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Topological complexity naturally appears in the motion planning in robotics. In this
paper we consider the problem of finding topological complexity of real Grassmann
manifolds Gk(Rn). We use cohomology methods to give estimates on the zero-divisor
cup-length of Gk(Rn) for various 2 � k < n, which in turn give us lower bounds on
topological complexity. Our results correct and improve several results from Pavešić
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1. Introduction

For a path-connected space X we denote its topological complexity by TC(X). In
[9] the author considered the problem of finding TC(Gk(Rn)) for various 2 � k <
n (in this paper, Gk(Rn) denotes the real Grassmann manifold of k-dimensional
subspaces in Rn). Unfortunately, there is a problem with the proof of the main
lemma of that paper (lemma 4.4) and the consequential results on the topological
complexity (theorems 4.5, 4.8 and 4.12); see [10]. In this paper we reconsider this
problem, and as an outcome correct and improve several results from [9]. As in [9],
we use the cohomology method to obtain our results.

This paper closely follows and builds on the ideas presented in [9] (so, for back-
ground, motivation and all undefined notions, the reader is advised to consult [9]).
Throughout the paper we will use, as much as possible, the notation from [9]. In
particular, we will be working with the unreduced topological complexity, as defined
by Farber in [5] (e.g. by this definition the topological complexity of a contractible
space is equal to 1).

The paper is organized as follows. In § 2 we describe the cohomology method men-
tioned above and give an overview of the cohomology of real Grassmannians. In § 3
we consider the case k = 2. We obtain the exact value of the zero-divisor cup-length
of G2(R2s+1) (denoted by zcl(G2(R2s+1)), and defined in § 2) for s � 2; addition-
ally, for s � 3, 2s + 4 � n � 2s+1 we prove a lower bound for zcl(G2(Rn)). These
results show that the value of the zero-divisor cup-length given in [9, theorem 4.5]
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is not correct; what is more interesting, our results improve lower bounds for topo-
logical complexity stated in the same theorem. Section 4 is devoted to the case
k = 3. Separately, we prove lower bounds for zcl(G3(Rn)) in the cases n = 2s + 1
(for s � 3), and 2s + 3 � n � 2s+1 (for s � 2). The first result shows that the corre-
sponding result from [9, theorem 4.8] is not correct, and improves the stated lower
bound for topological complexity of G3(R2s+1) (for s � 5). In § 5 we give a general
lower bound for zcl(Gk(Rn)) (for k � 4). For k � 9 this result improves the bounds
stated in [9, theorem 4.10].

2. Background and notation

As mentioned in the Introduction, to obtain our results we use the so-called
cohomology method, which we now (briefly) explain.

Let Δ : X → X × X denote the diagonal map. Then the elements of

Ker(Δ∗ : H∗(X × X; Z2) → H∗(X; Z2))

are called zero-divisors. Furthermore, the zero-divisor cup-length of X, denoted
by zcl(X), is defined to be the maximum number of elements from Ker Δ∗ whose
product is non-zero. In [5], Farber proved that zcl(X) gives a lower bound for
TC(X), that is TC(X) � zcl(X) + 1. Hence, a lower bound for zcl(X) immediately
gives a lower bound for TC(X). Note that for every w ∈ H∗(X; Z2) the element

z(w) = w ⊗ 1 + 1 ⊗ w ∈ H∗(X × X; Z2)

is in Ker Δ∗ (since Δ∗(z(w)) = w · 1 + 1 · w = 0). Then, by [2, lemma 5.2], Ker Δ∗ is
generated as an ideal by these elements, that is by the set {z(w) : w ∈ H∗(X; Z2)}.
So, if zcl(X) = t, then there are classes x1, x2, . . . , xt ∈ H∗(X; Z2) such that
z(x1)z(x2) · · · z(xt) �= 0.

To get the best possible results on TC(Gk(Rn)) using the cohomology method,
one requires fine understanding of the cohomology algebra H∗(Gk(Rn); Z2). There
are several ways to describe this algebra; in this paper we will use the one due to
Borel (see [1]):

H∗(Gk(Rn); Z2) ∼= Z2[w1, w2, . . . , wk]/Ik,n,

where w1, w2, . . . , wk are the Stiefel–Whitney classes of the canonical k-
dimensional vector bundle over Gk(Rn), and Ik,n = (wn−k+1, wn−k+2, . . . , wn) is
the ideal generated by dual classes.

Although Borel’s description of H∗(Gk(Rn); Z2) appears simple enough, it turns
out that performing concrete calculations in this algebra can be rather diffi-
cult. Hence, one usually needs to apply some additional methods and properties
of H∗(Gk(Rn); Z2). The following result gives an additive basis for this algebra
(see, e.g. [7, 11]).

Proposition 2.1. The set Bk,n−k = {wa1
1 · · ·wak

k : 0 � a1 + · · · + ak � n − k} is
an additive basis for H∗(Gk(Rn); Z2).

The height of a class c ∈ H̃∗(X; Z2), denoted by ht(c), is the largest m ∈ N such
that cm �= 0. For k � 2, the height of w1 ∈ H∗(Gk(Rn); Z2) is obtained by Stong in
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[12]: if 2 � k � n − k and s is the unique positive integer such that 2s < n � 2s+1,
then

ht(w1) =
{

2s+1 − 2, if k = 2 or (k, n) = (3, 2s + 1),
2s+1 − 1, otherwise. (2.1)

In this paper we will often use Stong’s method from [12] for calculations in
H∗(Gk(Rn); Z2) (later this method was generalized by Korbaš and Lörinc to all
flag manifolds, see [8]). In what follows we briefly explain this method.

Let Flag(Rn) denote the (real) complete flag manifold (n � 2). Denote by ei :=
w1(γi) the first Stiefel–Whitney class of the canonical line bundle γi over Flag(Rn),
for 1 � i � n. Then we have the map π : Flag(Rn) → Gk(Rn), given by

π(S1, . . . , Sk, Sk+1, . . . , Sn) = (S1 ⊕ · · · ⊕ Sk, Sk+1 ⊕ · · · ⊕ Sn).

The following result will be very useful for our calculations in H∗(Gk(Rn); Z2) (and
H∗(Flag(Rn); Z2)).

Proposition 2.2.

(1) The set Bn = {ea1
1 ea2

2 · · · ean−1
n−1 : 0 � ai � n − i} is an additive basis for

H∗(Flag(Rn); Z2).

(2) ht(ei) = n − 1 for 1 � i � n. In particular en
i = 0 for 1 � i � n.

(3) A monomial ea1
1 ea2

2 · · · ean
n ∈ H(n

2)(Flag(Rn); Z2) is non-zero if and only if
(a1, a2, . . . , an) is a permutation of the n-tuple (n − 1, n − 2, . . . , 1, 0).

(4) If u ∈ H∗(Gk(Rn); Z2) and

v = ek−1
1 ek−2

2 · · · ek−1 · en−k−1
k+1 en−k−2

k+2 · · · en−1 ∈ H∗(Flag(Rn); Z2),

then π∗(u) · v ∈ H∗(Flag(Rn); Z2), and u �= 0 if and only if π∗(u) · v �= 0.

(5) For 1 � i � k, π∗(wi) is the i-th elementary symmetric polynomial in the
variables e1, e2, . . . , ek.

Heights of the classes z(w1) and z(wk) will be very useful in our calculations. In
what follows we determine these values.

It turns out that if ht(w) is known, then ht(z(w)) can easily be calculated. This
is proven in lemma 4.3 from [9]. Namely, one has: if w ∈ H∗(X; Z2) and t is the
unique non-negative integer such that 2t � ht(w) < 2t+1, then

ht(z(w)) = 2t+1 − 1. (2.2)

We will apply this identity for X = Gk(Rn), when 2 � k � n − k. If 2s < n �
2s+1, then (2.1) implies

ht(z(w1)) = 2s+1 − 1. (2.3)

On the other hand, proposition 2.1 implies wn−k
k �= 0, so ht(wk) = n − k (by observ-

ing dimension we conclude that wn−k+1
k = 0). Hence, if t is the unique non-negative
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integer such that 2t � n − k < 2t+1, then (2.2) implies

ht(z(wk)) = 2t+1 − 1. (2.4)

The following lemma will be particularly useful in § 3.

Lemma 2.3. Let m, k, n ∈ N, k < n, and d1, . . . , dm ∈ N be such that d1 + · · · +
dm � 2k(n − k). If xi ∈ Hdi(Gk(Rn); Z2) for 1 � i � m, then

z(x1) · · · z(xm) = 0.

Proof. Note that the product p = z(x1) · · · z(xm) is the sum of certain classes of the
form x ⊗ y + y ⊗ x, for some x, y ∈ H∗(Gk(Rn); Z2). Since p is in dimension at least
2k(n − k) = 2 dim Gk(Rn), so is x ⊗ y, and hence x, y ∈ Hk(n−k)(Gk(Rn); Z2) or
x ⊗ y = y ⊗ x = 0. There is only one non-zero class in Hk(n−k)(Gk(Rn); Z2), namely
wn−k

k (by proposition 2.1), and hence x ⊗ y = y ⊗ x = 0 or x ⊗ y = wn−k
k ⊗ wn−k

k =
y ⊗ x. In both cases x ⊗ y + y ⊗ x = 0, which implies p = 0. �

Also, we recall some results from [9] that will be used in our calculations.

Lemma 2.4.

(a) If 2s < n � 2s+1, then w2s

1 wn−2s−1
2 �= 0 and w2s

1 wn−2s

2 = 0 in H∗(G2(Rn); Z2).

(b) If 2s + 3 � n � 2s+1 and t = n − 2s, then w2s

1 w2s

2 wt−3
3 �= 0 in H∗(G3(Rn); Z2).

Throughout the paper we use the same notation as in this section.
Finally, let us say a few words on lemma 4.4 from [9] and our strategy that

bypasses the application of this lemma. In lemma 4.4 from [9] the author assumes
that u1, . . . , un ∈ H∗(X; Z2) and k1, . . . , kn ∈ N are such that uk1

1 · · ·ukn
n �= 0, and

wants to prove that A = z(u1)2
r1−1 · · · z(un)2

rn−1 �= 0, where ri is the unique inte-
ger such that 2ri−1 � ki < 2ri for 1 � i � n. For this he notices that after expanding
A one summand is uk1

1 · · ·ukn
n ⊗ u2r1−k1−1

1 · · ·u2rn−kn−1
n , which is nonzero, and from

this immediately concludes that A �= 0. As we will see in the proofs of our results,
the problem is that the set

S = {(l1, . . . , ln) : 0 � li � 2ri − 1, ul1
1 · · ·uln

n = uk1
1 · · ·ukn

n }

can contain more than one element, and hence that the corresponding summands
of A with the first coordinate equal to uk1

1 · · ·ukn
n may cancel out. So, in our proofs

we choose the n-tuple (k1, . . . , kn) a bit more carefully to ensure that∑
(l1,...,ln)∈S

u2r1−l1−1
1 · · ·u2rn−ln−1

n �= 0

and that this further leads to A �= 0 (note: in our applications the degree of z(ui)
in A will not always be 2ri − 1, so we will have slightly different formulas than the
one given above).
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3. Zero-divisor cup-length of G2(Rn)

Let s be the unique integer such that 2s < n � 2s+1. In this section we con-
sider zcl(G2(Rn)). We note that propositions 3.7 and 3.10, that we prove in this
section, show that the corresponding results of [9, theorem 4.5] are not correct
(see also remark 3.9). Fortunately, correct versions give better lower bounds for the
topological complexity of G2(Rn).

We will compare our results with the following upper bound from [9] (this result
is a consequence of a general result from [3, theorem 1]).

Proposition 3.1. If 1 � k < n, then TC(Gk(Rn)) � 2k(n − k). In fact, if k �= 1
and (k, n) �= (2, 2d + 1) for all d ∈ N, then TC(Gk(Rn)) � 2k(n − k) − 1.

3.1. Preliminary lemmas

Let n be a positive integer and n =
∑t

i=0 αi · 2i, where αi ∈ {0, 1} for 0 � i � t
and αt = 1, its representation in base 2. Then we write n := (αt, . . . , α1, α0)2.

As we use Z2 coefficient the following special case of Lucas’ theorem will be
particularly useful to us: if n := (αt, . . . , α1, α0)2 and m := (βr, . . . , β1, β0)2, then(

n

m

)
≡ 1 (mod 2) if and only if t � r and αi � βi for 0 � i � r.

We will use the following two consequences of Lucas’ theorem throughout the paper.
Let w ∈ H∗(X; Z2). By Lucas’ theorem,

(
2m

i

)
is even for 1 � i � 2m − 1, and so

z(w)2
m

= (w ⊗ 1 + 1 ⊗ w)2
m

= w2m ⊗ 1 + 1 ⊗ w2m

.

On the other hand, by Lucas’ theorem
(
2m−1

i

)
is odd for all 0 � i � 2m − 1, and

hence

z(w)2
m−1 = (w ⊗ 1 + 1 ⊗ w)2

m−1 =
2m−1∑
i=0

wi ⊗ w2m−1−i.

We will also need the following result.

Lemma 3.2. Let n be a non-negative integer. Then:

(a)
(
2n
n

)
is odd if and only if n = 0;

(b)
(

2n
n+1

)
is odd if and only if n = 2t+1 − 1 for some t ∈ N0.

Proof. Part (a) immediately follows from Lucas’ theorem.
For part (b) we note that Cn =

(
2n
n

)− ( 2n
n+1

)
is the n-th Catalan number. Then

the result follows from part (a) and the fact that Cn (for n � 1) is odd if and only
if n = 2t+1 − 1 for some t ∈ N0 (see [4]). �

Lemma 3.3. Let 0 � m � n − 2 and α0, α1, . . . , αn−1−m ∈ Z2. Then:

(a)
∑n−1−m

i=0 αie
m+i
1 en−1−i

2 = 0 in H∗(Flag(Rn); Z2) iff α0 = α1 = · · · = αn−1−m;
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(b) for a polynomial p ∈ H∗(Flag(Rn); Z2) in classes e1 and e2 one has

p · en−3
3 en−4

4 · · · en−1 = 0 in H∗(Flag(Rn); Z2)

if and only if p = 0 in H∗(Flag(Rn); Z2).

Proof. (a) By proposition 2.1 from [6] we have en−1
2 = en−1

1 + en−2
1 e2 + · · · +

e1e
n−2
2 (we use this proposition for m = 1, k = n − 1 and i = n − 2). Since

en
1 = 0 (by proposition 2.2(2)), we have

n−1−m∑
i=0

αie
m+i
1 en−1−i

2 =
n−1−m∑

i=1

(αi + α0)em+i
1 en−1−i

2 .

Since em+1
1 en−2

2 , em+2
1 en−3

2 , . . . , en−1
1 em

2 are in the additive basis Bn (from
proposition 2.2(1)), the last sum is zero if and only if α1 + α0 = α2 + α0 =
· · · = αn−1−m + α0 = 0, i.e. if and only if α0 = α1 = · · · = αn−1−m.

(b) As in part (a) we use the identities en−1
2 = en−1

1 + en−2
1 e2 + · · · + e1e

n−2
2

and en
1 = en

2 = 0 to express p in the form
∑

αi,je
i
1e

j
2, where αi,j ∈

{0, 1}, 0 � i � n − 1 and 0 � j � n − 2. Then
∑

αi,je
i
1e

j
2e

n−3
3 en−4

4 · · · en−1

(= pen−3
3 en−4

4 · · · en−1) is a sum of the elements from the basis Bn from propo-
sition 2.2(1); so this sum is zero if and only if αij = 0 for all i, j, i.e. if and
only if p = 0 (since p is also represented in the basis Bn).

�

Remark 3.4. We will use the following consequence of part a) of this lemma. Let
p =

∑b−a
i=0 αie

a+i
1 eb−i

2 ∈ Ha+b(Flag(Rn); Z2) for some 0 � a � n − 2, a � b � n − 1.
If there exist 0 � i′ �= i′′ � b − a such that αi′ = 0 and αi′′ = 1, then p �= 0.

Furthermore, if q ∈ Hc(Flag(Rn); Z2), where c � 2n − 3, is written as a sum of
some monomials of the form ei

1e
j
2, then after removing all summands with i � n or

j � n (since they are 0 by proposition 2.2(2)), we get that q is written in the same
way as p above.

Lemma 3.5. If 2s < n � 2s+1 and a, b ∈ N0 are such that a + 2b = 2(n − 2), then
wa

1wb
2 �= 0 in H2n−4(G2(Rn); Z2) if and only if

(a, b) = (2l+1 − 2, n − 2l − 1) for some 0 � l � s.

Proof. By proposition 2.2(4), wa
1wb

2 �= 0 in H2n−4(G2(Rn); Z2) if and only if

π∗(wa
1wb

2)e1e
n−3
3 · · · en−1 = (e1 + e2)a(e1e2)be1e

n−3
3 · · · en−1 �= 0

in H∗(Flag(Rn); Z2). After expanding we have

(e1 + e2)a(e1e2)be1e
n−3
3 · · · en−1 = en−3

3 · · · en−1

a∑
i=0

(
a

i

)
ei+1+b
1 ea−i+b

2 .

Note that by proposition 2.2(3) the only non-zero monomials in this sum are the
ones for i that satisfies (i + 1 + b, a − i + b) ∈ {(n − 1, n − 2), (n − 2, n − 1)} and(
a
i

)
is odd, i.e. i ∈ {n − 2 − b, n − 3 − b} and

(
a
i

)
is odd.
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If i = n − 2 − b, then
(
a
i

)
=
(
2(n−2−b)

n−2−b

)
=
(
2m
m

)
(here 2m = 2(n − 2 − b) = a). By

lemma 3.2 this number is odd only if m = 0, i.e. (a, b) = (0, n − 2).
Let us now consider the case i = n − 3 − b. Then

(
a
i

)
=
(
2(n−2−b)

n−3−b

)
=
(

2m
m−1

)
=(

2m
m+1

)
(again 2m = 2(n − 2 − b) = a). By lemma 3.2 this number is odd if and

only if m = 2l − 1 for some l � 1. Then a = 2l+1 − 2 and b = n − 2l − 1 � 0, which
completes our proof. �

Remark 3.6. If wa
1wb

2 �= 0 and a + 2b = 2(n − 2), then, by proposition 2.1, wa
1wb

2 =
wn−2

2 (since wn−2
2 is the only non-zero class in H2(n−2)(G2(Rn); Z2)).

3.2. Some exact values

In this section we calculate zcl(G2(Rn)) for n = 2s + 1.
In the proof of the main result we will use the following observation. Let n � 4.

Then, by proposition 2.1, every class in H1(G2(Rn); Z2) is of the form αw1, α ∈ Z2,
while every class in H2(G2(Rn); Z2) is of the form βw2

1 + γw2, β, γ ∈ Z2. Since
z(w2

1) = z(w1)2, we conclude: if zcl(G2(Rn)) = t, then there are a, b, c ∈ N0 such
that z(w1)az(w2)bz(x1) · · · z(xc) �= 0, where a + b + c = t and x1, . . . , xc are some
classes of H∗(G2(Rn); Z2) each in dimension at least 3.

Proposition 3.7. For s � 2 and n = 2s + 1 one has

zcl(G2(Rn)) = 2s+1 + 2s − 4 and TC(G2(Rn)) � 2s+1 + 2s − 3.

Proof. First, we prove that z(w1)2
s+1−1z(w2)2

s−3 �= 0. After expanding, we consider
all summands of the form wn−2

2 ⊗ x, for some x ∈ H∗(G2(Rn); Z2). By lemma 3.5
each such summand is of the form w2l+1−2

1 w2s−2l

2 ⊗ w2s+1−2l+1+1
1 w2l−3

2 (for l � 2)
with coefficient

(
2s+1−1
2l+1−2

)(
2s−3
2s−2l

)
. By Lucas’ theorem each of these binomial coeffi-

cients is odd, so z(w1)2
s+1−1z(w2)2

s−3 contains wn−2
2 ⊗∑s

l=2 w2s+1−2l+1+1
1 w2l−3

2 .
Since wn−2

2 is the only non-zero class in H2(n−2)(G2(Rn); Z2) (by proposition 2.1),
it is enough to prove

∑s
l=2 w2s+1−2l+1+1

1 w2l−3
2 �= 0 (in H∗(G2(R2s+1); Z2)).

Note that by lemma 2.4, w2s

1 w2 = 0, and so w2s+1−2l+1+1
1 w2l−3

2 = 0 for 2 � l �
s − 1. Hence, it is enough to prove that w1w

2s−3
2 = w1w

n−4
2 �= 0, which follows

from the fact that w1w
n−4
2 is in the additive basis B2,n−2 (proposition 2.1). So,

zcl(G2(R2s+1)) � 2s+1 + 2s − 4.
Let us now prove that zcl(G2(R2s+1)) � 2s+1 + 2s − 4. Suppose that this is

not the case and let a, b, c ∈ N0 and x1, . . . , xc ∈ H∗(G2(R2s+1); Z2) be some
classes each in dimension at least 3, such that a + b + c � 2s+1 + 2s − 3 and
z(w1)az(w2)bz(x1) · · · z(xc) �= 0. By lemma 2.3, we have a + 2b + 3c � 4(2s − 1) −
1 = 2s+2 − 5, and hence b + 2c � 2s − 2. Furthermore, since z(w1)2

s+1
= 0 (by

(2.3)), we have a � 2s+1 − 1 and hence b + c = (a + b + c) − a � 2s − 2. This
implies b = 2s − 2 and c = 0. Finally, a + b + c � 2s+1 + 2s − 3 and a � 2s+1 − 1
imply a = 2s+1 − 1.

So, it is enough to prove A = z(w1)2
s+1−1z(w2)2

s−2 = 0. Suppose that this is not
the case. Note that the dimension of A is 2s+1 − 1 + 2(2s − 2) = 4(n − 2) − 1, so
every summand of A is of the form x′ ⊗ x′′ where one of the classes x′ and x′′
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has dimension 2(n − 2) and the other 2(n − 2) − 1. Note that, by proposition 2.1,
the only class in H∗(G2(Rn); Z2) of dimension 2(n − 2) (resp. 2(n − 2) − 1) is
wn−2

2 (resp. w1w
n−3
2 ). By symmetry, this and A �= 0 imply A = wn−2

2 ⊗ w1w
n−3
2 +

w1w
n−3
2 ⊗ wn−2

2 . Now, we proceed as in the first part of the proof to prove that the
coefficient of wn−2

2 ⊗ w1w
n−3
2 in A is zero. By lemma 3.5 each such summand in

A = z(w1)2
s+1−1z(w2)2

s−2 is of the form w2l+1−2
1 w2s−2l

2 ⊗ w2s+1−2l+1+1
1 w2l−2

2 (for
some 1 � l � s) with coefficient

(
2s+1−1
2l+1−2

)(
2s−2
2s−2l

)
. By Lucas’ theorem this coefficient

is 1, so it is enough to prove
∑s

l=1 w2s+1−2l+1+1
1 w2l−2

2 = 0.
Again, by lemma 2.4, w2s

1 w2 = 0, so w2s+1−2l+1+1
1 w2l−2

2 = 0 for 2 � l � s − 1.
Hence, the previous sum is equal to w2s+1−3

1 + w1w
2s−2
2 . By (2.1), w2s+1−3

1 �= 0, so
w2s+1−3

1 = w1w
n−3
2 = w1w

2s−2
2 , and hence A = 0. �

Remark 3.8. By proposition 3.1, TC(G2(R2s+1)) � 2s+2 − 4, so there is a gap of
2s − 1 between our lower bound and this bound. For example, 9 � TC(G2(R5))
� 12.

Remark 3.9. Ideas from this paper can be used to prove the following:

(1) If s � 1, then zcl(G2(R2s+2)) = 3 · 2s − 2 (one has z(w1)2
s+1−2z(w2)2

s �= 0).
So, by proposition 3.1, 3 · 2s − 1 � TC(G2(R2s+2)) � 2s+2 − 1.

(2) If s � 2, then zcl(G2(R2s+3)) = 3 · 2s (one has z(w1)2
s+1−1z(w2)2

s+1 �= 0).
So, by proposition 3.1, 3 · 2s + 1 � TC(G2(R2s+3)) � 2s+2 + 3.

Complete proofs of these results can be found in the extended version of this paper
which is available on the author’s website.

3.3. General bounds for zcl(G2(Rn))

Let 2s + 4 � n � 2s+1 and t = n − 2s. Also, we assume s � 3 (i.e. n �= 8). Further-
more, let r be the unique integer such that 2r−1 < t � 2r. Since t � 4, we have
r � 2. Let j be the smallest positive integer such that the digit on position j in
the binary representation of t − 2 is equal to 1 (j is well-defined since t − 2 � 2);
in other words, t − 2 has the binary representation of the following form

t − 2 = 2m + αm−12m−1 + · · · + αj+12j+1 + 2j + α0,

for some α0, αj+1, αj+2, . . . , αm−1 ∈ {0, 1} and 1 � j � m. Since 2m � t − 2 �
2r − 2 � 2s − 2, we additionally have 1 � j � m < r � s.

Proposition 3.10. If n, s, t, r and j are as above, then

zcl(G2(Rn)) � 2s+1 + 2s + 2r − ε − 2

and TC(G2(Rn)) � 2s+1 + 2s + 2r − ε − 1, where ε =
{

2j , if t is even
2j+1, otherwise.

Proof. It is enough to prove that z(w1)2
s+1−1z(w2)2

s+2r−ε−1 �= 0. After expanding,
we consider all summands of the form wn−2

2 ⊗ x, for some x ∈ H∗(G2(Rn); Z2).
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By lemma 3.5 each such summand is of the form w2l+1−2
1 w2s+t−2l−1

2 ⊗
w2s+1−2l+1+1

1 w2r+2l−ε−t
2 , 0 � l � s, with coefficient αl =

(
2s+1−1
2l+1−2

)(
2s+2r−ε−1
2s+t−2l−1

)
=(

2s+2r−ε−1
2s+t−2l−1

)
. (Note: if 2r + 2l − ε − t < 0, then 2s + 2r − ε − 1 < 2s + t − 2l − 1

and hence αl = 0, so there is no need to discard summands αlw
2l+1−2
1 w2s+t−2l−1

2 ⊗
w2s+1−2l+1+1

1 w2r+2l−ε−t
2 when 2r + 2l − ε − t < 0.) Since wn−2

2 is the only non-zero
class in H2(n−2)(G2(Rn); Z2) (by proposition 2.1), it is enough to prove

A =
s∑

l=0

αlw
2s+1−2l+1+1
1 w2r+2l−ε−t

2 �= 0 in H∗(G2(Rn); Z2).

Let us first consider the case when t is even. Then ε = 2j . Note that 2s + 2r − 2j −
1 = 2s + 2r−1 + 2r−2 + · · · + 2j+1 + 2j−1 + 2j−2 + · · · + 1 (j < r). So, by Lucas’
theorem, α0 and αs are even (since both 2s + t − 2 and t − 1 have digit 1 on the
j-th position in the binary representation), while αj is odd (since 2s + t − 1 − 2j

has digit 0 on the j-th position in the binary representation).
Let us denote τ = 2r − 2j − t. Note that t − 2 + 2j � 2r, i.e. τ � −2. By

proposition 2.2.(4), A �= 0 if and only if

s∑
l=0

αl(e1 + e2)2
s+1−2l+1+1(e1e2)2

l+τ · e1 · en−3
3 en−4

4 · · · en−1 �= 0,

and, by part (b) of lemma 3.3, if and only if

p1 =
s∑

l=0

αl(e1 + e2)2
s+1−2l+1+1(e1e2)2

l+τ · e1 �= 0.

To prove that p1 �= 0 we will use remark 3.4, i.e. we write p1 as in remark 3.4 and
find suitable indices i′ and i′′ (as in that remark). We denote

q1 =
s∑

l=0

αl(e1 + e2)2
s+1−2l+1

(e1e2)2
l+τ =

s∑
l=0

αl(e2l+1

1 + e2l+1

2 )2
s−l−1(e1e2)2

l+τ

=
s∑

l=0

αl

2s−l−1∑
i=0

ei·2l+1+2l+τ
1 e

(2s−l−1−i)·2l+1+2l+τ
2 .

Let us observe a monomial ea
1eb

2 that appears in the inner sum for l. Then
a + b = 2s+1 + 2τ and a − b = (2i + 1 − 2s−l)2l+1, i.e. 2l+1 ‖ a − b for s �= l (i.e.
2l+1 | a − b and 2l+2 � a − b) and a = b for s = l; so, ea

1eb
2 appears only once in q1

and its coefficient is αl. Now, since αs is even this implies that the coefficient of
(e1e2)2

s+τ in q1 is 0, and since α0 is even that the coefficients of e2s+τ−1
1 e2s+τ+1

2 and
e2s+τ+2j−1
1 e2s+τ−2j+1

2 in q1 are 0. On the other hand, since αj is odd the coefficient
of e2s+τ+2j

1 e2s+τ−2j

2 in q1 is 1.
Now, we expand p1 = (e2

1 + e1e2)q1. Note that the degree of each monomial
in p1 is 2s+1 + 2τ + 2 = 2s+1 + 2r+1 − 2t − 2j+1 + 2 � 2s+1 + 4(t − 1) − 2t − 2 =
2n − 6, and hence, after removing all monomials of the form ea

1eb
2 when a � n or
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b � n, we get p1 written as in remark 3.4. Let us observe a monomial ea
1eb

2 in p1.
By the previous identity, its coefficient is the sum of coefficients of ea−2

1 eb
2 and

ea−1
1 eb−1

2 in q1. So, the coefficient of (e1e2)2
s+τ+1 is 0, while the coefficient of

e2s+τ+2j+1
1 e2s+τ−2j+1

2 is 1. Since 2s + τ + 2j + 1 = 2s + 2r − t + 1 � 2s + t − 1 =
n − 1, the degrees of e1 and e2 in these monomials are less than n, so we can apply
lemma 3.3 and remark 3.4 to conclude p1 �= 0.

Finally, we consider the case when t is odd. Then ε = 2j + 1. Note that 2s +
2r − 2j − 2 = 2s + 2r−1 + 2r−2 + · · · + 2j+1 + 2j−1 + 2j−2 + · · · + 2, while t − 2 =
2j+1t′ + 2j + 1 < 2r � 2s for some t′ � 0. So, by Lucas’ theorem, we have that
α0 =

(
2s+2r−2j−2

2s+2j+1t′+2j+1

)
and α1 =

(
2s+2r−2j−2
2s+2j+1t′+2j

)
are even, while

α2 =
(

2s + 2r − 2j − 2
2s + t − 5

)
=
(

2s + 2r−1 + · · · + 2j+1 + 2j−1 + · · · + 2
2s + 2j+1t′ + 2j−1 + 2j−2 + · · · + 2

)
is odd.

Let us denote θ = 2r − 2j − t − 1. Note that 2j + t − 2 � 2r + 1, i.e. θ � −4. By
proposition 2.2.(4), A �= 0 if and only if

s∑
l=0

αl(e1 + e2)2
s+1−2l+1+1(e1e2)2

l+θ · e1 · en−3
3 en−4

4 . . . en−1 �= 0,

and, by lemma 3.3(b), if and only if p2 =
∑s

l=0 αl(e1 + e2)2
s+1−2l+1+1(e1e2)2

l+θe1

is non-zero. Let us denote

q2 =
s∑

l=0

αl(e1 + e2)2
s+1−2l+1

(e1e2)2
l+θ =

s∑
l=0

αl(e2l+1

1 + e2l+1

2 )2
s−l−1(e1e2)2

l+θ.

Now, as in the previous part of the proof we conclude: the coefficients of
e2s+θ−1
1 e2s+θ+1

2 , e2s+θ−2
1 e2s+θ+2

2 and e2s+θ−3
1 e2s+θ+3

2 in q2 are 0 (since α0 and α1

are even); the coefficient of e2s+θ−4
1 e2s+θ+4

2 in q2 is 1 (since α2 is odd). So, in
the polynomial p2 = (e2

1 + e1e2)q2 the coefficient of e2s+θ
1 e2s+θ+2

2 is 0, while the
coefficient of e2s+θ−2

1 e2s+θ+4
2 is 1. Since the total degree of each monomial of p2

is 2s+1 + 2θ + 2 = 2s+1 + 2r+1 − 2j+1 − 2t � 2s+1 + 4t − 8 − 2t = 2n − 8 and 2s +
θ + 4 = 2s + 2r − 2j − t + 3 � 2s + 2r − t + 1 � 2s + t − 1 = n − 1, we can apply
lemma 3.3 and remark 3.4 to conclude p2 �= 0. �

4. Zero-divisor cup-length of G3(Rn)

Let s be the unique integer such that 2s < n � 2s+1. In this section we give some
bounds for zcl(G3(Rn)).

In the following proposition we consider the case n = 2s + 1. This result will show
that the corresponding result of [9, theorem 4.8] is not correct (see also remark 4.2).
Fortunately, this proposition gives a better lower bound for topological complexity.

Proposition 4.1. Let n = 2s + 1, where s � 3. Then

zcl(G3(Rn)) � 2s+1 + 2s + 2s−2 − 7 and TC(G3(Rn)) � 2s+1 + 2s + 2s−2 − 6.
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Proof. It is enough to show A = z(w1)2
s+1−1z(w2)2

s−1+2s−2−2z(w3)2
s−1−4 �= 0.

First, we prove that w2s

1 w3 = 0. By proposition 2.2, this follows from

p3 = π∗(w2s

1 w3)e2
1e2e

n−4
4 · · · en−1

= (e1 + e2 + e3)2
s

(e1e2e3)e2
1e2e

n−4
4 · · · en−1

= (e2s+3
1 e2

2e3 + e3
1e

2s+2
2 e3 + e3

1e
2
2e

2s+1
3 )en−4

4 · · · en−1 = 0.

Since w2s

1 w3 = 0, we have

A = z(w1)2
s−1z(w2)2

s−1+2s−2−2z(w2s

1 )z(w3)2
s−1−4

= z(w1)2
s−1z(w2)2

s−1+2s−2−2(w2s

1 ⊗ w2s−1−4
3 + w2s−1−4

3 ⊗ w2s

1 ).

Let us observe all classes of the form wn−3
3 ⊗ x for some x ∈ H∗(G3(Rn); Z2)

after expanding the expression for A; since wn−3
3 is the only non-zero class in

H3(n−3)(G3(Rn); Z2) (by proposition 2.1), to prove that A is non-zero it is enough
to show that the sum of all such x is non-zero. To do so, we determine all
monomials x′ and x′′ in classes w1 and w2, such that w2s

1 x′ = wn−3
3 = w2s−2

3 and
w2s−1−4

3 x′′ = w2s−2
3 .

Let x′ = wa
1wb

2 be such that w2s+a
1 wb

2 = w2s−2
3 . Then a + 2b = 2(2s − 3). We use

proposition 2.2:

p1 = π∗(w2s+a
1 wb

2)e
2
1e2e

n−4
4 · · · en−1

= (e2s

1 + e2s

2 + e2s

3 )(e1 + e2 + e3)a(e1e2 + e2e3 + e3e1)be2
1e2e

n−4
4 · · · en−1

= e2s

3 (e1 + e2)a(e1e2)b+1e1e
n−4
4 · · · en−1

= e2s

3

a∑
i=0

(
a

i

)
ei+b+2
1 ea−i+b+1

2 · en−4
4 · · · en−1.

Note that by proposition 2.2(3) the only non-zero monomials in this sum are the
ones for i that satisfies (i + b + 2, a − i + b + 1) ∈ {(2s − 1, 2s − 2), (2s − 2, 2s −
1)} and

(
a
i

)
is odd, i.e. i ∈ {2s − 3 − b, 2s − 4 − b} and

(
a
i

)
is odd.

If i = 2s − 3 − b, then
(
a
i

)
=
(
2(2s−3−b)
2s−3−b

)
=
(
2δ
δ

)
(here 2δ = 2(2s − 3 − b) = a). By

lemma 3.2, this number is odd only if δ = 0, i.e. (a, b) = (0, 2s − 3). Let us now
consider the case i = 2s − 4 − b. Then

(
a
i

)
=
(
2(2s−3−b)
2s−4−b

)
=
(

2δ
δ−1

)
=
(

2δ
δ+1

)
. Again,

by lemma 3.2, this number is odd only if δ = 2l − 1, and hence a = 2l+1 − 2 and
b = 2s − 2l − 2 for some 1 � l � s − 1.

Let us now go back to our expression for A. Here we only consider pairs (a, b)
that satisfy a � 2s − 1 and b � 2s−1 + 2s−2 − 2; hence b = 2s − 2l − 2 only if l ∈
{s − 2, s − 1}, so we have two pairs to consider: (a, b) ∈ {(2s−1 − 2, 2s−1 + 2s−2 −
2), (2s − 2, 2s−1 − 2)} = P .

Next, let x′′ = wa′
1 wb′

2 be such that wa′
1 wb′

2 w2s−1−4
3 = w2s−2

3 . We denote the set of
all such pairs (a′, b′) with P ′. Clearly, if (a′, b′) ∈ P ′, then a′ + 2b′ = 3(2s−1 + 2),
and hence a′ + b′ � 3(2s−2 + 1); also, by observing A, it is clear that a′ � 2s − 1.
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Now, to prove that A is non-zero, it is enough to prove that B is non-zero, where
B is equal to∑

(a,b)∈P

w2s−1−a
1 w2s−1+2s−2−2−b

2 w2s−1−4
3 +

∑
(a′,b′)∈P ′

w2s+2s−1−a′
1 w2s−1+2s−2−2−b′

2 .

By proposition 2.2.(4), this is equivalent to p = π∗(B)e2
1e2e

n−4
4 · · · en−1 �= 0. In what

follows we will be working with the additive basis

B̃2s+1 = {ea1
1 ea2

2 · · · ea2s

2s | a1 � 2s − 1, a2 � 2s − 2, a3 � 2s, ai � 2s + 1 − i, i � 4}
for H∗(Flag(Rn); Z2), given by proposition 2.2(1) and the canonical homeomor-
phism σ : Flag(Rn) → Flag(Rn) defined by

σ(L1, L2, L3, L4, L5, . . . , Ln) = (L3, L1, L2, L4, L5, . . . , Ln).

Let d3,n−3 = e2
1e2e

n−4
4 · · · en−1. Then

p2 = π∗

⎛⎝ ∑
(a,b)∈P

w2s−1−a
1 w2s−1+2s−2−2−b

2 w2s−1−4
3

⎞⎠ d3,n−3

= π∗(w2s−1+1
1 w2s−1−4

3 + w1w
2s−2

2 w2s−1−4
3 )d3,n−3

= ((e1 + e2 + e3)2
s−1

+ (e1e2 + e2e3 + e3e1)2
s−2

)

· (e1 + e2 + e3)(e1e2e3)2
s−1−4d3,n−3.

Note that the monomials of p2 belong to B̃2s+1; indeed, the degree of e1 in each
monomial is at most 2s−1 + 1 + 2s−1 − 4 + 2 = 2s − 1, the degree of e2 is at most
2s−1 + 1 + 2s−1 − 4 + 1 = 2s − 2, and the degree of e3 is at most 2s−1 + 1 + 2s−1 −
4 = 2s − 3. In particular, each monomial of p2 is not divisible by e2s

3 . Finally, p2 �= 0
since e2s−1

1 e2s−1−3
2 e2s−1−4

3 en−4
4 · · · en−1 has coefficient 1 in p2.

On the other hand,

p3 = π∗

⎛⎝ ∑
(a′,b′)∈P ′

w2s+2s−1−a′
1 w2s−1+2s−2−2−b′

2

⎞⎠ d3,n−3

=
∑

(a′,b′)∈P ′
(e2s

1 + e2s

2 + e2s

3 )(e1 + e2 + e3)2
s−1−a′

· (e1e2 + e2e3 + e3e1)2
s−1+2s−2−2−b′d3,n−3

=
∑

(a′,b′)∈P ′
e2s

3 (e1 + e2)2
s−1−a′

(e1e2)2
s−1+2s−2−2−b′d3,n−3.

Since a′ + b′ � 3(2s−2 + 1), the degree of e1 (resp. e2) in each monomial of this
sum is at most 2s + 2s−1 + 2s−2 − 1 − a′ − b′ � 2s − 4 (resp. 2s + 2s−1 + 2s−2 −
2 − a′ − b′ � 2s − 5), and hence, after expansion, each monomial (if any) of p3 is in
B̃2s+1 and divisible by e2s

3 (note: it is possible that p3 = 0).
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Hence, p2 and p3 do not have any common monomials from B̃2s+1, and so there
are no cancellations between monomials of p2 and p3. Now, p2 �= 0 implies p =
p2 + p3 �= 0. �

Remark 4.2. Ideas from this paper can be used to prove the following: if
s � 4, then zcl(G3(R2s+2)) � 7 · 2s−1 (one has z(w1)2

s+1−1z(w2)2
s+2s−1

z(w3) �= 0).
Hence, TC(G3(R2s+2)) � 7 · 2s−1 + 1. Complete proof of this result can be found
in the extended version of this paper which is available on the author’s website.

Proposition 4.3. Let s � 2, n = 2s + t � 2s+1, t � 3 and 2r−1 < t � 2r. Then

zcl(G3(Rn)) � 2s+2 − 2r − 1 and TC(G3(Rn)) � 2s+2 − 2r.

Also, if t − 3 � 2s−1, then zcl(G3(Rn)) � 7 · 2s−1 − 1 and TC(G3(Rn)) � 7 · 2s−1.

Proof. For the first inequality it is enough to show

A = z(w1)2
s+1−1z(w2)2

s+1−2r+1
z(w3)2

r �= 0.

Note that w2s

1 w2r

3 = 0. Indeed, this follows from proposition 2.2(4), e2s+2r

i = 0 for
i ∈ {1, 2, 3} and the following calculations:

p1 = π∗(w2s

1 w2r

3 )e2
1e2e

n−4
4 · · · en−1

= (e2s

1 + e2s

2 + e2s

3 )(e1e2e3)2
r

e2
1e2e

n−4
4 · · · en−1

= (e2s+2r

1 e2r

2 e2r

3 + e2r

1 e2s+2r

2 e2r

3 + e2r

1 e2r

2 e2s+2r

3 )e2
1e2e

n−4
4 · · · en−1 = 0.

Similarly, one proves that w2s

2 w2r

3 = 0, w2s

1 w2s+2r

2 = 0 and w2s+2r

1 w2s

2 = 0.
Note that 2r � t � 3 implies r � 2. Now, we consider the cases 2 � r � s − 1 and

r = s separately.

Case 1: 2 � r � s − 1. We have

A = z(w1)2
s−1z(w1)2

s

z(w2)2
s−2r+1

z(w2)2
s

z(w3)2
r

= z(w1)2
s−1z(w2)2

s−2r+1
(w2s

1 w2s

2 ⊗ w2r

3 + w2r

3 ⊗ w2s

1 w2s

2 ).

Since 2s − 1 = 2s−1 + · · · + 2r+1 + 2r + 2r − 1 and 2s − 2r+1 = 2s−1 + · · · + 2r+1,
in a similar way we get

A = z(w1)2
r−1(w2s

1 w2s

2 ⊗ w2s−2r

1 w2s−2r+1

2 w2r

3 + w2s−2r

1 w2s−2r+1

2 w2r

3 ⊗ w2s

1 w2s

2 ).

Since the dimension of w2s

1 w2s

2 is greater than the dimension of the class
w2s−2r

1 w2s−2r+1

2 w2r

3 , after expanding the expression for A, there is only one
summand with the first coordinate in dimension 3 · 2s + 2r − 1, and this sum-
mand is w2s+2r−1

1 w2s

2 ⊗ w2s−2r

1 w2s−2r+1

2 w2r

3 . Hence, it is enough to prove that
w2s+2r−1

1 w2s

2 �= 0 and w2s−2r

1 w2s−2r+1

2 w2r

3 �= 0.
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First, we prove that w2s+2r−1
1 w2s

2 �= 0. Since e2s+1

i = 0 for i ∈ {1, 2, 3} (by
proposition 2.2(2)), by proposition 2.2(4) it is enough to prove that

p2 = π∗(w2s+2r−1
1 w2s

2 )e2
1e2e

n−4
4 · · · en−1

= (e1 + e2 + e3)2
r−1(e2s

1 + e2s

2 + e2s

3 )(e1e2 + e2e3 + e3e1)2
s

e2
1e2e

n−4
4 · · · en−1

= (e1 + e2 + e3)2
r−1(e1e2e3)2

s

e2
1e2e

n−4
4 · · · en−1

= π∗(w2r−1
1 w2s

3 )e2
1e2e

n−4
4 · · · en−1

is non-zero in H∗(Flag(Rn); Z2), i.e. that w2r−1
1 w2s

3 is non-zero in H∗(G3(Rn); Z2).
Observe the inclusion i : G3(Rn−2s

) ⊂ G3(Rn). Note that the height of i∗(w1) in
H∗(G3(Rn−2s

); Z2) is 2r − 1 (by (2.1)). So, let x be a class in H∗(G3(Rn−2s

); Z2)
such that i∗(w1)2

r−1x ∈ H3(n−2s−3)(G3(Rn−2s

); Z2) is non-zero (this class exists
by Poincare’s duality); further, let x̃ ∈ H∗(G3(Rn); Z2) be such that i∗(x̃) = x.
Then, by [12, lemma 1], the value of w2r−1

1 x̃ · w2s

3 is the same as the value of
i∗(w2r−1

1 x̃) = i∗(w1)2
r−1x, which is non-zero. Hence, w2r−1

1 w2s

3 �= 0.
Finally, we prove that w2s−2r

1 w2s−2r+1

2 w2r

3 �= 0. This will immediately follow
from the identity w2s−2r

1 w2s−2r

2 w2r

3 = w2s

1 w2s

2 = w2s

3 �= 0, which we now prove.
Since e2s+2r

i = 0 for i ∈ {1, 2, 3}, by proposition 2.2(4) this follows from (here
d3,n−3 = e2

1e2e
n−4
4 · · · en−1)

p3 = π∗(w2s−2r

1 w2s−2r

2 w2r

3 )d3,n−3

= (e1 + e2 + e3)2
s−2r

(e1e2 + e2e3 + e3e1)2
s−2r

(e1e2e3)2
r

d3,n−3

= (e1 + e2 + e3)2
s−1

(e1e2 + e2e3 + e3e1)2
s−1

· (e1 + e2 + e3)2
s−1−2r

(e1e2 + e2e3 + e3e1)2
s−1−2r

(e1e2e3)2
r

d3,n−3

= (e1 + e2 + e3)2
s−1−2r

(e1e2 + e2e3 + e3e1)2
s−1−2r

(e1e2e3)2
s−1+2r

d3,n−3

= . . .

= (e1e2e3)2
s−1+2s−2+···+2r+2r

d3,n−3

= (e1e2e3)2
s

d3,n−3

= (e1 + e2 + e3)2
s

(e1e2 + e2e3 + e3e1)2
s

d3,n−3

= π∗(w2s

1 w2s

2 )d3,n−3.

Since w2s

3 ∈ B3,n−3, we have w2s

3 �= 0, which completes our proof.

Case 2: r = s. Then A = z(w1)2
s−1(w2s

1 ⊗ w2s

3 + w2s

3 ⊗ w2s

1 ). Since after expanding
A there is only one summand with the first coordinate in dimension 2s+2 − 1,
and this summand is w2s−1

1 w2s

3 ⊗ w2s

1 , it is enough to prove w2s−1
1 w2s

3 �= 0 and
w2s

1 �= 0. The second follows from w2s

1 ∈ B3,n−3, and the first one is proven after
the calculations for p2.
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Suppose now that t − 3 � 2s−1. We will prove that

B = z(w1)2
s+1−1z(w2)2

s

z(w3)2
s−1 �= 0,

which implies zcl(G3(Rn)) � 2s+1 + 2s + 2s−1 − 1.
Let us observe all summands of B with the first coordinate in dimension 9 · 2s−1.

Note that

B = z(w1)2
s−1z(w2s

1 )z(w2s

2 )z(w2s−1

3 ),

so the only monomial of this form is w2s

1 w2s

2 w2s−1

3 ⊗ w2s−1
1 , and hence it is enough to

prove that w2s

1 w2s

2 w2s−1

3 �= 0 and w2s−1
1 �= 0. This follows from lemma 2.4 (indeed,

since t − 3 � 2s−1, both monomials divide w2s

1 w2s

2 wt−3
3 �= 0). �

5. Zero-divisor cup-length of Gk(Rn)

In this section we give a lower bound for Gk(Rn) for k � 4.

Proposition 5.1. Let 4 � k < n and 2s + k � n � 2s+1. Then

zcl(Gk(Rn)) � (�log2 k� + 1) · 2s − 1 and TC(Gk(Rn)) � (�log2 k� + 1) · 2s.

Proof. Let 2r−1 < k � 2r. Then �log2 k� = r, so it is enough to prove

A = z(w1)2
s+1−1

r−1∏
i=1

z(w2i)2
s

= z(w1)2
s−1

r−1∏
i=0

z(w2s

2i ) �= 0.

First, let us prove that p =
∏r−2

i=0 w2s

2i is non-zero in H∗(Gk(Rn); Z2). Let dk,n−k =
ek−1
1 · · · ek−1e

n−k−1
k+1 · · · en−1. Since e2s+1

i = 0 for 1 � i � k (by proposition 2.2(2))
and k′ :=

∑r−2
i=0 2i = 2r−1 − 1 < k we have

p1 = π∗
(

r−2∏
i=0

w2s

2i

)
dk,n−k

=
r−2∏
i=0

⎛⎝ ∑
1�a1<a2<···<a2i�k

e2s

a1
e2s

a2
· · · e2s

a2i

⎞⎠ dk,n−k

= [20, 21, . . . , 2r−2]

⎛⎝ ∑
1�a1<a2<···<ak′�k

e2s

a1
e2s

a2
· · · e2s

ak′

⎞⎠ dk,n−k,

where [20, 21, . . . , 2r−2] =
(
20+21+···+2r−2

20

)(
21+···+2r−2

21

) · · · (2r−2

2r−2

)
denotes the multi-

nomial coefficient. By Lucas’ theorem, this coefficient is odd. Also, for 1 � i � k
the degree of ei in each monomial in the last expression for p1 is at most
2s + k − i � n − i, so all monomials in this expression are distinct members of the
basis Bn for H∗(Flag(Rn); Z2), and hence p1 �= 0. So, by proposition 2.2(4), p �= 0.

Now, let us observe all summands after expanding A with first coordinate in
dimension (2r−1 − 1) · 2s. The dimension of p is (2r−1 − 1) · 2s, and it is easy to see
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that the only term of this form is p ⊗ w2s−1
1 w2s

2r−1 . So, to finish the proof it is enough
to prove w2s−1

1 w2s

2r−1 �= 0. In fact, we prove that w2s

1 w2s

2r−1 �= 0. Since e2s+1

i = 0 for
1 � i � k, we have

p2 = π∗
(
w2s

1 w2s

2r−1

)
dk,n−k

=
(
e2s

1 + e2s

2 + · · · + e2s

k

)⎛⎝ ∑
1�a1<a2<···<a2r−1�k

e2s

a1
e2s

a2
· · · e2s

a2r−1

⎞⎠ dk,n−k

=

⎛⎝ ∑
1�a1<a2<···<a2r−1+1�k

e2s

a1
e2s

a2
· · · e2s

a2r−1+1

⎞⎠ dk,n−k.

Now, as above, 2s + k � n implies that all monomials in the last expression for p2

are distinct members of the basis Bn for H∗(Flag(Rn); Z2), and hence p2 �= 0. By
proposition 2.2(4), it follows that w2s

1 w2s

2r−1 �= 0. �
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