different forcing spatial correlations on the expected energy of the disturbance.
In Appendix A, we detail a statistical formulation for the continuously forced case that is
analogous to the framework we present for transient growth. There, one has to supply
the spatio-temporal correlation of the forcing instead of the spatial correlation of the
initial disturbance, and the white-noise model in Farrell & Ioannou (1993, 1994, 1996)
and Fontane et al. (2008) is recovered as a special case. One quantitative comparison
can be made between the white-noise model and our statistical formulation of transient
growth: the white-noise model gives a Reynolds number scaling between Re1.5 and Re3,
depending on the wavenumber, while our results show a scaling of Re1 for disturbances
that are broadband in wavenumber and Re2 for single wavenumber pairs. The present work
is also different from what has been called statistical stability (Malkus 1956; Markeviciute
2022). That work is concerned with the stability of the statistical state of turbulent flow,
whereas our study investigates the statistics of transient growth.

The remainder of the paper is organized as follows. In § 2, plane Poiseuille flow and
the numerics used to perform the calculations are described. Section 3 gives a review
of transient growth. In § 4, we derive a formula for the mean energy amplification and
compare it with the optimal growth for Poiseuille flow, first for disturbances at one pair of
wavenumbers, then for disturbances containing a range of wavenumbers. We investigate
the p.d.f. of the growth and detail an accurate approximation strategy for it in § 5. Finally,
in § 6, we conclude the paper.

2. Flow description and numerics

Plane Poiseuille flow is the steady, laminar flow between two plates separated by 2h in the y
direction. The flow is in the x direction, and the plates are infinite in both the streamwise (x)
and spanwise (z) directions. It is driven by a constant pressure gradient and the streamwise
velocity field is given by

U( y) = − 1
2μ

dp
dx

(h2 − y2), (2.1)
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y

z

x
2h

U( y)

2π/β 2π/α

Figure 1. Schematic of Poiseuille flow. The red waves represent disturbances with particular wavenumbers.

where p is the pressure and μ is the dynamic viscosity. The flow is then
non-dimensionalized by the channel half-height and the centreline velocity. Because the
governing equations and base flow are homogenous in x and z, it is convenient to take
the Fourier transform of disturbances to the base flow in these directions. The associated
wavenumbers in the streamwise and spanwise directions are denoted α and β, respectively.
For example, the transformed wall-normal velocity is

v̂( y, α, β) =
∫ ∞

−∞

∫ ∞

−∞
v(x, y, z) exp(−i(αx + βz)) dx dz. (2.2)

The physical set-up is shown in figure 1. Employing the usual velocity–vorticity
formulation of the linearized Navier–Stokes equations yields the following equations for
the evolution of disturbances (Reddy & Henningson 1993):

∂

∂t

[
v̂

η̂

]
= −i

[LOS 0
LC LSQ

] [
v̂

η̂

]
. (2.3)

The Orr–Sommerfeld, cross-term and Squire operators are

LOS = −
(

∂2

∂y2 − k2
)−1 [

1
iRe

(
∂2

∂y2 − k2
)2

− αU
(

∂2

∂y2 − k2
)

+ αU′′
]
, (2.4a)

LC = βU′, (2.4b)

LSQ = αU − 1
iRe

(
∂2

∂y2 − k2
)

. (2.4c)

Above, all quantities are non-dimensionalized, and U = U( y) is the base flow, η̂ is the
transformed wall-normal vorticity, k2 = α2 + β2 is the squared wavevector magnitude
and (·)′ indicates a wall-normal derivative ∂/∂y. We use the code provided in Schmid &
Henningson (2001), which uses a Chebyshev discretization of the linearized Navier–Stokes
equations (2.3) (Herbert 1977; Reddy & Henningson 1993). All norms presented in our
numerical results are based on the kinetic energy of a disturbance. It can be shown, by
using incompressibility and Parseval’s theorem, that the energy of a disturbance in the
transformed velocity–vorticity coordinates is (Gustavsson 1986)

e = 1
4π2

∫ ∞

−∞

∫ ∞

−∞
1

2k2

∫ 1

−1

∥∥∥∥ ∂

∂y
v̂

∥∥∥∥
2

+ k2‖v̂‖2 + ‖η̂‖2 dy dα dβ. (2.5)
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3. Optimal transient growth

Here, we review the linear effects responsible for transient growth in a system with all
negative eigenvalues. For a more thorough review, see Schmid (2007). Expressing the
Navier–Stokes equations as

˙̃q(x, t) = N (q̃(x, t)), (3.1)

a steady solution q̄(x) satisfies N (q̄(x)) = 0. Although their size is likely small,
disturbances to the base flow are inevitable. Denoting these disturbances as q(x, t) =
q̃(x, t) − q̄(x), their dynamics are analysed by linearizing around the base flow

q̇(x, t) = N (q̄(x) + q(x, t)) ≈ Aq(x, t), (3.2)

where A is the Jacobian around the base flow

A = ∂N
∂q

∣∣∣∣
q̄
. (3.3)

The problem is discretized as
q̇(t) = Aq(t), (3.4)

where q(t) ∈ R
N is the discretized state vector describing the disturbance.

The solution to (3.5) is
q(t) = M tq(0), (3.5)

where the evolution operator is the matrix exponential

M t = exp[At]. (3.6)

If all of the eigenvalues of the linear operator A have a negative real part, then the
linear system is stable in the sense that the norm of any infinitesimal disturbance will
eventually decay, i.e. limt→∞ ‖q(t)‖ = 0. This sense of stability, usually referred to as
modal stability, is mathematically powerful – it is a property of the system, not of any
particular disturbance. Assuming the linear approximation is valid, if the eigenvalues
are negative, any disturbance decays eventually, but if there is a positive eigenvalue,
any disturbance arising in a physical scenario will have a non-zero projection onto the
associated eigenvector, and will thus grow exponentially.

The theory of transient growth offers the additional insight that, even if all the
eigenvalues are stable, if A is non-normal, i.e. its eigenvectors are non-orthogonal, the
decay need not be monotonic. The eigenvectors summed together to construct an initial
disturbance may mostly cancel each other initially, but because they vanish at different
rates, after some time, there may no longer be cancellation, which leads to growth of
the disturbance. Physically, this can be viewed as a constructive interference of certain
combinations of the eigenvectors. The linear operators arising in fluid systems, especially
in shear flows, can be highly non-normal (Trefethen et al. 1993). The ability for these
systems to produce growth is quantified in the literature by the maximal amplification that
a disturbance may undergo

Gopt(t) ≡ max
‖q(0)‖=1

‖q(t)‖2. (3.7)

This quantity is usually referred to simply as G. Here, we have termed it Gopt to specify
that it is the optimal growth among all possible initial disturbances and to distinguish it
from Gmean, which will arise later in the paper. Its peak in time is referred to in this paper
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as Gopt
max (usually referred to simply as Gmax). The norm ‖·‖ is based on the kinetic energy

of the disturbance and can be written

e(q) = ‖q‖2 = q∗W q. (3.8)

Here, (·)∗ denotes Hermitian conjugation, W is a weight matrix (required to be Hermitian
and positive–definite), and we make frequent use of the decomposition L∗L = W . For later
use, the inner product that induces the norm is 〈q1, q2〉 = q∗

2W q1. It can be shown that the
optimal growth may be written (Reddy & Henningson 1993)

Gopt(t) = σ 2
1 (LM tL

−1), (3.9)

where σ 2
1 (·) returns the first (squared) singular value of the argument. The structures that

undergo the most growth up to time t and the structures resulting from the amplification
may also be obtained via the singular value decomposition (SVD) of the weighted
evolution operator

LM tL
−1 = ŨΣ Ṽ∗. (3.10)

The optimal output and input modes are recovered as U = L−1Ũ and V = L−1Ṽ ,
respectively. The first column of V is the initial disturbance that grows by Gopt(t), and
the first column of U is the structure that results.

The largest initial growth rate experienced by any disturbance can be expressed in terms
of the optimal growth as

aopt = d
dt

Gopt(t)
∣∣∣∣
t=0

. (3.11)

By expanding the matrix exponential to first-order terms in t, it is easily shown that this
optimal growth rate is given by the numerical abscissa (Trefethen & Embree 2005)

aopt = κ1(LAL−1 + (LAL−1)∗), (3.12)

where κ1(·) returns the first eigenvalue of the argument.
So long as the disturbance remains small enough, the linear approximation (3.2)

remains valid, and the disturbance will decay to zero. However, if the growth is large
enough, it can elevate a disturbance from the regime where linearity governs to one
where nonlinear effects are relevant. These nonlinear effects can in turn lead the flow
away from the base state, eventually causing transition. The growth can indeed be quite
large, owing to the severe non-normality in the linearized Navier–Stokes operator in shear
flows. Figure 2(a) shows Gopt(t) for various streamwise and spanwise wavenumbers in
plane Poiseuille flow at Re = 1000. For α = 0, β = 2, Gopt

max is nearly 200. Figure 2(b)
shows Gopt

max for a range of wavenumbers. Streamwise-elongated structures (small α) are
capable of larger growth than shorter structures (larger α). The peak in wavenumber space
is at α = 0, β = 2.04, so structures of finite spanwise (z) length experience the most
growth.

To motivate the remainder of this paper, we show 1000 random trajectories along with
Gopt(t) at Re = 1000, α = 0, β = 2 in figure 3. Indeed, Gopt bounds the trajectories,
but, notably, they all substantially undershoot it. The details of the distribution used to
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Figure 2. Optimal gains for plane Poiseuille flow at Re = 1000. (a) The maximal gain over all initial
disturbances Gopt(t) for various choices of wavenumbers. (b) Maximal gain, also maximized over time for
a range of streamwise and spanwise wavenumbers α, β.
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Figure 3. Value of Gopt(t) for α = 0, β = 2 along with 1000 random trajectories.

generate figure 3 are given in § 5. In what follows, we derive formulae to describe the
statistics of the growth and demonstrate them on plane Poiseuille flow, recording our
observations.

4. Expected energy amplification

In light of figure 3, an obvious question is: How much energy, on average, do the
amplified disturbances achieve? We derive a formula for the mean energy of the amplified
disturbances in terms of the correlation matrix of the initial disturbances. The expected
energy divided by the expected initial energy is termed Gmean. We elaborate on the
difference between this and the expected value of the ratio of these energies at the
end of the following subsection, but, in short, Gmean is more physically meaningful,
produces a simpler mathematical result, and requires less a priori knowledge of the initial
disturbances.
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Just as in the standard treatment of transient growth, the physical model that we
consider consists of the discretized base flow q̄, which is impulsively perturbed at t = 0
by q(0). As before, the disturbance q(0) may represent the entire (three-dimensional)
flow in space, the flow at a particular pair of wavenumbers or the flow at a particular
location in the streamwise direction. The evolution of the disturbances is governed by
the Navier–Stokes equations linearized around the base flow, so (3.5) holds. However,
our statistical framework differs from the standard treatment of transient growth in that
the disturbance q(0) is now a random variable with some distribution, and we study the
statistics of the disturbance after some time q(t). In particular, we are interested in the
energy of the growing disturbance in comparison with that of the initial disturbance.

Experimenting with various choices of the initial correlation for plane Poiseuille flow
reveals that the expected energy can be substantially smaller than Gopt

max. This is especially
true when the correlation length is short relative to the channel half-height. Furthermore,
Gmean

max drops off more rapidly with larger α than does Gopt
max, which causes the mean energy

amplification for three-dimensional disturbances to be quite small unless their energy is
focused sharply at α = 0. Surprisingly, we observe that, for isotropically correlated initial
disturbances, the mean energy amplification scales near-linearly with Re, in contrast to the
quadratic scaling of Gopt

max.

4.1. Theory

4.1.1. The quantity Gmean

For simplicity, we omit the weight matrix in the derivations (by setting it to the identity),
reporting the formulae with it at the end, so e(q(t)) = q∗(t)q(t). The energy may
alternatively be written as the trace of the outer product

e(q(t)) = Tr{q(t)q∗(t)}, (4.1)
because the diagonals of q(t)q∗(t) are the terms summed in the inner product. In terms of
the evolution operator, (4.1) becomes

e(q(t)) = Tr{M tq(0)q∗(0)M∗
t }. (4.2)

The expected value of this expression gives the expected energy of the amplified
disturbances

E[e(q(t))] = E[Tr{M tq(0)q∗(0)M∗
t }]. (4.3)

The expectation commutes with the trace and evolution matrices, giving
E[e(q(t))] = Tr{M tE[q(0)q∗(0)]M∗

t }. (4.4)
The expectation of the outer product of the initial disturbances is their correlation matrix

C00 = E[q(0)q∗(0)], (4.5)
so the expected energy of the growing disturbance is expressed in terms of the correlations
of the initial disturbances

E[e(q(t))] = Tr{M tC00M∗
t }. (4.6)

A metric for the expected growth of the disturbances, which we term Gmean, is provided
by the ratio of the expected energy and initial energy

Gmean(t) ≡ E[e(q(t))]
E[e(q(0))]

= Tr{M tC00M∗
t }

Tr{C00} . (4.7)

This quantity is not the same as the expected value of the growth; this difference is
discussed at the end of this subsection. If a weight matrix W = L∗L is used to define
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the energy, then (4.7) becomes

Gmean(t) = Tr{LM tC00M∗
t L∗}

Tr{LC00L∗} . (4.8)

The value of Gopt(t) is given in terms of the SVD of the evolution operator. To express
Gmean(t) in a similar manner, we make use of the fact that the trace of a matrix is the sum
of its eigenvalues and that the eigenvalues of BB∗ are the squared-singular values of B for
any matrix B. Using these two facts, (4.7) can be written

Gmean(t) =

N∑
i=1

σ 2
i (M tB)

N∑
i=1

σ 2
i (B)

, (4.9)

where B is defined by the factorization C00 = BB∗. In the case of a weight matrix, (4.9)
becomes

Gmean(t) =

N∑
i=1

σ 2
i (LM tB)

N∑
i=1

σ 2
i (LB)

. (4.10)

Upper and lower bounds for Gmean(t) for any possible initial correlation can be obtained
by setting C00 to the outer product of the first input mode with itself and last input
mode with itself, i.e. v1v1∗ and vNvN∗, respectively, yielding the bounds σ 2

1 (LM tL−1)

and σ 2
N(LM tL−1). Notably, the upper bound is Gopt(t). In the case that the disturbances are

white in space, i.e. C00 = W −1, the resulting Gmean(t) is the mean-squared singular value
of the weighted evolution operator LM tL−1.

The quantity Gmean, defined in (4.7), is the ratio of the expected energy of the
disturbance at time t to its expected initial energy. This is distinct from the expected ratio
of energy, E[e(q(t))/e(q(0))]. Physically, the ratio of expected energies is the more salient
quantity because whether a particular disturbance leads to transition depends on its final
energy (and shape), not on the growth it underwent. In figure 3, this ratio of expected
energies is the mean of the grey curves (at each time). The expected ratio of energies
would come from dividing each disturbance by its initial energy, then taking the average,
but this inappropriately weights the growth of smaller initial disturbances equal to that of
larger ones. Mathematically, the ratio of expected energies is the easier quantity to work
with because it depends only on the correlation matrix of the initial disturbances, as shown
in (4.7), while the expected ratio of energies depends on the entire distribution of the initial
disturbances. If there is no variation in the size of initial disturbances, i.e. if they live on
an N-dimensional sphere, the two quantities are the same. More generally, the quantities
are the same in the case that the distribution of initial disturbances is separable in radius
and direction, as is proven in Appendix B.
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A statistical framework for transient growth

Analogous to the numerical abscissa aopt, we define the mean initial growth rate

amean ≡ d
dt

Gmean(t)
∣∣∣∣
t=0

. (4.11)

This derivative can be calculated by expanding the evolution operator to first order

amean = d
dt

Tr {L(I + tA)C00(I + tA∗)L∗}
Tr{LC00L∗}

∣∣∣∣
t=0

, (4.12)

where I is the identity. Dropping the quadratic term and evaluating the derivative gives

amean = Tr{LAC00L∗ + LC00A∗L∗}
Tr{LC00L∗} . (4.13)

Finally, leveraging the Hermicity of the correlation matrix

amean = 2
Tr{Re(LAC00L∗)}

Tr{LC00L∗} , (4.14)

where Re(·) returns the real part of the argument. The upper bound for this quantity is
aopt, which is positive if (and only if) Gopt > 1, but we have never observed amean to be
positive in our numerical experiments. Indeed, we have never observed a randomly chosen
disturbance initially grow.

4.1.2. Correlation and dominant structures
The statistics of the initial disturbances can also be used to augment prediction of the
structures that arise from the linear amplification by the evolution operator. Removing the
trace from (4.6) gives a formula for the correlation matrix of the disturbance at time t

Ctt ≡ E[q(t)q(t)∗] = M tC00M∗
t . (4.15)

The dominant flow structures at time t are the eigenvectors of this correlation matrix
(multiplied by a weight if desired)

CttWΦ t = Φ tΛt. (4.16)

The columns φk
t of Φ t are orthogonal in the weighted inner product, i.e. 〈φi

t,φ
j
t 〉 = δij.

This can be thought of as a particular variant of proper orthogonal decomposition
(POD) (Lumley 1967, 1970; Sirovich 1987) in which the data consist of an ensemble of
realizations of the disturbances at a specific time t rather than a single time series. The
eigenvalues are non-negative, owing to the semi-positive definiteness of the correlation
matrix, and represent the expected energy of each structure. More precisely, the kth
eigenvalue

λk
t = E[|〈q(t),φk

t 〉|2], (4.17)

is the expected energy of the projection of the disturbance onto the kth mode φk
t . The

eigenvalues sum to the total expected energy, so

Gmean(t) =

∑
i

λi
t

∑
i

λi
0

. (4.18)

Therefore, the eigenvalues quantify the expected contribution of each mode to the growth
of the disturbance.
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The average energy of the disturbance captured by any structure can be quantified
(Frame & Towne 2023) by

ε(ψ) = E[|〈q(t),ψ〉|2]. (4.19)

The first POD mode maximizes this quantity (over normalized modes), and the latter
modes maximize it with the constraint that they are orthogonal to all previous ones. For a
more thorough review of POD, see Rowley & Dawson (2017), Taira et al. (2017) or Towne,
Schmidt & Colonius (2018).

The POD modes offer an alternative to the output modes of the evolution matrix for
describing the structures that emerge from the linear amplification. The POD modes are
the most energetic structures, while the output modes are the modes resulting from the
greatest amplification by the evolution operator. In the case that the initial correlation C00
is white with respect to the weight, the POD modes are equivalent to the output modes,
i.e.

C00 = W −1 =⇒ Φ = U. (4.20)

This result is analogous to the relationship between resolvent modes and spectral POD
modes established by Towne et al. (2018). Of course, the initial correlation is unlikely to
be white in a real flow, so it is advantageous to use knowledge of the incoming statistics to
augment the prediction of these structures.

In the remainder of this section, we experiment with different choices of C00 for
Poiseuille flow and record our observations. We are not aware of any previous studies
on the initial correlations of disturbances within Poiseuille flow. Indeed, in the context of
temporal stability, C00 is not the usual correlation one would measure in an experiment.
In an experiment, one is measuring not only the initial disturbances but also disturbances
that have already been evolved by the linear dynamics. This makes it difficult to distinguish
between the initial disturbances and the time-evolved ones, which means that one cannot
unambiguously determine the correlation matrix of the initial disturbances. Additionally,
the nature of the disturbances and quantities, such as their initial correlations, are certainly
sensitive to the specifics of the flow set-up. For example, the disturbances generated by
vibrations of the boundary are likely substantially different from those caused by surface
roughness. Providing a model for the correlations of the initial disturbance is not the topic
of this paper, and we do not claim that the choices made below are necessarily reflective of
the physics in Poiseuille flow. However, the trends that emerge, e.g. that longer correlation
lengths lead to more growth and that Gmean is substantially smaller than Gopt and grows
linearly when three-dimensional effects are accounted for, are not specific to our choice of
the correlation, and therefore give physical insight despite the current lack of an accurate
model for the correlations.

4.2. Numerical experiments with disturbances at a single wavenumber pair
Most studies of transient growth in flows with homogeneous directions take the Fourier
transform in these directions and calculate the transient growth for disturbances consisting
of a single pair of streamwise and spanwise wavenumbers. Here, we perform the analogous
analysis for Gmean in Poiseuille flow. The correlation at a particular α and β can be written

Ĉ00( y1, y2;α, β) =
[

Ĉvv
00( y1, y2;α, β) Ĉvη

00( y1, y2;α, β)

Ĉηv
00( y1, y2;α, β) Ĉηη

00( y1, y2;α, β)

]
, (4.21)

where the diagonal terms are the autocorrelations of wall-normal velocity and wall-normal
vorticity, and the off-diagonal terms are the cross-correlations between these two variables.
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Figure 4. Value of Gmean(t) (solid) and Gopt(t) (dashed) for various wavenumbers at Re = 1000. The mean
energy amplification is substantially higher for the longer correlation length λ−1 = 1 than for the shorter one
λ−1 = 5.

It can be shown analytically that, for a disturbance to experience large growth, its initial
energy should be concentrated in its wall-normal velocity rather than wall-normal vorticity
(Gustavsson 1991), and we have observed this property to persist within the statistical
framework. Therefore, we choose only the vertical velocity autocorrelation to be non-zero
and take it to be Gaussian in the wall-normal direction with correlation length λ, i.e.

Ĉvv
00( y1, y2;α, β) = E[v̂( y1, α, β)v̂∗( y2, α, β)] = A exp

[
−( y1 − y2)

2

λ2

]
. (4.22)

The normalization A has no impact on Gmean because this constant affects the expected
energy of the amplified disturbances and that of the initial ones equally. In our numerics,
it is chosen so that when the initial correlation is discretized in y, its trace is unity.

4.2.1. Mean energy amplification for a single wavenumber pair
Figure 4 shows Gmean(t) (solid) for various wavenumbers and Gopt(t) (dashed) for the
same wavenumbers, both as functions of time for Re = 1000. Whether the mean is of
the same order as the maximum depends on the characteristics of the correlations of the
initial disturbances. We refer to the peak of Gmean(t) in time as Gmean

max . For the relatively
long correlations in (a), Gmean

max is roughly half Gopt
max for the most amplified wavenumbers,

while for the shorter correlation length (b), the ratio is closer to one tenth. Figure 5 shows
the first time unit of Gmean(t) using the same parameters as figure 4. Despite the fact that
Gmean grows to be relatively large, it initially decays sharply for all wavenumbers. The
initial decay rate can be calculated with (4.14).

Figure 6(a) shows Gmean
max for a range of λ−1 at Re = 1000. The correlation length

λ greatly impacts the mean energy amplification, with longer correlation lengths
corresponding to more growth and shorter ones to less growth. It is likely this trend is
explained by the fact that short-wavelength (in y) disturbances are quickly dissipated by
viscosity before they can extract energy from the mean shear (McKeon 2017).
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Figure 5. Value of Gmean(t) for short times. A steep decay is observed initially even in cases where Gmean
max is

relatively high. The initial growth (or decay) rate is amean, given in (4.14).
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Figure 6. The effect of correlation length on Gmean
max for Poiseuille flow at Re = 1000. Panel (a) shows Gmean(t)

maximized over time vs inverse correlation length for various streamwise and spanwise wavenumbers. More
coherent disturbances (large λ) tend to grow more, but there is a non-infinite optimum. (b) The time at which
Gmean is maximized vs inverse correlation length. The maximum time does not vary much with λ but does
with α and β, with shorter wavelengths corresponding to an earlier maximization time. The maximization time
drops to zero when the correlation becomes such that Gmean(t) never exceeds one.

A related point is worth discussing. One may be interested in Gmean resulting from
a spatially white correlation matrix, i.e. a correlation matrix that is a multiple of
the identity. A white correlation may seem appealing at first glance because it represents a
‘neutral’ choice for the initial statistics. However, this choice yields grid-dependent results
for the growth. In fact, with twice as many grid points (and half the grid spacing), we
observed that Gmean decreases by a factor of roughly two. Upon some reflection, this grid
dependence is not a surprise for two reasons. First, the physical meaning of the discretized
representation of white noise on the coarse and fine grids is different. Sample disturbances
on the grid are jagged, with the value at each grid point uncorrelated from the values at
adjacent grid points. When the grid spacing is halved, samples become twice as jagged,
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Figure 7. Dependence of Gmean on the streamwise and spanwise wavenumbers at Re = 1000 for different
correlation lengths. The shape is similar to the contour of Gopt

max at the same Reynolds number (figure 2), but,
notably, the support in α is substantially narrower for Gmean. This indicates that the energy of the disturbance
must be quite concentrated at the large-growth wavenumbers to achieve significant growth.

hence, the physical meaning of the discretized representation of white noise depends on
the grid used to represent it. Second, the white noise on the finer grid concentrates a greater
fraction of the energy at shorter scales because white noise is uniform in its wavenumber
content among wavenumbers representable on the grid. Figure 6(a) shows that very short
scales do not grow, so one should expect that Gmean for white noise on the finer grid
will be smaller because less of the initial energy is concentrated at scales that grow. For
meaningful, i.e. grid-independent, results, one must use a correlation matrix that can be
fully resolved, and we stress that we have done this throughout the paper.

Figure 6(b) shows the time at which Gmean is maximized. This time is relatively
independent of the correlation length, but changes substantially with the wavenumber
pair. The substantial wavenumber dependence of the maximization time is important
when considering the growth of disturbances that are broadband in wavenumber. The
discontinuity is not an artefact. For λ−1 just before the discontinuity, Gmean(t) increases
very gradually near t = 0, reaching its peak at t ≈ 80. For λ−1 just after the discontinuity,
Gmean(t) decreases very gradually near t = 0, so the maximum growth occurs at t = 0 and
the maximization time suddenly drops from near 80 to 0.

The wavenumber dependence is further explored in figure 7. Figure 7(a) shows this
dependence for λ−1 = 1, which is near the peak for the maximally amplified wavenumber
in figure 6(a). The location of the peak in wavenumber space is near that of Gopt

max seen
in figure 2; however, Gmean

max decays much more rapidly with α than does Gopt
max. This

indicates that to achieve large-scale growth, the energy of a disturbance must be narrowly
concentrated in wavenumber space at the values that experience large growth. As shown
in § 4.4, this severely limits the mean energy amplification of fully three-dimensional
disturbances.

Figure 8 shows Gmean
max at α = 0, β = 2 for a range of Reynolds numbers and correlation

lengths. Similar dependence on correlation length is observed at all Reynolds numbers
with the peak occurring when the correlation length is roughly the channel half-height.
The value of Gopt

max is known to scale quadratically with Reynolds number (for small values
of αRe) (Gustavsson 1991). In figure 9, we show the scaling of Gmean

max with Reynolds
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Figure 8. Value of Gmean
max at α = 0, β = 2 as a function of Reynolds number and inverse correlation length
λ−1. Similar behaviour is observed over the range of Re.
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Figure 9. Scaling of Gmean
max for disturbances at a single wavenumber pair for a variety of correlation lengths at

α = 0, β = 2. The scaling appears quadratic (the grey dashed line is Re2), matching that of Gopt
max.

number for a variety of correlation lengths at α = 0, β = 2. These appear to obey the
same scaling.

4.2.2. Dominant structures for a single wavenumber pair
Now we examine the structures that emerge in Poiseuille flow at a single wavenumber pair,
as described in § 4.1.2. The key question is: To what extent do the output modes resemble
the principal components of the correlation matrix, i.e. the POD modes? The former are
the structures resulting from the largest amplification by the evolution operator (see (3.10)),
whereas the latter use the statistics of the initial disturbances to inform which structures
are most energetic (see (4.16)).

Figure 10 shows the evolution of the correlations and the vorticity component of their
POD modes for α = 0, β = 2. We impose the initial correlation to be of the form in (4.22)
with λ = 1, so all the energy is initially in the velocity. The evolution operator rapidly
shifts this energy to the vorticity, and two counter-rotating vortices emerge. The first POD
mode (blue) reflects this with two peaks of opposite sign at the peaks in the vorticity
correlation. The velocity component of the POD mode is not plotted because it rapidly
decays to 0. Notably, the first output mode quickly becomes nearly identical to the first
POD mode, despite the former not depending on the initial correlation. Indeed, for this
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Figure 10. Evolution of correlations and their POD modes for Re = 1000, α = 0, β = 2 and λ = 1. The initial
energy is imposed to be in the velocity (a–d), but it is quickly shifted to vorticity (e–h). The first POD mode
(blue dashed) and first output mode (red) quickly become similar (i–l). For these parameters, Gmean(t) peaks
near t = 80 (see figure 4).

wavenumber pair, the first few POD modes from different initial correlation matrices
quickly become similar to one another and to the first few left singular values of the
evolution matrix. There is only moderate gain separation in the singular values, so the
similarity between the modes is surprising.

Figure 11 compares the modes more thoroughly. For each wavenumber pair, figure 11(a)
shows the average energy captured (see (4.19)) by the first output mode at the peak time of
Gmean as a fraction of that captured by the first POD mode at the same time. The energy
captured by the POD mode is the maximum possible, so a value near unity indicates that
the output mode is very effective, while a value near zero indicates the opposite. Whether
or not a structure is visible in the flow depends on the energy it captures. Near α = 0,
the output mode captures nearly as much as is possible, while at higher α, it captures
substantially less. Capturing energy at low α is more important as the growth is the greatest
here, so the leading output mode does a good job of predicting the structures observed in
Poiseuille flow (Abe, Kawamura & Matsuo 2001). The large discontinuity in figure 11(a)
in the lower right of the plot occurs because the peak time for these wavenumbers is t = 0,
so the structures at this time only depend on the initial correlation, not on the linearized
Navier–Stokes operator, so the output modes here cannot hope to capture any structure.

Figure 11(b) compares the output modes with the POD modes via the inner product,
again at the peak time in Gmean. At each wavenumber pair, the plot shows the matrix of
square inner products Gij = |〈ui,φ j〉|2 up to three modes in each basis. For α = 0, this
matrix is nearly diagonal, indicating, once again, that the output modes and POD modes
are very similar, even for the subleading modes. At higher α, the modes become less
similar as shown by the off-diagonal terms in the matrix of inner products.
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Figure 11. Comparison of the POD and output modes. (a) The ratio of energy captured by the first output
mode to that of the first POD mode for a range of wavenumbers. The modes are comparable for low α. (b) The
square inner products of the first three POD modes and the first three output modes. In both panels, the modes
at each wavenumber are compared at the peak time in Gmean.

We also experimented with correlation matrices that do not respect the symmetry about
y = 0 in the channel (arising, e.g. due to vibrations in one of the plates, but not the other).
These resulted in less similarity in the modes, and the square inner products were in the
range 0.5–0.9, even at α = 0. However, so long as the correlation was symmetric, the
modes were quite similar for α = 0. The output modes are therefore a good model for the
POD modes under these conditions, and leveraging the statistics may not present much
advantage in predicting the structures. We stress, however, that the energy of each structure
is highly dependent on the statistics, so the SVD of the evolution operator does not provide
the associated energies accurately. Whether the POD modes and output modes for other
flows coincide to the extent that they do in Poiseuille flow may be an interesting topic for
future investigation.

It can be shown that the POD modes in flows with homogeneous directions are still
delta functions in wavenumber space in those directions (Lumley 1967). Therefore, despite
the fact that the disturbances will not themselves be delta functions in wavenumber, the
similarity in the POD modes and output modes observed in this subsection still applies
in the three-dimensional case. However, the behaviour of Gmean for three-dimensional
disturbances can be markedly different, as shown next.

4.3. Three-dimensional disturbances: inclusion of multiple wavenumbers
Clearly, just as real initial disturbances will not identically match the maximally
amplified one, real disturbances do not exist at just one pair of streamwise and spanwise
wavenumbers. Parallel flow offers an analytical simplification to an analysis of transient
growth – each streamwise and spanwise wavenumber pair may be considered separately in
its ability to produce growth. However, this tempts further exaggeration of the possibility
for large-scale transient growth. In modal stability, one need not add these wavenumbers
back together to get an answer as to the long-term behaviour – if any wavenumber pair
grows exponentially, so will the entire disturbance. However, if one wavenumber pair
experiences large transient growth, this only implies a large gain for the entire disturbance
to the extent that its initial energy is concentrated at that wavenumber pair. In this
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A statistical framework for transient growth

subsection, we incorporate a range of wavenumbers and show that the weight for each pair
is determined by the Fourier transform in x and z of the three-dimensional correlation.
When these three-dimensional correlations are incorporated, substantially less growth
is observed. We also observe a linear scaling with Reynolds number for an isotropic
correlation in contrast with the quadratic scaling observed for Gopt

max and for Gmean
max at a

particular α and β.
One way to calculate Gmean for disturbances containing multiple wavenumbers would

be to define a large domain in x and z (to approximate the desired infinite directions),
calculate A and define a discrete correlation matrix for the full three-dimensional problem.
The mean energy amplification would then be given by (4.7) and the correlation matrix
by (4.15). However, this strategy is needlessly computationally intensive because it does
not take advantage of the analytic simplification possible in parallel flow. Instead, we can
add the expected energies at each wavenumber together, modulated by the energy of the
incoming disturbances at each wavenumber. Denoting the disturbance discretized in y, but
continuous in x and z as qt(x, z), its energy is

‖q(t)‖2 = Tr
{∫ ∞

−∞

∫ ∞

−∞
qt(x, z)q∗

t (x, z) dx dz
}

(4.23)

= 1
4π2 Tr

{∫ ∞

−∞

∫ ∞

−∞
qt(α, β)q∗

t (α, β) dα dβ

}
(Parseval) (4.24)

= 1
4π2 Tr

{∫ ∞

−∞

∫ ∞

−∞
M t(α, β)q0(α, β)q∗

0(α, β)M∗
t (α, β) dα dβ

}
. (4.25)

Finally, taking an expected value, dividing by the expected initial energy, and incorporating
the weight matrix yields

Gmean(t) =
∫ ∞

−∞

∫ ∞

−∞
Tr

{
LM t(α, β)Ĉ00(α, β)M∗

t (α, β)L∗}dα dβ

/∫ ∞

−∞

∫ ∞

−∞
Tr

{
LĈ00(α, β)L∗}dα dβ . (4.26)

Here, Ĉ00(α, β) = E[q0(α, β)q∗
0(α, β)] is the y-discretized correlation of the initial

disturbance at each wavenumber pair. By the Wiener–Khinchin theorem (Wiener
1930; Khintchine 1934), Ĉ00(α, β) is, equivalently, the Fourier transform of the
three-dimensional correlation

Ĉ00(α, β) =
∫ ∞

−∞

∫ ∞

−∞
C00(x, z) exp(−i(αx + βz)) dx dz. (4.27)

4.4. Numerical experiments using disturbances with a distribution of wavenumbers
To maximize the potential for growth, we again choose only the wall-normal-velocity
autocorrelation to be non-zero.

4.4.1. Isotropic correlation
We begin by taking the wall-normal autocorrelation to be an isotropic Gaussian with
correlation length λ

Cvv
00(x1, x2) = A exp

[
− 1
λ2 (|x2 − x1|2)

]
, (4.28)
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Figure 12. Value of Gmean
max for a three-dimensional isotropic correlation with correlation length λ at Re = 1000.

Even at the optimal correlation length, the inclusion of all wavenumbers causes Gmean
max to be roughly 2.5 % of

Gopt
max at α = 0, β = 2.

where |·| denotes Euclidean distance and, again, A has no impact on Gmean. When
discretized in y, the correlation becomes C00(
x, 
z) = Cy

00 exp[−1/λ2(Δx2 + 
z2)],
where Cy

00 is the discretization of the y-dependent part of the correlation. The Fourier
transform of the correlation in x and z is

Ĉ00(α, β) = πλ2A exp
[
−λ

2

4
(α2 + β2)

]
Cy

00. (4.29)

Inserting (4.29) into (4.26) gives

Gmean(t) =
∫ ∞

−∞

∫ ∞

−∞
Tr{LM t(α, β)Cy

00M∗
t (α, β)L∗} exp

[
−λ

2

4
(α2 + β2)

]
dα dβ

/∫ ∞

−∞

∫ ∞

−∞
Tr{LCy

00L∗} exp
[
−λ

2

4
(α2 + β2)

]
dα dβ. (4.30)

The exponential term can be interpreted as the expected energy at each wavenumber
pair implied by the correlation. For Poiseuille flow at Re = 1000, the most amplified
wavenumbers are near α = 0, β = 2 (see figures 2 and 7), and the amplification drops
off rapidly as α moves away from zero. To concentrate energy near α = 0, the correlation
length must be quite long. This longer correlation also promotes growth because, as we
described in the previous section, the longer the correlation length in y, the more growth
is observed. However, with a long correlation length, energy is concentrated near β = 0,
which does not experience much growth (see figures 2 and 7). Also detracting from Gmean

is the fact that the maxima occur at significantly different times for different wavenumbers
(see figure 6). The combined effect of these factors can be seen in figure 12. At Re = 1000,
even with the correlation length that promotes the most growth (λ−1 = 1.2), Gmean

max is only
2.5 % of Gopt

max at the optimal wavenumbers. The maximizing value of λ−1 = 1.2 can be
understood as balancing energy concentration at growth-promoting values of α while also
doing so at growth-promoting values of β. A small λ−1 leads to high energy concentration
near α = 0, which promotes growth, but also leads to low energy concentration near
β = 2, which limits growth. Conversely, if λ−1 ≈ 2, less energy is concentrated at α = 0,
which is growth limiting, but more is concentrated at β = 2, which is growth promoting.
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Figure 13. Value of Gmean
max for an isotropic initial correlation for a range of correlation lengths and Reynolds

numbers. Similar dependence on correlation length λ is observed at all Re, and all values are substantially lower
than their single-wavenumber counterparts in figure 8.
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105
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Re
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Re1

104
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Figure 14. Scaling of Gmean
max for the isotropic correlation for various correlation lengths along with that of

Gopt
max. The grey guidelines show linear and quadratic Reynolds number scaling. Unlike Gopt

max, Gmean
max with the

isotropic correlation scales linearly with Reynolds number.

The observed optimum of λ−1 = 1.2 strikes a balance between concentrating energy near
α = 0 and β = 2.

Figure 13 shows contours of Gmean
max for a range of correlation lengths and Reynolds

numbers. The vertical dashed line divides the asymptotically stable and unstable regions.
At Reynolds numbers higher than this, Gmean

max is technically infinite, but there is an initial
peak in Gmean(t) long before the instability dominates. In this figure, and all subsequent
ones which show Gmean

max above the critical Reynolds number, we plot the magnitude of
the initial peak in Gmean. The effect of the correlation length is similar across Reynolds
numbers. Comparing figure 13 with figure 8 (its single-wavenumber analogue), we see that
the isotropic correlation matrix severely limits growth at all Reynolds numbers. Indeed, the
difference becomes greater as the Reynolds number increases.

The Reynolds number scaling is shown in figure 14. Unlike Gopt
max or Gmean

max at a
particular wavenumber pair, Gmean

max for an isotropic three-dimensional correlation scales
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nearly linearly with Reynolds number. This is a surprising result – the three-dimensional
Gmean(t) is obtained in (4.26) by integrating over Gmean(t) at particular wavenumbers.
However, critically, these single-wavenumber values for Gmean peak at different times, as
can be seen in figure 6. The difference in the scaling means that the difference between
Gmean

max and Gopt
max becomes larger with Reynolds number, i.e. Gopt

max increasingly overpredicts
the mean energy amplification with increasing Reynolds number.

4.4.2. Non-isotropic correlation
As a generalization of the isotropic correlation investigated above, we next consider the
ellipsoid

Cvv(x1, x2) = A exp
[

−
(


x2

λ2
x

+ 
y2

λ2
y

+ 
z2

λ2
z

)]
, (4.31)

where λx, λy and λz are the correlation lengths in the streamwise, spanwise and
wall-normal directions, respectively. For example, this allows for the correlations to persist
longer in x than in y or z, as may result from the advective nature of the flow (He, Jin &
Yang 2017). With this extra freedom relative to the isotropic case, we may ask whether the
Reynolds number scaling remains linear, as it is in that case, or becomes quadratic, as it is
for Gopt. The answer depends on the correlation lengths chosen, but we find that if we fix
λx at some non-zero value and vary Reynolds number, the scaling is linear.

When discretized in y, the ellipsoid correlation becomes

C00(
x, 
z) = Cy
00 exp

[
−

(

x2

λ2
x

+ 
z2

λ2
z

)]
, (4.32)

where, again, Cy
00 is the discretized y-dependent part. Upon taking the Fourier transform,

the correlation in wavenumber space is

Ĉ00(α, β) = πλxλzA exp
[
−1

4(λ2
xα

2 + λ2
z β

2)
]

Cy
00. (4.33)

Once again, we make use of (4.26) to obtain

Gmean(t) =
∫ ∞

−∞

∫ ∞

−∞
Tr{LM t(α, β)Cy

00M∗
t (α, β)L∗} exp

[
−1

4 (λ2
xα

2 + λ2
z β

2)
]

dα dβ

/∫ ∞

−∞

∫ ∞

−∞
Tr{LCy

00L∗} exp
[
−1

4(λ2
xα

2 + λ2
z β

2)
]

dα dβ. (4.34)

The optimal correlation lengths and the resulting maximum value of Gopt
max are shown in

figure 15. Plotted on the left axis in blue, Gmean
max scales quadratically when the correlation

lengths are optimized. At Re = 1000, Gmean
max = 54, which is 27 % of Gopt

max at the same
Reynolds number. The optimal correlation lengths, plotted on the right axis in green,
do not vary significantly with Reynolds number. The optimal λy is close to the channel
half-height, which is consistent with the most amplified wavenumbers shown in figure 6.
The maximizing λ−1

x is zero. This means that the disturbances are infinitely correlated
in x, implying that their energy is concentrated at α = 0. This wavenumber is known to
produce the most growth (see, e.g. figures 7 and 2), so it is not surprising that the optimal
λ−1

x is zero. The characteristic β in the initial correlation is 2λ−1
z , so in light of figure 7,

the maximizing λ−1
z is not a surprise. The optimal correlation lengths are not reported in
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Figure 15. Value of Gmean
max optimized over the three correlation lengths (left axis) and the optimal correlation

lengths (right axis) vs Re. The scaling of Gmean
max is quadratic here, and the optimal correlations do not change

substantially with Re.
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Figure 16. Scaling of Gmean
max with Re for [λ−1

y , λ−1
z ] = [1, 1.7] and various λx. The scaling is initially

quadratic but becomes linear at higher Re. Longer correlations in x remain quadratic to higher Re.

figure 15 when Gmean
max = 1; this only occurs if Gmean(t) peaks at the initial time t = 0, in

which case any set of correlation lengths will produce the same result.
The correlation will, in reality, be finite in x, and this can affect the scaling. Figure 16

shows Gmean
max vs Reynolds number for constant finite choices of λx, λy and λz. The values

of λx are shown and [λ−1
y , λ−1

z ] = [1, 1.7], which are near their optimal values, as shown
in figure 15. For small Reynolds numbers, the scaling is nearly quadratic, matching that
of the infinitely correlated disturbances, but as the Reynolds number increases, the scaling
once again becomes linear. The Reynolds number at which the scaling changes depends
on λx, with longer correlations remaining quadratic up to higher Reynolds numbers.

5. Estimating the probability density function

As figures 6 and 12 show, the expected value of the energy may be orders of magnitude
smaller than Gopt

max for certain reasonable incoming correlations. With a formula for the
expected energy (4.7), one may still ask whether large gains are possible or negligibly
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unlikely. The linearized Navier–Stokes equations are constantly disturbed for a real flow,
so the fact that Gmean may be small compared with Gopt does not preclude one of the
many disturbances from achieving near-optimal growth. How long must one wait to
see a dangerous disturbance? Does a short eddy turnover time in the flow imply that
near-optimal growth is inevitable regardless of how small Gmean may be?

In order to answer questions such as these, we investigate the p.d.f. of the disturbance
energy. Whereas the mean energy depends only on the initial correlations, the p.d.f.
depends on the entire distribution of the incoming disturbances. We first describe a
basic Monte Carlo approach for estimating the p.d.f. and apply this to two candidate
distributions for the incoming disturbances, noticing that the p.d.f. of the energy drops
nearly exponentially. In the two subsequent subsections, two distributions for the initial
disturbances are considered, a multivariate Gaussian and a transformation of the uniform
distribution on the N-sphere. For these distributions, it is possible to analytically
approximate the p.d.f. of the energy using the exactly calculable moments of the energy
distribution. With an accurate estimate of the p.d.f., we can calculate percentile curves for
the trajectories.

We denote the p.d.f. of a random variable X as fX(x) ≡ limdx→0 Pr{X ∈ [x, x + dx]}/dx,
where Pr{·} denotes probability. If X ∈ R

N is a vector, then the p.d.f. is defined as

fX(x) = fX(x1, . . . , xN) ≡ lim
dx1→0,...,dxN→0

Pr{X1 ∈ [x1, x1 + dx1], . . . , XN ∈ [xN, xN + dxN]}
dx1 . . . dxN

.

(5.1)
The incoming disturbances follow some distribution

q(0) ∼ fq(0)(q0), (5.2)

and this implies a distribution
q(t) ∼ fq(t)(qt), (5.3)

for the disturbances q(t) = M tq(0) at time t. These distributions are the most descriptive
statistical information about the disturbances; any statistic of the disturbances is implied
by the full distribution. For example, the correlation matrix C00 for the initial disturbances
is implied by the distribution of the initial disturbance fq(0). The converse, however, is not
true – there are many distributions with the same correlation matrix. In the last section,
we showed that Gmean only depends on the correlation matrix, so there was no need to
consider the form of the underlying distribution. However, to calculate the p.d.f. of the
energy of the disturbance at some time,

e(t) ∼ fe(t)(et), (5.4)

the full distribution of initial disturbances is needed.

5.1. Monte Carlo
With a means of sampling initial disturbances from fq(0)(q0), samples of the growing
disturbances can be generated by multiplying the initial ones by M t, and samples of e(t)
are finally obtained by computing their norm. An estimation of the p.d.f. can be obtained
using standard methods, such as ksdensity in MATLAB. Figure 17 shows the empirical
p.d.f. resulting from performing this Monte Carlo with two different distributions of
the initial disturbances (described later), both with the same correlation. The Monte
Carlo is performed at t = 100, Re = 1000, α = 0, β = 2 with a correlation of the form
(4.22) and correlation length λ−1 = 5. The distributions are described in detail in the
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Figure 17. Empirical p.d.f. of energy at t = 100 resulting from initial disturbances distributed as a
transformation of the uniform distribution and a multivariate Gaussian, both with the same correlation with
correlation length λ−1 = 5. Note the similarity in the two p.d.f.s and the near-exponential decay.

following subsections. Two observations are apparent. First, both distributions result in a
very similar p.d.f. for the energy of the amplified disturbance. That the p.d.f.s are similar
indicates that while the p.d.f. of the energy is a function of the full distribution of incoming
disturbances, reasonable distributions of initial disturbances with the same correlation
will give similar p.d.f.s for the energy. Second, the p.d.f.s decay nearly exponentially.
The exponential decay indicates that it is very unlikely that the energy of an amplified
disturbance substantially exceeds Gmean(t). The exponential decay also allows for accurate
a priori approximation of the p.d.f., which we discuss in the following subsections for the
two distributions of initial disturbances.

5.2. Multivariate Gaussian
First, we assume the initial disturbances follow the multivariate Gaussian with mean 0 and
correlation C00

q(0) ∼ N (0, C00). (5.5)

Also, we assume the correlation to have unit trace, so Gmean(t) = E[e(q(t))]. More
explicitly, this distribution, as represented by its p.d.f., is

fq(0)(q0) = exp
[ − 1

2 q∗
0C−1

00 q0
]

√
(2π)N |C00|

. (5.6)

If C00 is rank deficient, the inverse C−1
00 and determinant |C00| are modified to the

pseudoinverse and pseudodeterminant.
Any linear function of q(0) also follows a multivariate Gaussian distribution (Tong

2011), so the disturbance q(t) = M tq(0) some time in the future is distributed as

q(t) ∼ N (0, Ctt), (5.7)

where the correlation Ctt = M tC00M∗
t comes from (4.15). The energy is e(t) = ‖q(t)‖2

and we seek to estimate its p.d.f. fe(t)(et). This distribution is one of a well-studied
class – quadratic forms in multivariate Gaussian variables. The moments of these
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Figure 18. Empirical p.d.f. for the disturbance energy and the approximation thereof. The approximation is
the exponential distribution with the same fourth moment as the true distribution and is calculated without the
Monte Carlo.

distributions are known (Mathai & Provost 1992), and for the case at hand, the rth moment
μr can be calculated recursively as

μr ≡ E[er] =
r−1∑
k=0

(
r − 1

k

)
g(r−1−k)μk, (5.8a)

where
g(k) = 2kk! Tr{(LCttL

∗)k+1}, (5.8b)

and μ0 = 1. Note that μ1 = Gmean, i.e. the first moment recovers the expected energy.
Our goal is to estimate the right tail of the p.d.f. of the energy in order to approximate

the probability of exceeding a particular energy. As shown in figure 17, the right tail of the
empirical p.d.f. displays nearly exponential decay. Therefore we assume its form to be

fe(t)(et) ≈ γ exp[−γ et]. (5.9)

To find the decay rate, we find γ such that the rth moment of the exponential ansatz
matches the rth moment of the true distribution, given in (5.8). The true distribution,
estimated via the Monte Carlo, is near exponential for high energies but not low ones, so
to find the correct exponential parameter we equate a relatively high moment, since this
weights the high-energy tail of the distribution heavily. Denoting the moment equated as
r, the rth moment of the exponential distribution (5.9) is μr = r!/γ r. Equating this to the
true rth moment given in (5.8) and solving for the exponential decay rate gives

γ =
(

r!
μr

)1/r

. (5.10)

This is an analytical approximation; the only role of the previous Monte Carlo was to
suggest the exponential form (5.9). Figure 18(a) shows this approximation strategy using
r = 4. The confidence bounds are derived by integrating the approximate p.d.f. The
Reynolds number, wavenumbers and correlation length are Re = 1000, α = 0, β = 2,
λ−1 = 5. Out of the 107 trajectories used to generate the empirical distribution, 99.005 %
were below the 99 % confidence bound.
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5.3. Transformation of a uniform distribution on the N-sphere
Second, we assume that the disturbances are distributed as some transformation of a
uniform distribution on the surface of the N-sphere

q(0) ∼ Ψ u, (5.11)

where ‖u‖ = 1 with probability 1, and u ∼ Ru for any rotation matrix R. Samples from
this distribution can be easily generated by normalizing samples from an independent and
identically distributed multivariate Gaussian to be the same radius R, u = R(x/‖x‖) with
x ∼ N (0, I). The transformation Ψ can be chosen so that the initial disturbances have
some desired correlation C00. By choosing Ψ such that

ΨΨ ∗ = NC00, (5.12)

e.g. setting it to the Cholesky decomposition of NC00, where N is the dimension of the
state, the correlation matrix of the initial disturbances is

E[Ψ uu∗Ψ ∗] = 1
N
ΨΨ ∗ = C00. (5.13)

The first equality holds because E[uu∗] = (1/N)I . The disturbance energy some time later
is given by e(t) = ‖q(t)‖2 = ‖T u‖2. The final equality expresses the energy as the square
norm of the uniform distribution acted on by a matrix T = M tΨ .

The moments for this transformation of the uniform distribution were derived by von
Neumann (1941). The result is (Kargin 2010)

E[ek] = 2kk!
N(N + 2)(N + 4) · · · (N + 2k − 2)

ξk, (5.14)

where the ξ are defined as the power series coefficients of

1 + ξ1z + ξ2z2 + ξ3z3 + · · · = exp[ζ1z + ζ2z2 + ζ3z3 + · · · ], (5.15)

and ζj is defined in terms of the singular values σi(LT ), as

ζj = 1
2j

N∑
i=1

σ 2i
i . (5.16)

Using these moments, we can approximate the true p.d.f. using the technique described in
the previous subsection. Figure 18 shows the result along with confidence bounds derived
by integrating the approximated p.d.f. Just as before, the Reynolds number, wavenumbers
and correlation length are Re = 1000, α = 0, β = 2, λ−1 = 5. Of the 107 trajectories used
to calculate the empirical distribution, 98.981 % were less than the 99 % confidence bound.

6. Conclusions

Standard transient growth analyses are based on the maximum growth experienced by
any initial disturbance. While this is a useful upper bound on linear growth, it can
vastly overpredict the growth experienced by real disturbances. We have developed a
statistical framework to explore the space of real disturbances and quantify their growth.
We demonstrated the framework and its ability to extract insights on Poiseuille flow.

The framework can be summarized using figure 19. Here, Gopt, the quantity used in the
literature to quantify transient growth, far overshoots all one-thousand random trajectories,
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Figure 19. The one-thousand trajectories in figure 3 overlayed with the calculated mean and percentile curves.
The Reynolds number is 1000, the wavenumbers are α = 0, β = 2 and λ−1 = 5 with the correlation given
in (4.22). The mean drastically undershoots the optimum, and the energy is exponentially distributed, so it is
unlikely for a disturbance to grow by near Gopt.

which are the same ones shown in figure 3. The value of Gmean(t) gives the mean
energy divided by the expected initial energy, i.e. the mean energy amplification. It is a
function of the correlation matrix of the initial disturbances but does not depend explicitly
on the particular form of the distribution of initial disturbances. As figure 19 shows,
Gmean(t) can be significantly lower than Gopt(t). For three-dimensional disturbances, the
three-dimensional correlation matrix determines the average energy at each wavenumber.
With a realistic correlation matrix, suboptimal wavenumbers will account for a significant
portion of the energy, and this, coupled with the fact that different wavenumbers peak at
different times, further widens the gap between Gmean and Gopt. The confidence bounds
in figure 19 give the energy levels that p% of the trajectories undershoot. The levels
are calculated analytically by integrating the p.d.f. of the energy, not by performing a
Monte Carlo. The energy p.d.f. cannot be calculated exactly for a general distribution of
initial disturbances; however, because the energy p.d.f. is nearly exponential, it can be
approximated accurately.

Applied to Poiseuille flow, this statistical view reveals a number of insights. For a
single wavenumber pair, the correlation length in the wall-normal direction emerges as
an important parameter in determining Gmean. For long correlation lengths, Gmean is of
the same order as Gopt (as much as half for certain wavenumbers), but for short correlation
lengths, Gmean is orders of magnitude smaller than Gopt. The dependence of Gmean on the
streamwise and spanwise wavenumbers is different than that of Gopt: while the peak is
still near α = 0, β = 2, it is substantially narrower in α. Three-dimensional disturbances
contain energy at all wavenumber pairs, so the narrower peak of Gmean in α leads to
substantially less growth. At Re = 1000, with an isotropic correlation of correlation length
λ, Gmean

max is only 2 % of Gopt even at the most growth-promoting λ. Furthermore, for this
form of the three-dimensional correlation, Gmean

max grows near linearly, while Gopt
max grows

quadratically, leading the latter to increasingly overpredict the mean energy amplification
as the Reynolds number increases.

The formulae derived depend on the correlation matrix of the initial disturbances. We
are not aware of previous studies on the statistics of these disturbances in Poiseuille flow,
but they are likely to be dependent on the source of disturbances. We reiterate that, in
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the context of temporal stability, this correlation matrix is a different quantity from the
correlation one might measure by time averaging in an experiment. The figures reported,
e.g. for the ratio of Gmean/Gopt, are not meant to be taken as quantitative predictions of
what would be observed in an experiment. Rather, they are meant to show trends and to
emphasize that, when various factors are accounted for, the growth of real disturbances
can be significantly smaller than Gopt. Although Gmean depends on the full correlation
matrix, the correlation length is a particularly important feature in determining Gmean.
The observation that long correlations lead to more growth may serve as a practical guide
when an accurate model for correlations is unavailable.

We have also described a statistical approach to determining the structures that emerge,
in the form of modes from a particular POD problem. These structures also depend on
the initial correlations but were observed only to differ slightly from the standard output
modes of the evolution operator, which do not depend on the correlations. This indicates
that the output modes do a good job of capturing the energy of the growing disturbances
regardless of the correlation matrix. Nevertheless, they do not accurately predict the energy
of each structure, whereas the POD eigenvalues do.

We have discussed the statistical framework in the context of temporal stability, wherein
an initial disturbance at a particular time is assumed, then evolved forward in time without
further forcing to the linear dynamics. In spatial stability, a disturbance is introduced at a
particular streamwise location, and its growth is then calculated as it evolves downstream
as a function of the streamwise coordinate. Transient growth has been investigated in the
context of spatial stability (Hack & Moin 2017; Fava et al. 2022), and the framework
developed in this paper applies equally to spatial stability by exchanging t for x and the
linearized Navier–Stokes operator for a spatial evolution operator (Towne & Colonius
2015). Spatial stability may be an excellent application for two reasons. First, applied
to spatial stability, Gmean(x1) represents the ratio of turbulent intensities at x = x1 and
x = 0. Consider a laminar boundary layer excited at x = 0 by free-stream turbulence. The
turbulent intensity at various points along the boundary layer is critical for determining
where transition occurs, and its evolution in space is given by Gmean(x). In this context, we
have shown that the turbulent intensity depends not only on the input turbulent intensity,
encapsulated by the diagonal terms of the initial correlation matrix, but on the off-diagonal
terms as well. Second, the correlation matrix of the initial disturbances may be easier
to model physically in spatial stability than in temporal stability. In this case, incoming
turbulence is often the source of the disturbances and turbulent correlations have been
studied thoroughly. In the example of a boundary layer, the free-stream turbulence that
excites the leading edge may be modelled by the von Kármán spectrum (von Kármán
1948), which implies the correlations within the initial disturbances. Also, with such a
model for the initial correlation, the POD modes of the space-evolved correlation may
provide a better basis for the structures that arise downstream than the output modes of the
matrix exponential.

Declaration of interests. The authors report no conflict of interest.
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Peter Frame https://orcid.org/0000-0002-9919-1796;
Aaron Towne https://orcid.org/0000-0002-7315-5375.

Appendix A. Stochastic formulation and connection to resolvent analysis

The framework described in this paper operates within the physical model of transient
growth, wherein the linearized Navier–Stokes equations are impulsively perturbed by q0
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at t = 0 and are then left undisturbed. One may instead assess the importance of the
non-normality by assuming a stochastic forcing to the linearized Navier–Stokes equations,
rather than an impulsive one. The equations governing the disturbance are then

q̇(t) = Aq(t) + f (t), (A1)

where f (t) represents the stochastic forcing, which may come from, for example,
free-stream turbulence or vibrations in the channel. The degree to which non-normality
amplifies the forcing is captured by the ratio of expected disturbance energy to expected
forcing power

Γ mean = E[‖q(t)‖2]
E[‖ f (t)‖2]

. (A2)

To calculate Γ mean, it is useful to work in the frequency domain. It is well known that the
Fourier-transformed disturbance is then related to the Fourier-transformed forcing by

q̂(ω) = R(ω)f̂ (ω), (A3)

where R(ω) = (iωI − A)−1 is the resolvent. This equation has been studied extensively
(Trefethen et al. 1993; Farrell & Ioannou 1996; McKeon & Sharma 2010; McKeon 2017).
In the context of quantifying the non-normality, the quantities usually reported are the
first few singular values of R(ω), often maximized over frequency. The associated left
singular vector can indeed be remarkably useful for predicting structures that appear in
the flow (Sharma & McKeon 2013; Luhar, Sharma & McKeon 2014; Schmidt et al. 2018),
but entirely analogous to the optimal transient growth case, the singular values of the
resolvent operator overstate the degree to which real forcing is amplified. This occurs
because the real forcing will not exactly coincide with the right singular vector of the
resolvent operator, and it will not oscillate at exactly the optimal frequency.

By multiplying (A3) by its conjugate transpose and taking the expected value, the
cross-spectral density of the disturbance Sqq(ω) = E[q̂(ω)q̂∗(ω)] may be related to that
of the forcing Sff (ω) = E[ f̂ (ω)f̂ ∗(ω)] in terms of the resolvent as (Towne et al. 2018)

Sqq(ω) = R(ω)Sff (ω)R∗(ω). (A4)

This is useful for obtaining the expected disturbance energy because, as a consequence of
the Weiner–Khinchin theorem, the disturbance autocorrelation at zero time lag, Cqq(0) =
E[q(t)q∗(t + 0)], may be related to the disturbance cross-spectral density as

Cqq(0) = 1
2π

∫ ∞

−∞
Sqq(ω) dω. (A5)

The (weighted) trace of this correlation is the expected disturbance energy, E[‖q(t)‖2] =
Tr{LCqq(0)L∗}. Combining (A4) and (A5), Γ mean may be written as

Γ mean =

∫ ∞

−∞
Tr{LR(ω)Sff (ω)R∗(ω)L∗} dω∫ ∞

−∞
Tr{LSff (ω)L∗} dω

. (A6)

Modelling the forcing cross-spectral density Sff (ω) is equivalent to modelling the
space–time forcing correlation Cff (τ ) = E[ f (t)f ∗(t + τ)]. Thus, in order to quantify the
expected state energy, one must have knowledge of these spatio-temporal forcing statistics
(Towne, Brès & Lele 2017; Morra et al. 2020; Karban et al. 2023).
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Just as Gmean optimized over all initial disturbance correlations is Gopt, the
maximum of Γ mean over all Sff (ω) is the square of the first singular value of the
weighted resolvent, maximized over all frequencies, σ 2

1 (ωmax) = maxω σ 2
1 (ω). This occurs

when the cross-spectral density is (proportional to) the outer product of the right
singular vector of the weighted resolvent operator at that frequency, Sff (ω) = δ(ω −
ωmax)v1(ωmax)v

∗
1(ωmax).

The white-noise model proposed in Farrell & Ioannou (1993, 1994, 1996) and later
used by Fontane et al. (2008) may be recovered as the white-noise case of the stochastic
formulation presented above, i.e. where Sff is independent of ω. These works derive
E[‖q(t)‖2], i.e. Γ mean

E[‖ f (t)‖2], as the trace of the solution of a particular Lyapunov
equation, and it may also be derived using the numerator of (A6) with constant Sff . One
negative consequence of the white-noise model is that the forcing has infinite power,
i.e. E[‖ f (t)‖2] = ∞, but the expected energy of the disturbance remains finite. In the
same way that the spatial correlations are essential to calculating the degree of expected
transient growth, the spatio-temporal correlations are needed in calculating the degree of
stochastic forcing amplification.

Appendix B. Probability density function separability

If the distribution of the initial disturbance is separable in radius and direction

q(0) ∼ fq(0)(q0) = R(‖q0‖)Θ
(

q0

‖q0‖
)

, (B1)

the ratio of expected energies Gmean is equal to the expected ratio of energies

E[e(q(t))]
E[e(q(0))]

= E

[
e(q(t))
e(q(0))

]
. (B2)

This can be shown as follows. Assume, without loss of generality, that R and Θ are
scaled such that they both integrate to unity (with the appropriate measure). Defining
r2 ≡ q∗

0W q0 = ‖Lq0‖2 and θ ≡ q0/r, we write the left-hand side of (B2) in terms of the
distribution

E[e(q(t))]
E[e(q(0))]

=
∫ ∞

0
dr

∫
‖θ‖=1

R(r)Θ(θ)‖LM trθ‖2 dσ(θ)

/ ∫ ∞

0
dr

∫
‖θ‖=1

R(r)Θ(θ)r2 dσ(θ)

(B3)

=
∫ ∞

0
R(r)r2 dr

∫
‖θ‖=1

Θ(θ)‖LM tθ‖2 dσ(θ)

/∫ ∞

0
R(r)r2 dr

∫
‖θ‖=1

Θ(θ) dσ(θ)

(B4)

=
∫

‖θ‖=1
Θ(θ)‖LM tθ‖2 dσ(θ). (B5)
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Above, σ(θ) is the spherical measure. The right-hand side of (B2) can be written

E

[
e(q(t))
e(q(0))

]
=

∫ ∞

0
dr

∫
‖θ‖=1

R(r)Θ(θ)
‖LM trθ‖2

r2 dσ(θ) (B6)

=
∫ ∞

0
R(r)dr

∫
‖θ‖=1

Θ(θ)‖LM tθ‖2 dσ(θ) (B7)

=
∫

‖θ‖=1
Θ(θ)‖LM tθ‖2 dσ(θ), (B8)

so the two are equal and (B2) holds.
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