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Structure of Modules Induced from Simple
Modules with Minimal Annihilator

Oleksandr Khomenko and Volodymyr Mazorchuk

Abstract. We study the structure of generalized Verma modules over a semi-simple complex finite-

dimensional Lie algebra, which are induced from simple modules over a parabolic subalgebra. We

consider the case when the annihilator of the starting simple module is a minimal primitive ideal if

we restrict this module to the Levi factor of the parabolic subalgebra. We show that these modules

correspond to proper standard modules in some parabolic generalization of the Bernstein-Gelfand-

Gelfand category O and prove that the blocks of this parabolic category are equivalent to certain blocks

of the category of Harish-Chandra bimodules. From this we derive, in particular, an irreducibility

criterion for generalized Verma modules. We also compute the composition multiplicities of those

simple subquotients, which correspond to the induction from simple modules whose annihilators are

minimal primitive ideals.

1 Introduction

Let g be a semi-simple complex finite-dimensional Lie algebra with a fixed Cartan
subalgebra h and p be a parabolic subalgebra of g containing h. With every p-module
V one can associate the parabolically induced module Mp(V ) = U (g) ⊗U (p) (V ). If

V is simple, the module Mp(V ) is called a generalized Verma module (GVM in the
sequel). Every generalized Verma module Mp(V ) has the unique simple quotient,
denoted by Lp(V ). The usual Verma modules are obtained in the case when p is a
Borel subalgebra of g. Generalized Verma modules can be applied for example to

study the structure of usual Verma modules for different algebras arising in theoreti-
cal physics, [Se]. The structure of various classes of generalized Verma modules was
investigated by many authors. In particular, Verma submodules of Verma modules
and simple subquotients of Verma modules were described by Bernstein, I. Gelfand

and S. Gelfand in [BGG]; the multiplicity problem in this case (Kazhdan-Lusztig
conjecture) was solved by Brylinski-Kashiwara, [BK], and Beilinson-Bernstein, [BB],
for the integral case, and this result was extended to the general case by Soergel
in [S1]. The generalized Verma modules induced from finite-dimensional mod-

ules were studied by Jantzen in [J1] and by Rocha-Caridi in [R]. The generalized
Verma modules induced from infinite-dimensional weight modules, in particular,
from Gelfand-Zetlin modules, were studied by Futorny, Khomenko, Mazorchuk and
Ovsienko in [FM, KM1, KM2, KM3, MO] (see also references therein). The general-

ized Verma modules induced from Whittaker modules were studied by McDowell in
[Mc1, Mc2], by Miličić and Soergel in [MS1, MS2] and by Backelin in [Ba]. For these
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special cases of simple modules the structure of the corresponding GVMs is now rel-
atively well-understood. Although these families of modules are rather big, “almost

all” simple g-modules are not of this type. Unfortunately, for general V the only
known result is the simplicity criterion for GVMs associated with sl(2, C)-induction
(the case when the semi-simple part of the Levi factor of p is isomorphic to sl(2, C))
obtained in [KM3].

If one compares all the classes of simple modules studied in the papers listed above
(with the exception of finite-dimensional modules), then it is not difficult to see that

all these modules have one thing in common: their annihilators are smallest possi-
ble, which means that they are minimal primitive ideals of the universal enveloping
algebra for the semi-simple part a in the Levi factor ã of p (we also denote by ha

the center of ã). In [MS1] the authors proved that the GVMs they consider belong

to some category of g-modules, which is equivalent to a certain category of Harish-
Chandra bimodules in the sense of [BG]. An analogous result for GVMs induced
from generic Gelfand-Zetlin modules was proved in [FKM2, KoM1, KoM2]. The
similarity of these results was a good motivation to try to find a general approach to

this problem, which will be free from the necessity to restrict consideration to special
simple modules. We hope to do this in the present paper by extending the arguments
of Miličić and Soergel from [MS1]. We will see that these arguments work smoothly
only under assumption that the simple module we start with has a minimal possi-

ble annihilator. In particular, these arguments do not work for finite-dimensional
modules; however, this case is already handled. Moreover, there is a price to pay for
the ambitions to work with an arbitrary simple module (even with a fixed minimal
annihilator). It happens that the structure of the corresponding GVM can be studied

only “roughly”, that is up to subquotients induced from simple modules with bigger
annihilators. After the example constructed by Stafford in [St] it is theoretically pos-
sible that some GVMs have infinite length. However, this phenomenon is not visible
on our “rough” level.

Associated with Mp(V ) are two full subcategories in the category of g-modules:
the first one consists of all subquotients of modules F ⊗Mp(V ), dim(F) < ∞, and

the second one consists of those modules which have presentations by certain pro-
jective modules from the first one. The second category carries information about
the “rough” structure of modules. We construct a right exact functor, C, from the

first category to the second one, which preserves the “rough” structure of a module.
The restriction of this functor to O is the twist of the (global) Enright’s completion
functor, see [KoM1], by duality. Using this construction we prove:

Theorem 1 Let V be a simple p-module with a minimal possible annihilator (over a).

Then there exists a simple p-module, Ṽ , such that the module C(Mp(V )) is a proper

standard module in the parabolic category of modules, presentable by modules of the

form F ⊗Mp(Ṽ ), dim(F) < ∞. This category has a block decomposition with blocks

equivalent to certain blocks of the category of Harish-Chandra bimodules.

In particular, all GVMs have finite length in the blocks given by the above theo-
rem; moreover, one can get complete information concerning simple subquotients
of GVMs corresponding to modules induced from simples with minimal annihila-
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tors. Nevertheless, this information is enough to derive an irreducibility criterion for
GVMs which is free from all this “rough” business. In fact, having V , we can consider

a simple Verma module, M(λ), over ã with the same annihilator. In a natural way
M(λ) extends to a p-module with the trivial action of the nilpotent radical n of p. In
the sequel we will often use this construction to get GVMs from simple ã-modules.
Our main result is the following statement:

Theorem 2 Let V be a simple module with a minimal possible annihilator. Then

Mp(V ) is simple if and only if Mp(M(λ)) is simple.

Moreover, we even can compute some composition multiplicities of Mp(V ). Al-
though Mp(V ) might have an infinite length, it is easy to see that these composition
multiplicities of “rough” simple subquotients are well-defined and finite.

Theorem 3 Let Vi , i = 1, 2, be simple modules with minimal possible annihilators.

Let Mp(M(λi)) be corresponding Verma modules described above. Assume that the in-

equality [Mp(V1) : Lp(V2)] > 0 holds. Then

[Mp(V1) : Lp(V2)] = [Mp(M(λ1)), Lp(M(λ2))].

We also provide an analogue of the classical BGG-criterion for [Mp(V1) : Lp(V2)]

to be positive, reducing it to the corresponding question in the category O. This cov-
ers and generalizes the result of Miličić and Soergel on Whittaker modules ([MS1]),
the result of König and Mazorchuk on GVMs, induced from generic Gelfand-Zetlin

modules ([KoM1, KoM2]), and the result of the authors on modules induced from
dense sl(2) modules ([KM5]).

In the case of sl(2, C)-induction our results are most general. Indeed, in this case
any simple module is either finite-dimensional or has a minimal possible annihila-
tor. So, the combination of our results with those of Rocha-Caridi gives a “rough”
classification of the categories of parabolically induced modules generated by a sim-

ple module. We have to note that in this case all GVMs always have finite length as
g-modules. This follows from the fact that all simple sl(2, C)-modules are holonomic
as well as all their tensor products with finite-dimensional modules.

The “rough” and precise structures of GVMs we consider coincide provided that
the simple module V we started with satisfies the following condition: the length of
the module F ⊗V is equal to dim(F) for every finite-dimensional module F. This is

the case for instance for Whittaker or Gelfand-Zetlin modules. However, this is not
true in general, and as an example one can take simple Verma modules with regular
integral weights.

The paper is organized as follows: in Section 2 we adjust the arguments of Miličić
and Soergel (which are modifications of the arguments due to Bernstein and Gelfand,
see [BG]) to our situation. In Section 3 we apply them to study the categories of a-

modules which are obtained if one tensors a given simple module having a minimal
annihilator with finite-dimensional modules. Section 4 is devoted to the study of the
categories of modules obtained via parabolic induction from the categories studied
in Section 3. We prove that these categories have a block decomposition with blocks
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being equivalent to the module categories of finite-dimensional algebras, moreover,
they are also equivalent to suitably chosen categories of Harish-Chandra bimodules.

In Section 5 we derive some corollaries of our results which we apply to study GVMs.
In Section 6 we give a “rough” classification of categories of modules, which can be
obtained from sl(2, C) via parabolic induction. We complete the paper discussing
the case of other annihilators in Section 7, in particular, we present some examples

which show that the structure of the categories appearing in this case differs from that
in previous cases. For example, we show that these categories of induced modules are
no longer described either by quasi-hereditary or by properly stratified algebras (here
we refer the reader to [CPS, Dl] for details on these classes of associative algebras). In

fact the following is true:

Proposition 4 Let V be an arbitrary simple a-module which is projective in the full

subcategory of g-modules consisting of all subquotients of modules F⊗V , dim(F) <∞.

Then the category of modules presentable by F ⊗ V , F finite dimensional, has a block

decomposition with blocks equivalent to the module categories of finite-dimensional as-

sociative self-injective algebras.

In general, the algebras given by the above proposition are neither semi-simple
nor local and hence the blocks of the corresponding categories of induced modules

can not be equivalent to the blocks of Harish-Chandra bimodules. However, using
[GM] one still can get some information about these categories, for example derive
an analogue of the BGG-reciprocity. The further study of these cases seems to be an
interesting and challenging problem.

Finally, we would like to compare our results with those obtained in [KM3] in

the case a = sl(2, C). In the present paper we extend those results, for instance, by
partial description of the multiplicities of simple subquotients in a GVM. However,
the settings in the present paper are much more restrictive: we work only with semi-

simple finite-dimensional Lie algebras, whereas in [KM3] the case of an arbitrary
contragradient Lie algebra was considered.

2 Equivalence of coker-categories and Harish-Chandra Bimodules

In this section we heavily rely on [MS1, BG] and mostly rewrite some results from
these two papers, adjusting them to our situation. We try to keep the notation from
[MS1]. If nothing is mentioned, all homomorphisms and tensor products are taken
over C.

For a Lie algebra, L, we denote by FL the category of all finite-dimensional L-
modules. For an L-module, V , we denote by 〈FL ⊗ V 〉 and coker(FL ⊗ V ) the full
subcategory of the category of L-modules consisting of all subquotients of modules
F ⊗ V , F ∈ FL, and all g-modules N which admit a two-step resolution, E ⊗ V →
F ⊗ V → N → 0, E, F ∈ FL, respectively. If the algebra L is semi-simple with
a fixed Cartan subalgebra and the corresponding root system ∆, we decompose FL

into a direct sum of two full subcategories, F0
L

and F1
L, where the first one consists

of all finite dimensional modules whose weights belong to Z∆, and the second one
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consists of all finite dimensional modules whose supports do not intersect Z∆. We
define 〈Fi

L
⊗V 〉 and coker(Fi

L
⊗V ), i = 0, 1, in the obvious way as above.

For an arbitrary U (L)-bimodule, B, we denote by Bad the L-module obtained by
considering the adjoint action ub − bu, b ∈ B, u ∈ U (L), of U (L) on B. We denote
by Badf the subset of all elements b ∈ B such that the adjoint action of U (L) on b is

finite. For an L-module, V , we consider the algebra End(V ) of all C-endomorphisms
of V , which is an U (L)-bimodule under the action u1 f u2(v) = u1 · f (u2 · v), v ∈ V ,
u1, u2 ∈ U (L).

Define the category H = HL as the category of all finitely generated U (L)-
bimodules B satisfying B = Badf. If L is semi-simple, then the category H in a natural
way decomposes into a direct sum of two full subcategories H0 and H1, where Hi ,
i = 0, 1, consists of all B ∈ H such that Bad is a direct sum of modules from Fi

L
. For

a two-sided ideal, I ∈ U (λ), we let H(I), H
i(I), i = 0, 1, be the full subcategories of

H, Hi , i = 0, 1, respectively, consisting of all B such that BI = 0.

Theorem 5 Let L be semi-simple, I ⊂ U (L) be a two-sided ideal and V be an

L-module such that IV = 0. Assume that

1. For every F ∈ F0
L

the multiplication U (L)→ End(V ) induces an isomorphism

HomL(F, (U (L)/IU (L))ad) ' HomL(F, (End(V ))ad).

2. V is projective in 〈F0
L
⊗V 〉.

Then the functor − ⊗U (L) V : U (L)-mod-U (L) → L-mod induces an equivalence of

categories H0(I) and coker(F0
L
⊗V ).

Proof Mutatis mutandis [MS1, Theorem 3.1] with the substitution of F in [MS1]
with F0 and H with H0.

3 Admissible Category Λ(V )

Until Section 6 we fix a simple ã-module, V , whose annihilator in U (a) is a minimal
primitive ideal. According to [FKM1, FKM2] the first step in the study of categories
of parabolically induced modules is construction of certain admissible categories for

the Levi factor of the parabolic subalgebra. In this section we show that, for the
module V as above, there exists a simple object, Ṽ , in 〈Fa⊗V 〉, such that the category
coker(Fa ⊗ Ṽ ) qualifies for these purposes.

For an a-module, M, we define the rough length RL(M) of M as the number (pos-
sibly infinite) of simple subquotients of M whose annihilators are minimal primitive
ideals. The same notion can be defined for g-modules and we will use RLg(M) in
this case. It happens that this invariant behaves well under tensoring with finite-

dimensional modules.

Lemma 6 Assume that M is an a-module of finite rough length. Then for very finite-

dimensional a-module F we have RL(F ⊗M) = dim(F) RL(M).
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Proof Using exactness of the tensor product with F we first reduce the statement to
the case RL(M) = 1, hence we can assume that M is a simple module with minimal

annihilator. Further, it is enough to study the behavior of the rough length under
translation functors (we refer to [J2, GJ] for the definition and properties of these
functors). Because of the minimality of the annihilator of M, this does not depend
on M. Indeed, the standard properties of the translation functors show that the regu-

lar translations (those described in [BG, Theorem 4.1]) and translations to walls send
simples with minimal annihilator to simples ([BeGi, Proposition 3.1], here we also
use the minimality of the annihilator of M) and thus do not change the rough length.
Having this we can translate from the wall and then back to the wall without crossing

other walls, which will be a direct sum of some copies of the identity functor. Hence
the rough length of the result does not depend on M. This means that we can check
our statement for example on simple Verma modules, for which it is obvious.

Theorem 7 There exists an a-module V ′ of rough length 1, which surjects on V , such

that

1. The category coker(Fa⊗V ′) decomposes into a direct sum of full subcategories each

of which is equivalent to the module category of a finite-dimensional associative local

self-injective algebra.

2. There exists a natural abelian structure on coker(Fa ⊗ V ′) such that the tensor

product with finite-dimensional a-modules is an exact functor with respect to this

structure.

Proof We construct V ′ and prove all the statements using an auxiliary module Ṽ ,
mentioned in the beginning of this section, which is defined in the following way.

Let θ be the central character of V (which exists by Quillen’s lemma) and Wθ be the
integral Weyl group of θ (see e.g. [J2, 2.5]). We define Ṽ to be the translation of V to
the most degenerate central character with respect to Wθ. Then we use Lemma 6 to
get that Ṽ is a simple a-module of rough length 1. Moreover, because of the choice

of the central character for Ṽ , this module is projective in 〈Fa ⊗ Ṽ 〉.
Let us first consider the category 〈F0

a ⊗ Ṽ 〉. Denote by I the annihilator of Ṽ in
U (a).

Lemma 8 For every F ∈ F0
a the multiplication U (a) → End(Ṽ ) induces an isomor-

phism

Homa(F, (U (a)/I)ad) ' Homa(F, (End(Ṽ ))ad).

Proof The injectivity of this map follows from [J2, 6.8]. By Kostant’s Theorem and
Lemma 6, we have for F ∈ F0

a the equality dim
(

Homa(F, (U (a)/I)ad)
)

= dim(F0),

where F0 is the zero weight space of F. On the other hand, by [J2, 6.8] we also have:

dim
(

Homa(F, (End(Ṽ ))ad)
)

= dim
(

Homa(Ṽ , F∗ ⊗ Ṽ )
)

.

The latter is equal to dim(F0) since the projection of 〈F0
a⊗Ṽ 〉 on the block containing

Ṽ is a semi-simple category by the choice of the central character for Ṽ .
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Applying Theorem 5 we get that coker(F0
a⊗Ṽ ) is equivalent to the corresponding

category H0(I) of Harish-Chandra bimodules. So, this category has a block decom-

position, with each block being the module category for a finite-dimensional asso-
ciative algebra. Moreover, these algebras are local since in our case each block clearly
has only one simple object. That they are self-injective follows from the fact that the
projection of 〈F0

a ⊗ Ṽ 〉 on the block containing Ṽ is semi-simple, hence self-dual,

and every finite-dimensional module is self-dual with respect to the duality on O.
To complete the proof we have to deal with coker(F1

a ⊗ Ṽ ). Let M ∈ 〈F1
a ⊗ Ṽ 〉 be

a simple module of rough length 1. From Homg(N1, F⊗N2) = Homg(F∗ ⊗N1, N2)
for every F ∈ Fa and N1, N2 ∈ g-mod we get that either M is isomorphic to some

module from 〈F0
a ⊗ Ṽ 〉 or Homg(M, M ′) = 0 for every M ′ ∈ 〈F0

a ⊗ Ṽ 〉. The latter
means, in particular, that coker(F0

a ⊗ M) is a direct summand of coker(Fa ⊗ Ṽ ).
Using a regular translation with respect to some finite-dimensional module from F1

a

we get that the indecomposable block of coker(F1
a ⊗ Ṽ ) containing M is equivalent

to some direct summand of coker(F0
a ⊗ Ṽ ).

We remark that, using the equivalence established during the proof above, we get
a natural abelian structure on coker(Fa ⊗ Ṽ ), induced from the one on H(I).

Consider the block in coker(Fa ⊗ Ṽ ) corresponding to θ. It is non-zero since

we can translate Ṽ to this block. Using our equivalence, this block is the module
category over some finite-dimensional associative local algebra, hence we will get a
simple object, V ′, in this block. Clearly, RL(V ′) = 1 and V ′ surjects onto V . This
completes the proof of the first statement.

The second statement now follows from the first one and the corresponding result
for the category H(I).

In the sequel we will use modules V ′ and Ṽ constructed in Theorem 7. From [S1,

Endomorphismensatz] we immediately get:

Corollary 9 The finite-dimensional associative algebra describing a block of coker
(F0

a ⊗ Ṽ ) is either the coinvariant algebra or the algebra of invariants in the coinvariant

algebra.

4 The Category O(p,Λ)

After describing the category Λ = Λ(V ) = coker(Fa ⊗ Ṽ ) in the previous section,
we can apply procedure from [FKM1] to construct the corresponding parabolic gen-
eralization O(p, Λ). First, we extend this category to the category Λ̃ of ã-modules
consisting of modules from Λ with diagonal action of ha. We define O(p, Λ) as the

full subcategory of the category of all finitely generated g-modules, consisting of all
those M, which are n-finite and decompose into a direct sum of objects from Λ̃, when
viewed as ã-modules. Our main result in this section is the following theorem.

Theorem 10 Let V be a simple a-module with a minimal annihilator and V ′ be as in

Section 3. Then the category coker(Fg ⊗Mp(V ′)) decomposes into a direct sum of full

subcategories each of which is equivalent to an appropriate block of H(I), where I is a

minimal primitive ideal in U (g).
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To prove this theorem we will need some auxiliary lemmas.

Lemma 11 Let F be a finite-dimensional g-module. Then the module F ⊗ Mp(V )
admits a filtration,

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mdim(F) = F ⊗Mp(V ),

such that Mi/Mi−1 ' Mp(Vi), where Vi is an ã-module of rough length 1.

Proof Follows by standard arguments from Lemma 6 and the fact that Mp(V ) is
free over σ(n), where σ denotes the Chevalley involution.

Lemma 12 The annihilator of Mp(V ) is generated by the annihilating ideal of the

central character of Mp(V ).

Proof From Lemma 11 we get the existence of a simple subquotient of Mp(V ),
which is not annihilated by translations through all walls. Hence the annihilator of
this simple subquotient is generated by the annihilating ideal of its central character.

Now the lemma follows from the fact that Mp(V ) has a central character by [DFO,
Theorem 1].

Now we have to find a projective “substitution” for Mp(V ). For this we define

an ã-module structure on Ṽ as follows. We only have to construct the action of
ha. Consider the S-homomorphism of Harish-Chandra ([DFO]), corresponding to
the subalgebra p. Application of this homomorphism provides a finite number of
linear ha-actions, which give rise to the central character of Mp(V ). Among these

actions we choose the maximal one with respect to the standard partial order, see
[DFO, Section 1]. In a trivial way we then extend Ṽ to a p-module and consider the
corresponding GVM Mp(Ṽ ). The standard highest weight arguments immediately
imply that Mp(Ṽ ) is projective in the category coker(F ⊗Mp(V )).

Lemma 13 Let Ṽ be as above. Then for every F ∈ F0
g the multiplication U (g) →

End(Mp(Ṽ )) induces an isomorphism

Homg

(

F, (U (g)/I)ad
)

' Homg

(

F, (End(Mp(Ṽ )))ad
)

.

Proof The injectivity of this map still follows from Lemma 12 and [J2, 6.8]. For F ∈
F0

a we again have dim
(

Homa(F, (U (a)/I)ad)
)

= dim(F0), where F0 is the dimension
of the zero weight space of F. On the other hand, from [J2, 6.8] we obtain:

dim
(

Homa(F, (End(Mp(Ṽ )))ad)
)

= dim
(

Homa(Mp(Ṽ ), F∗ ⊗Mp(Ṽ ))
)

.

Using the projectivity of Mp(Ṽ ) we deduce

dim
(

Homa(Mp(Ṽ ), F∗ ⊗Mp(Ṽ ))
)

= [F∗ ⊗Mp(Ṽ ) : Lp(Ṽ )].

The latter is equal to dim(F0) because of Lemma 11 and the definition of Ṽ .
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Proof of Theorem 10. Using Lemmas 12 and 13 the proof is similar to that of The-
orem 7.

Corollary 14 The finite-dimensional associative algebra describing an indecompos-

able block of coker(F0
g ⊗ Mp(Ṽ )) is either the quasi-hereditary algebra describing a

block of O or the properly stratified algebra describing a block of a subcategory of Enright-

complete modules in O, see [KoM1].

5 Application to the Study of Generalized Verma Modules

In this section we are going to apply the above results to the study of properties of
generalized Verma modules Mp(V ) in the case when the module V has a minimal

annihilator as an a-module. The last is assumed throughout this section. We will
also use modules V ′ and Ṽ from the previous sections.

Let M be a g module and λ ∈ h∗
a . Set Mλ = {m ∈ M : h(m) = λ(h)m for all

h ∈ ha}. If M = ⊕λ∈h∗a
Mλ we define the rough a-character of M as the function

chM
a : h∗

a → Z∪ {∞} such that cha(λ) = RL(Mλ). We note that chMp(V )
a (λ) <∞ for

all λ ∈ h∗
a .

We start with the following two results generalizing the corresponding classical
properties of Verma modules ([D, Proposition 7.6.3, Theorem 7.6.6]).

Proposition 15 Mp(V ) has a simple socle.

Proof Under the assumption that V has a minimal annihilator, one can adopt the
classical growth arguments. By standard arguments it follows from Lemma 6 that the
growth of chMp(V )

a is polynomial and that all GVMs of the form Mp(Y ), where Y is a
simple subquotient with rough length 1 of some F⊗V , F ∈ Fã, have the same rough

a-character up to a shift.

Further, we note that the socle of every F ⊗ V as above contains only simples of
rough length 1. Indeed, this is trivial for translations through the walls and then this
extends to every F⊗−. It follows that each submodule of Mp(V ) contains in its turn a

submodule isomorphic to some Mp(Y ) with Y as above. Since the leading coefficient
of the growth polynomial for the rough a-character of Mp(V ) behaves additively with
respect to the direct sums, we get that the socle of Mp(V ) can contain only one copy
of Mp(Y ) and hence is simple.

Proposition 16 Let V i , i = 1, 2, be two simple ã-modules with minimal annihila-

tors. Then the dimension of Homg(Mp(V1), Mp(V2)) is at most one and every non-zero

element of this space is injective.

Proof Mutatis mutandis [D, Theorem 7.6.6], using Proposition 15.

From Theorem 10 and [KM4] one also derives the following:

Proposition 17 The module Mp(V ′) is rigid as object of coker(Fg ⊗Mp(Ṽ )).
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Now we would like to associate a Verma module to the GVM Mp(V ). For this we
denote by f(V ) the Verma module M(λ) over ã such that it has the same central char-

acter as V and λ belongs to the closure of the antidominant Weyl chamber. Clearly,
this one is uniquely defined. Then the module Mp(M(λ)) = Mp(f(V )) is a Verma
module over g.

Theorem 18 Let V i , i = 1, 2, be two simple ã-modules with minimal annihilators.

Then the following conditions are equivalent:

1. dim
(

Homg(Mp(V1), Mp(V2))
)

= 1.

2. [Mp(V2), Lp(V1)] > 0.

3. V1 ∈ 〈F
0 ⊗V2〉 and dim

(

Homg(Mp(f(V1)), Mp(f(V2)))
)

= 1.

To prove this theorem we will need the following result.

Proposition 19 Let V i , i = 1, 2, be two simple ã-modules with minimal annihilators.

Then dim
(

Homg(Mp(V1), Mp(V2))
)

= dim
(

Homg(Mp(V ′
1 ), Mp(V ′

2 ))
)

, where V ′
i

are as constructed in Theorem 7.

We prove Proposition 19 in two steps.

Lemma 20 There is a natural injection from the space Homg(Mp(V ′
1 ), Mp(V ′

2 )) to

the space Homg(Mp(V1), Mp(V2)).

Proof We start with two exact sequences:

0→ N1 → Mp(V ′
1 )→ Mp(V1)→ 0,(1)

0→ N2 → Mp(V ′
2 )→ Mp(V2)→ 0,(2)

where chN1

a = chN2

a = 0. Applying Homg(−, Mp(V2)) to (1) we get

0→ Homg(Mp(V1), Mp(V2))→ Homg(Mp(V ′
1 ), Mp(V2))→ Homg(N1, Mp(V2)).

Here Homg(N1, Mp(V2)) = 0 since chN1

a = 0 while the socle of Mp(V2) consists only

of modules of rough length 1 (as ã-modules). Hence we get the equality

Homg(Mp(V1), Mp(V2)) = Homg(Mp(V ′
1 ), Mp(V2)).

Now we apply Homg(Mp(V ′
1 ),−) to (2) and get

0→ Homg(Mp(V ′
1 ), N2)→ Homg(Mp(V ′

1 ), Mp(V ′
2 ))→ Homg(Mp(V ′

1 ), Mp(V2)),

Where Homg(Mp(V ′
1 ), N2) = 0 by the same arguments as above applied to the top

of Mp(V ′
1 ). Combining these two results we get an injection from Homg(Mp(V ′

1 ),
Mp(V ′

2 )) to Homg(Mp(V1), Mp(V2)).
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To get an estimate in the opposite direction we now construct a completion func-

tor, C, from the category 〈Fg ⊗ Mp(Ṽ )〉 to the category coker
(

Fg ⊗Mp(Ṽ )
)

. For

M ∈ 〈Fg ⊗ Mp(Ṽ )〉, we denote by M̂ the trace of all projective modules from

coker
(

Fg ⊗Mp(Ṽ )
)

in M. These are direct summands of the modules F ⊗Mp(Ṽ ),

F ∈ Fg. Now denote by f : PM → M̂ a projective cover of M̂. Define C(M)

as PM/k̂er( f ). It is easy to see that C(M) does not depend on the choice of PM .
If ϕ : M1 → M2 is a homomorphism, it can be restricted to M̂1 and obviously

ϕ(M̂1) ⊂ M̂2. By standard arguments ϕ canonically extends to a unique homomor-
phism, C(ϕ) : C(M1) → C(M2). It is easy to see that C indeed defines a covariant
functor from 〈Fg ⊗Mp(Ṽ )〉 to coker

(

Fg ⊗Mp(Ṽ )
)

. We refer the reader to [KoM1,
Section 2] for abstract description of analogous functors.

Lemma 21

1. C is right exact.

2. C preserves the rough a-character.

3. Let ϕ : M1 → M2 be such that ϕ|M̂1
6= 0 then C(ϕ) 6= 0.

4. C(Mp(V )) = Mp(V ′).

Proof The first and the third statements follow immediately from the construction

of C. The second statement follows from the fact that all simple a-submodules of
rough length 1 in the modules from 〈Fg⊗Mp(Ṽ )〉 can be covered by projective mod-
ules from coker

(

Fg ⊗Mp(Ṽ )
)

. Since Mp(V ′) surjects onto Mp(V ) with kernel being
a module of rough length zero, the last statement follows from the second one and

the equality C(Mp(V ′)) = Mp(V ′), which is clear from the construction of Mp(V ′).

Proof of Proposition 19 Lemma 20 gives an injection between the spaces of homo-
morphisms in one direction and the functor C together with Lemma 21 gives an

injection in another direction.

Proof of Theorem 18 By Proposition 19 the condition

dim
(

Homg(Mp(V1), Mp(V2))
)

= 1

is equivalent to the condition dim
(

Homg(Mp(V ′
1 ), Mp(V ′

2 ))
)

= 1. By Theorem 10
this is equivalent to the existence of homomorphisms between corresponding proper
standard modules in the category H(I). The equivalence of categories established
in Theorem 10 sends, by construction, Mp(Vi) and Mp(f(Vi)) to the same modules.

Hence the first and the third statements of our theorem are equivalent.

Clearly the first statement implies the second one. The inverse implication can be

proved as follows. Since the projective cover P of Mp(V ′
1 ) is projective both in 〈Fg ⊗

Mp(Ṽ )〉 and coker
(

Fg ⊗Mp(Ṽ )
)

, we have that the condition [Mg(V2) : Lp(V1)] > 0
is equivalent to Homg(P, Mg(V2)) 6= 0. The functor C transfers this to Homg(P,
Mg(V ′

2 )) 6= 0, which is equivalent to the condition [Mg(V ′
2 ) : S] > 0, where S is
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the simple top of P in coker
(

Fg ⊗Mp(Ṽ )
)

. By Theorem 10 and the classical BGG-
Theorem [D, Theorem 7.6.23] the latter is equivalent to Mg(V ′

1 ) ⊂ Mg(V ′
2 ) and this

implies Mg(V1) ⊂ Mg(V2) by Proposition 19 and Proposition 16.

Now we are ready to prove our main result, which is Theorem 2 from Introduc-
tion.

Theorem 22 The module Mp(V ) is simple if and only if Mp(f(V )) is simple.

Proof From Proposition 15 and Theorem 18 it follows that Mp(V ) is simple if and

only if Mp(V ′) is a simple object in coker(Fg ⊗Mp(Ṽ )). The same arguments show
that Mp(f(V )) is simple if and only if its completion C(Mp(f(V ))) is simple as an ob-
ject of the corresponding coker-subcategory in O (there is an alternative description
in terms of S-subcategories in O in [FKM2], where completion C is substituted with

a-Enright’s completion). Applying Theorem 10 twice we get an exact equivalence of
categories sending Mp(V ′) to C(Mp(f(V ))), which completes the proof.

Theorem 23 Let V1 and V2 be as in Theorem 18 and V1 ∈ 〈F
0 ⊗V2〉. Then

[Mp(V1) : Lp(V2)] = [Mp(f(V1)) : Lp(f(V2))].

Proof Let P be a projective cover of Mp(V2) in 〈Fg ⊗ Mp(Ṽ )〉. We start with

[Mp(V1) : Lp(V2)] = dim(Homg(P, Mp(V1))). Applying C and Lemma 21 we get
the following inequality: dim(Homg(P, Mp(V1))) 6 dim(Homg(P, Mp(V ′

1 ))). The
inverse inequality is obtained by applying Homg(P,−) to the exact sequence 0 →
N → Mp(V ′

1 )→ Mp(V1)→ 0 and noticing that Homg(P, N) = 0. Hence

dim(Homg(P, Mp(V1))) = dim(Homg(P, Mp(V ′
1 ))).

The latter number is equal to [Mp(V ′
1 ) : S], where S is the simple top of P in

coker(Fg ⊗Mp(Ṽ )). The equivalence from Theorem 10 implies that [Mp(V ′
1 ) : S] =

[Mp(f(V1)) : Lp(f(V2))], which completes the proof.

We have to remark that Theorem 22 does not give the complete information about

the subquotients of Mp(V1). It describes only the multiplicities of simple subquo-
tients with non-zero rough a-character. However, if the length of the a-module E⊗Ṽ

is equal to its length as an object of the category coker(Fa ⊗ Ṽ ) for all finite dimen-
sional modules E, then the categories 〈Fa ⊗ Ṽ 〉 and coker(Fa ⊗ Ṽ ) coincide. In

particular, the Verma module Mp(V ) has finite length and Theorem 23 describes all
composition multiplicities of this module.

6 Case of Induction from sl(2, C)

In this section we consider the case when a ' sl(2, C). It happens that our results
now imply a “rough” classification of categories of g-modules parabolically induced
from simple a-modules in this case.
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We start with an arbitrary simple a-module V and consider the corresponding
category 〈Fa⊗V 〉. This extends to the category Λ̃ of ã-modules with a diagonal action

of ha. Pick an arbitrary projective Ṽ in the category Λ̃ and consider the category
Λ = coker(Fa ⊗ Ṽ ).

Theorem 24 The parabolic category O(p, Λ) decomposes into a direct sum of full sub-

categories each of which is equivalent to the module category of one of the following

finite-dimensional associative algebras:

1. The quasi-hereditary algebra associated with a block of the parabolic category OS of

Rocha-Caridi, [R] , where S consists of the simple root of a.

2. The quasi-hereditary algebra associated with a block of the category O for g.

3. The properly stratified algebra associated with a block of the parabolic S-subcategory

in O, associated with p, as in [FKM2].

Proof If V is finite-dimensional we immediately arrive in the situation, considered

by Rocha-Caridi. Otherwise we will have RL(V ) = 1 since a ' sl(2, C) and the
statement follows from Corollary 14.

We would like to list one more peculiar feature of this case.

Proposition 25 Let V be a simple ã-module. Then the module Mp(V ) has finite

length as a g-module.

Proof If V is finite-dimensional the statement follows from [R]. Otherwise we de-

compose Mp(V ) = ⊕λ∈h∗a
Mp(V )λ. As an a-module, the module Mp(V )λ equals

F ⊗ V for some finite-dimensional V and hence is holonomic. Thus it has finite
length. Now the proof can be completed similarly to [D, Proposition 7.6.1] using the
S-Harish-Chandra homomorphism, [DFO].

It would be very interesting to compute the multiplicities of all simple subquo-
tients in Mp(V ). By Proposition 25 they are finite, but Theorem 23 gives an answer
only for simple subquotients of the form Lp(V1), where V1 is infinite-dimensional (in

our case this is equivalent to the condition that the rough a-character is non-zero).

7 Case of Simple Modules with Bigger Annihilators

After discussions above it is a natural question to consider the category 〈Fa ⊗V 〉 in

the case of arbitrary a and arbitrary simple a-module V . There are two extreme cases.
The first one is when V is finite-dimensional. This was studied in [R] and we can say
that this case is more or less known. In the present paper we have studied the second
extreme case when the module V has a minimal annihilator. What will happen if

V is neither finite-dimensional nor with minimal annihilator? This question seems
to be non-trivial. In this section we establish some basic results for this case, try
to underline where, from our point of view, the difficulties arise, and present an
example which shows that the categories of induced modules arising in the general
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case go beyond quasi-hereditary and properly stratified algebras. We start with the
following routine observation.

Proposition 26 Let V be an arbitrary simple a-module, which is projective in

〈Fa ⊗ V 〉. Then coker(Fa ⊗ V ) has a block decomposition with blocks equivalent to

the module categories of finite-dimensional associative self-injective algebras.

Proof The functor F⊗ − is exact and has two-sided adjoint F∗ ⊗ −. Hence it sends
projectives to projectives. This gives us enough projectives in coker(Fa ⊗ V ). The
latter implies that the decomposition with respect to the action of the center pro-
vides a block decomposition with blocks being equivalent to the module categories

of finite-dimensional associative algebras.

Since V is simple and projective, it generates a semi-simple block and hence V is
injective as well. The functor F⊗− sends injectives to injectives and thus all projective
modules in coker(Fa ⊗V ) are injective, completing the proof.

Now we are going to present an example from which it will follow that the algebras

appearing in Proposition 26 are not necessarily local, in contrast to what we had in
Theorem 7.

We consider the principal block of the category O for a = sl(3, C). There are six
simple modules in this block denoted by 1, 2, 3, 4, 5, 6. We choose the enumeration so

that the corresponding Verma modules M(i), i ∈ {1, 2, 3, 4, 5, 6}, have the following
Loewy series (written as radical series):

M(1) M(2) M(3) M(4) M(5) M(6)

1 2 3 4 5 6
2 3 4 5 4 5 6 6
4 5 6 6

6

We can choose simple roots α and β so that the action of the coherent translation

functors θα and θβ through the corresponding walls on simple modules is as follows
(all modules are given by their Loewy series):

θα(1) = 0, θα(2) = 0, θα(3) =

3
5 1

3
, θα(4) =

4
2
4
, θα(5) = 0, θα(6) =

6
5
6

;

θβ(1) = 0, θβ(2) =

2
4 1

2
, θβ(3) = 0, θβ(4) = 0, θβ(5) =

5
3
5
, θβ(6) =

6
4
6
.

Let V denote the translation of 5 to the β-wall. This module is the only X±β-
finite simple module in the corresponding block of O and hence it is projective in
〈Fa⊗V 〉. Now, what are the projective modules in the intersection of 〈Fa⊗V 〉 with
the principal block? The first one is the translation of V back to the principal block,
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which coincides with θβ(5). Now we can apply θα to θβ(5) to get θα(3). The modules
3 and 5 are the only infinite-dimensional X±β-finite simple modules in the principal

block, hence the projectives we got are all indecomposable projectives. Therefore the
projective generator of the corresponding block of coker(Fa ⊗ V ) is θβ(5) ⊕ θα(3).
This module has the following Loewy series:

P =

5
3
5
⊕

3
5 1

3
.

Obviously Endg(P) is connected and not local. Actually it is the algebra of the fol-
lowing quiver with relations:

x
• −→
←− •

y
xyx = yxy = 0.

We would like to finish the paper with underlining the main problems which, from
our point of view, prevent the generalization of our arguments to simple modules

with arbitrary annihilators. The first step in our arguments was a construction of the
projective module Ṽ starting from a simple a-module V . For this we have translated
V into the most degenerate central character (the intersection of all walls). For this
central character the following is true: tensor product with an arbitrary finite dimen-

sional module, followed by the projection on this central character, is a direct sum
of several identity functors. This property implies projectivity of Ṽ . Now consider a
simple module, V , with an intermediate annihilator. This module is annihilated un-
der translation to the most degenerate central character. However, we can consider

the set of all possible translations and find there “the most degenerate one”, Ṽ , which
is still non-zero. We remark that the module Ṽ is not uniquely defined in general.
Although it is tempting to claim that the module Ṽ is projective in 〈Fa ⊗V 〉, but we
do not know how to prove this. The above arguments with translation functors do

not work any more, at least in the obvious way.
One more problem appears when one tries to generalize Lemma 8. Although the

statement might be true, the arguments are not transferable to the case of smaller
annihilators.

The third point is the study of corresponding GVM even in the category O that
is the case, when V is a simple highest weight module. What are the composition
multiplicities of the corresponding Mp(V )? When this module is simple? Are there
any analogues of the BGG-Theorem?

Finally, we would like to mention that Proposition 26 shows the connection be-
tween the categories coker(Fa⊗Mp(Ṽ )) and the finite-dimensional algebras, studied
in [GM]. The main result of [GM] gives a BGG-type reciprocity for these categories,
showing that some analogues of the classical results still can be obtained for the gen-

eral case.
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