
Proceedings of the Edinburgh Mathematical Society (1980), 23, 145-150 ©

ON SOME FUNCTIONAL EQUATIONS FROM
ADDITIVE AND NON-ADDITIVE MEASURES-I

by PL. KANNAPPAN

(Received 20th July 1978)

1. Introduction

It is known that while the Shannon and the Renyi entropies are additive, the measure
entropy of degree )3 proposed by Havrda and Charvat (7) is non-additive. Ever since
Chaundy and McLeod (4) considered the following functional equation

m n m n

I Z/Uy,)= I /(*,) + S f(yj) (l.i)
i=iy=i i=i /=i

which arose in statistical thermodynamics, (1.1) has been extensively studied (1, 5, 6, 8).
From the algebraic properties of symmetry, expansibility and branching of the entropy
(viz. Shannon entropy Hn, etc.) one obtains the sum representation

(viz. Hn(P) = t /(P;), P=(pu..., Pn) with t Pi = l ) (13),
\ i = l i = l /

which with the property of additivity yields the functional equation (1.1), (9, 10).
If we write

(1.2)

then the entropy of degree /3 (7)

takes the sum form

and g satisfies the functional equation

I I 9(xiyj)= I g(x,)+ S g(y,) + c I g(x,). I g{y,) (1.3)
1=1 ; = 1 i = l y = l i = l / = 1

similar to (1.1) with c = (2 '~" - l ) , treated in (3, 11).
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The equations (1.1) and (1.3) were studied under various hypotheses: such as the
equations holding for all positive integers m, n or (1.1) holding for only one pair m = 2,
n = 3 and under some regularity condition on /or g etc. In this paper we propose to solve
the functional equations (1.1) and (1.3) holding for some (arbitrary but) fixed pair (m, n)
when the functions involved are Lebesgue measurable using a different technique and to
show that the solutions depend upon the pair (m, n) and to obtain in the case of (1.3) more
solutions than hitherto known.

2. Auxiliary result

Let Tn = {P= (pu ..., pn): pi ^ 0, 2p, = 1}. The measurable solutions of the functional
equations (1.1) and (1.3) are obtained in Section 3 based on the solution of the following
functional equation

f I F(xhyj) = 0 (2.1)
i=iy=i

(X=(xi) e Tm, Y= (y}) e Fn) holding for some fixed pair of integers m, n ̂  3. Now, we
prove the following lemma:

Lemma 1. LetF: [0,1] x [0, 1]—» R (reals), be measurable in each variable and satisfy
the functional equation (2.1) for fixed m, n (^ 3). Then F is given by

F(x, y) = F(0, y)(l - mx) + F(x, 0)(l - ny) - F(0, 0)(l - mx){\ - ny). (2.2)

Proof. For fixed (y,, y2, ..., yn) = y e Tn, define

Kx)= I F0c,yy), x e [ 0 , l ] . (2.3)

Then h is measurable and (2.1) can be rewritten as
m

I ft(x,-) = 0 U§o,2x, = l) (2.4)
i=i

From (12), it follows that (for m ̂  3)

h(x) = a(l - mx) (x e [0, 1]) (2.5)

where a is a function of yu ..., yn.
Using (2.3) and (2.5), we get

n

I F(x, y/) = a(y,,..., yn)(l-mx),
7 = 1

I F(0,yj) = a(y1,...,yn)
>=i

so that

I /,(yy) = O (2.6)
7 = 1
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where

/,(y) = F(x,y)-F(O,y)(l-mjc), for y e [0, 1], (2.7)

is measurable. Again, from (12), it follows that (for n=£3),

lx(y) = b(x)(l-ny), for y e [0, 1]. (2.8)

From (2.7) and (2.8) results, b(x) = lx(0) = F(x, 0) - F(0, 0)(l - mx) so that we obtain

F(x, y) = F(0, y)(l - mx) + F(x, 0)(l - ny) - F(0,0)(l - mx)(l - ny)

which is precisely (2.2). This proves Lemma 1.

Remark 1. Suppose the equation (2.1) holds for 3 pairs (m, n),(y, s)and(p, q).The,n

F(0, y)(y-m)x + F(x,0)(s-n)y-F(0,0)[(y-m)x + (s-n)y
-(ys-mn)xy~\ =

From (2.9), it is easy to see that, F(0, y) and F(x, 0) are given by

F(0, y) = F(0, 0) 1 — — — y
L (y-m)(a-n)-(p-m)(s-n) J

(2.10)

provided (y — m)(q — n) — (s — n)(p- m) ̂  0.
(2.10) gives explicit values for F(0, y) and F(x, 0) in terms of x, y, m, n, y, s, p, q.
It also follows from (2.9) that,

F(x, y) = F(0, y)(l - mx) = /(y)(l - mx)

where / is arbitrary, when (2.1) holds for the 2 pairs (m, n) and (m, s);

F{x, y) = F(x, 0)(l - ny) = g(jc)(l - ny)

where g is arbitrary, when (2.1) holds for the 2 pairs (m, n) and (y, n);

) = ( l -m;c)( l-ny) , (2.11)

when (2.1) holds for the 3 pairs (m, n), (y, n) and (m, s).

From (2.11), it follows that, when (2.1) holds for all pairs (m, n), then

F(x,y) = 0 (2.12)

(a result found in (2), under the condition of continuity of F).

3. Solutions of the equations (1.1) and (1.3)

Let /, g: [0,1]—>R, be measurable and satisfy the functional equations (1.1) and (1.3),
for a fixed pair m, n (S3) where c is a constant. When c = 0,(1.3) and (1.1) are one and the
same. We follow the convention 0 log 0 = 0, 0p = 0, lp = 1.
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By letting

F(x, y) = g(xy)-yg(x)-xg(y)-cg(x)g(y), (3.1)

for x, y e [0, 1], we see that Fis measurable in each variable and that (1.3) takes the form
(2.1). Thus by Lemma 1 and (3.1), we obtain

g(xy) = yg(x) + xg(y) + cg(x)g(y)

+ g(0)(l -y- cg(y))(l- mx) + g(0)(l - x - cg{x)){l - ny)

-g(0)(l-cg(0))(l-mx)(l-ny) (3.2)

for x, y e [0, 1], where c is a constant.
First, let us consider the case when c = 0 (i.e the equation (1.1)). Then (3.2) becomes

g(xy)- yg(x) + xg(y) + d[l-x-y + (m + n-mn)xy]
where

d = g(0). • (3.3)
i.e.

g(xy)-d-d(m+n-mn)xy = x(g(y)-d) + y(g(x)-d)
i.e.

h(xy) = xk(y)+yk(x), (x, y e [0, 1]) (3.4)
where

h(x) = g(x) — d(l + m + n—mn)x,
and

k{x) = g{x)-d

are measurable functions.
Now, (3.4) can be rewritten as

h(xy) k(y) k(x)
= + , x, y e ]0,1],

xy y x

a Pexider equation, so that, the measurability of the functions imply,

k(x) = Ax log x + Bx, x e ]0,1],

where A, B are constants, that is,

= Ax\ogx + Bx + d, ie]0,l] . (3.5)But, obviously (3.5) holds for x = 0 in view of (3.3) and the fact that 0 log 0 = 0.
Now, g given by (3.5) is a solution of (1.1), provided B = {mn — m- n)d. Thus we have

proved the following theorem.

Theorem 1. Let f: [0, 1]—».R, be measurable and satisfy (1.1) for a fixed pair m, n
(§3) . Then f is a solution of (1.1) if and only if

f(x) = Ax log x + d(mn— m— n)x + d, (3.6)

where A, d are constants.
Now, let us treat the remaining case when c^0 in (3.2) (i.e. the equation (1.3)).
With y = 1,(3.2) gives
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-l)d).
(3.7)

Hence, when g(l) + (n — l)d^O, we obtain

x e [0,1] (3.8)

where

a = g(l) + (n-l)d. (3.9)

Now, g given by (3.8) is a solution of (1.3), provided

ca2+a[l-(n-m)cd~\-dm(n-l) = 0. (3.10)
F i n a l l y , w h e n g ( l ) + ( n — l ) d = 0, b y t a k i n g x x = 1 = y x , x 2 = 0 = ... = x m = y 2 = -•- = yn i n
(1.3), we get g(\) = 0 = g(0), so that (3.2) becomes

g(xy) = yg(x) + xg(y) + cg(x)g(y),

which can be reduced to a Cauchy equation

h(xy)=h(x)h(y), for x, y e ]0,1], (3.11)
where

h(x) = l + c ^ - , xe]0,1]. (3.12)

x

Now the solutions of (3.11) are given by

h(x) = 0 (xe]0, 1]), or h(x) = xf> (x e ]0, I])
with the convention 1^ = 1.

The solution h(x) = 0 is not possible, since h(l) = 1 by (3.12) and g{\) = 0. Thus (3.12)
yields

x{xP~1\ (3.13)

tor x e ]0,1]. Evidently, since #(0) = 0, (3.13) holds for x = 0 also, provided /3^ - 1 . But
the solution corresponding to )3 = — 1 is contained in the solution (3.8) for d = 1/c,
#(1) = 0. (The solution is surprisingly independent of m and n). Thus, we have proved the
following theorem.

Theorem 2. Letg:[0, l]—> R be measurable. Then g is a solution of the equation (1.3)
holding for fixed m, ni?3 ifand only if g has either the form (3.8) with the condition (3.10) or
the form (3.13).

Remark 2. If d = g(0) = 0 and #(1)^0, then (3.8) yields

i \ x

g(*) = — ,

(a solution independent of m and n (3,11)). For examples, the solutions of (1.3) (arising
from (3.8)) are g(x)=-10x + 2 or g(x)=-3x + 2, when m = 3 = n, c = l, d = 2;
g{x) = \0x-2 or g(x) = 3x-2 when m = 3 = n, c =-1, d= - 2 etc.
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But there exists no solution of (1.3) (arisingfrom (3.8)) when m = 3 = n, c= — 1, d = 2
or m — 3 = n, c=\, d= — 2 etc for the condition (3.10) is not satisfied in either case;
a 2 - a + 12 = 0 and a2+a + 12 = 0 have no real solutions for a( = g{\) + 2d).

Remark 3. If the equation (1.1) holds for all m and n, it follows from Theorem 1,
(3.6), that d = 0 and the measurable solution of (1.1) takes the form f(x) = Ax log x.

If the equation (1.3) holds for all m and n, then the measurable solutions of (1.3) are
given by g(x) = -x/cor by (3.12) g{x) = {xs+l-x)lc. For, the equation (3.10) for m = n
gives ca2 + a — dm(m — 1) = 0, which for any two distinct values of m yields d = 0 so that
the solution of (1.3) corresponding to (3.8) becomes g(x) = - x/c and the other solution is
given by (3.12).

Whereas the solution (3.13) of (1.3) is known (3, 11), the solution (3.8) of (1.3)
involving m and n is new. Further the solution of (1.3) is obtained in Theorem 2 for fixed
pair m, n and under the weaker regularity condition on g i.e. under the Lebesgue
measurability of g.
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