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A Double Triangle Operator Algebra
From SL2(R+)

R. H. Levene

Abstract. We consider the w∗-closed operator algebra A+ generated by the image of the semigroup

SL2(R+) under a unitary representation ρ of SL2(R) on the Hilbert space L2(R). We show that A+ is a

reflexive operator algebra and A+ = Alg Dwhere D is a double triangle subspace lattice. Surprisingly,

A+ is also generated as a w∗-closed algebra by the image under ρ of a strict subsemigroup of SL2(R+).

1 Introduction

Given a set S of operators on a Hilbert space, let w∗-alg S denote the w∗-closed op-
erator algebra generated by S. Write Mλ, Dµ and Vt for the unitary operators on the
Hilbert space L2(R) defined by

Mλ f (x) = eiλx f (x), Dµ f (x) = f (x − µ) and Vt f (x) = et/2 f (et x).

Katavolos and Power [3, 4] introduced two nonselfadjoint operator algebras. These
are the Fourier binest algebra

(1) Ap = w∗-alg{Mλ, Dµ | λ, µ ≥ 0}

and the hyperbolic algebra

(2) Ah = w∗-alg{Mλ,Vt | λ, t ≥ 0}.

These algebras have several interesting properties. First, whilst they contain no fi-

nite rank operators, the Hilbert–Schmidt operators they contain form a w∗-dense
set. Secondly, their invariant subspace lattices Lat A are naturally topologically iso-
morphic to Euclidean manifolds; in fact Lat Ap is isomorphic to the closed unit disc
and Lat Ah is a compact connected 4-manifold. Thirdly, Ap and Ah are reflexive,

that is, A = Alg Lat A, where as usual, Alg L is the algebra of operators leaving every
element of the subspace lattice L invariant. The reflexivity of Ah is proven in [6].

As observed in [4], both Ap and Ah are examples of Lie semigroup algebras. These
are weak operator topology closed operator algebras generated by the image of a
Lie semigroup in a unitary representation of the ambient Lie group. It is therefore
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natural to look at examples of Lie semigroup algebras and ask if they share the prop-
erties of Ap and Ah. In this note we consider the Lie group SL2(R) of 2 × 2 matrices

with determinant +1 and the Lie semigroup SL2(R+) given by

SL2(R+) = {
(

a b
c d

)

∈ SL2(R) | a, b, c, d ≥ 0}.

This is generated (as a semigroup) by elements of the form

rα =

(

α 0
0 α−1

)

, uβ =

(

1 β
0 1

)

, lγ =

(

1 0
γ 1

)

for α > 0 and β, γ ≥ 0. If we add the generator j =

(

0 1
−1 0

)

then we get the full
group SL2(R). We will use the standard principal series representations ρh,s of SL2(R)

on L2(R) given by

(3) ρh,s

(

α β
γ δ

)

f (x) =

sgn(βx + δ)h|βx + δ|is

|βx + δ|
f
( αx + γ

βx + δ

)

,

where h ∈ {0, 1}, s ∈ R and
( α β

γ δ

)

∈ SL2(R). As is well known (see, for exam-

ple, [8]), ρh,s is a unitary representation on L2(R) for each h ∈ {0, 1} and s ∈ R. It is
irreducible, that is, Lat ρh,s(SL2(R)) is trivial, unless h = 1 and s = 0.

Let us write A+ for the w∗-closed algebra generated by ρh,s(SL2(R+)). Then

A+ = w∗-alg{ρh,s(rα), ρh,s(lγ), ρh,s(uβ) | α > 0 and β, γ ≥ 0}.

A computation reveals that for α > 0 and γ ≥ 0,

(4) ρh,s(rα) = α−isV2 log α and ρh,s(lγ) = D−γ ,

but the expression for ρh,s(uβ) looks unpleasantly complicated. However, since uβ =

jl−β j−1,
ρh,s(uβ) = ρh,s( j)ρh,s(l−β)ρh,s( j)−1

= Y DβY ∗

where Y = Yh,s = ρh,s( j).
In Sections 2 and 3, we fix h = 1, s = 0 and write ρ = ρ1,0 and Y = Y1,0. We

will show that, in this exceptional case, A+ is in fact an example of a known class of

reflexive operator algebras [5, 7]. These are algebras of the form Alg D where D is
a double triangle lattice, i.e., a 5-element subspace lattice with the following Hasse
diagram.

This analysis also gives the unexpected result that A+ is generated as a w∗-closed
algebra by ρ(S) where S is the strict subsemigroup of SL2(R+) which is generated
by {rα, lγ | α > 0, γ ≥ 0}. In contrast, the corresponding norm-closed algebras
generated by ρ(S) and ρ(SL2(R+)) are distinct.
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2 Invariant Subspace Lattices

In [4], the authors examine the w∗-closed algebra Ah defined by (2). They show that
the invariant subspace lattice of Ah is

Lat Ah = {Kα,λ,µ | α ∈ C
∗, λ, µ ≥ 0} ∪ {L2([−a, b]) | a, b ∈ [0,∞]}

where

C
∗

= C \ {0}, ϕα(x) =

{

1 x ≥ 0,

α x < 0,

and Kα,λ,µ is the closed subspace

Kα,λ,µ = ϕα(x)ei(λx+µx−1)H2(R).

We also use the notation L2(S) for the subspace of functions in L2(R) vanishing off

the closed subset S of R.
Let Aℓ be the “lower triangular” subalgebra of A+

Aℓ = w∗-alg{ρ(rα), ρ(lγ) | α > 0, γ ≥ 0}.

Armed with knowledge of Lat Ah, an expression for Lat Aℓ is fairly easy to come
by. As in [5], a double triangle lattice of subspaces of H is a five-element subspace

lattice L = {(0), K, L, M, H} such that K ∩ L = L ∩ M = M ∩ K = (0) and
K ∨ L = L ∨ M = M ∨ K = H.

Lemma 2.1 The invariant subspace lattice of Aℓ is

(5) Lat Aℓ = {F∗(ϕαH2(R)) | α ∈ C
∗} ∪ {(0), H2(R), H2(R), L2(R)}.

In particular, the double triangle lattice

E = {(0), H2(R), L2(R−), H2(R), L2(R)}

is contained in Lat Aℓ.

Proof Recall from (4) that ρ(rα) = V2 log α and ρ(lγ) = D−γ . Thus

Aℓ = w∗-alg{D−λ,Vt | λ ≥ 0, t ∈ R}.

Let F be the unitary operator on L2(R) given by F f = f̂ , the Fourier–Plancherel
transform. Since FVt F

∗
= V−t and FD−λF∗

= Mλ,

FAℓF
∗

= w∗-alg{Vt , Mλ | λ ≥ 0, t ∈ R}.

Comparing this to the generator description (2) of the hyperbolic algebra Ah, we see
that the algebra FAℓF

∗ contains Ah and that

Lat FAℓF
∗

= {K ∈ Lat Ah | Vt K ⊆ K for each t < 0}.
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Now Vt Kα,λ,µ = Kα,et λ,e−t µ, and for t < 0 and λ, µ ≥ 0 this is contained in Kα,λ,µ

only if λ = µ = 0. Similarly, when t < 0, Vt L
2([−a, b]) ⊆ L2([−a, b]) only if

a, b ∈ {0,∞}. Thus

Lat FAℓF
∗

= {ϕαH2(R) | α ∈ C
∗} ∪ {(0), L2(R+), L2(R−), L2(R)}.

Since Lat FAℓF
∗

= F Lat Aℓ, we can apply F∗ to either side of this equation to ob-
tain (5).

To see that E ⊆ Lat Aℓ, observe that F∗(ϕ1H2(R)) = F∗H2(R) = L2(R−).

In fact, E is a sublattice not only of Lat Aℓ but also of the smaller lattice Lat A+.

Lemma 2.2 E ⊆ Lat A+.

Proof Since A+ = w∗-alg(Aℓ ∪ A1), we have Lat A+ = Lat Aℓ ∩ Lat A1 where the
algebra A1 is generated by the one-parameter semigroup {ρ(uβ)}β≥0. Let β ≥ 0.
Recall that ρ(uβ) = Y DβY ∗. Since Y ∗

= −Y and

Y f (x) = x−1 f (−x−1),

H2(R) reduces Y and so H2(R) and H2(R) are invariant under ρ(uβ). Moreover,

ρ(uβ)L2(R−) = Y DβY ∗L2(R−) = Y DβL2(R+) ⊆ Y L2(R+) = L2(R−).

This shows that E ⊆ Lat A1 and we have already seen in Lemma 2.1 that E is a
sublattice of Lat Aℓ. Hence E ⊆ Lat Aℓ ∩ Lat A1 = Lat A+.

The next theorem is an immediate consequence of a result of Lambrou and Long-
staff [5, Corollary 2.1], which they prove in a Banach space setting. The Hilbert space

version which we use is attributed in [5] to an earlier result of H. K. Middleton.

Theorem 2.3 Let D = {(0), K, K⊥, M, H} be a double triangle lattice of subspaces

of a Hilbert space H. Then

Lat Alg D = {Nα | α ∈ C
∗} ∪ {(0), K, K⊥, H},

where if [ J] denotes the orthogonal projection onto the subspace J of H,

Nα =

(

[K] + α[K⊥]
)

M for α ∈ C
∗.

Moreover, the infimum and supremum of any two distinct elements of Lat Alg D are the

zero subspace and H respectively.
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Remark For our purposes it would suffice to know that Lat Alg D contains the set
{Nα | α ∈ C

∗} ∪ {(0), K, K⊥, H}. This can be established with an attractive ar-

gument using techniques of Halmos [1, 2] which makes use of the fact that the sub-
spaces K and M in D are in generic position and that Nα is the graph of the un-
bounded closed operator [K]M → K⊥, [K]g 7→ α[K⊥]g for g ∈ M and α ∈ C

∗.
There is also a very short proof of this fact in [7].

It is natural to define N0 = K⊥ and N∞ = K. Indeed, if we do so then when
viewed as a set of projections endowed with the strong operator topology, Lat Alg D

becomes the union of a topological sphere {Nα | α ∈ C∪{∞}} with the two disjoint
points {(0), H}. Let us henceforth write Nα for the subspaces so obtained in the case
D = E, K = H2(R), K⊥

= H2(R), M = L2(R−), H = L2(R); that is,

Nα =











(

[H2(R)] + α[H2(R)]
)

L2(R−) for α ∈ C
∗,

H2(R) α = 0,

H2(R) α = ∞.

We will also write B for the “ball lattice”

B = Lat Alg E = {Nα | α ∈ C ∪ {∞}} ∪ {(0), L2(R)}.

Lemma 2.4 For each α ∈ C
∗, F∗(ϕαH2(R)) = Nα. Thus Lat Aℓ = B.

Proof Let α ∈ C
∗. Since ϕα = χR+

+ αχR
−

,

ϕαH2(R) =

(

[L2(R+)] + α[L2(R−)]
)

H2(R).

But

FNα = F
(

[H2(R)] + α[H2(R)]
)

L2(R−)

=

(

[FH2(R)] + α[FH2(R)]
)

FL2(R−)

=

(

[L2(R+)] + α[L2(R−)]
)

H2(R)

= ϕαH2(R).

So Nα = F∗(ϕαH2(R)), and by Lemma 2.1,

Lat Aℓ = {Nα | α ∈ C
∗} ∪ {(0), H2(R), H2(R), L2(R)} = B.

Remark In [4], the subspaces ϕαH2(R) are introduced and are then shown to be
invariant under Ah. On the other hand, Theorem 2.3 and Lemma 2.4 together show
that the subspaces ϕαH2(R) lie in the reflexive closure Lat Alg FE of the double tri-

angle lattice
FE = {(0), L2(R+), L2(R−), H2(R), L2(R)}.

It is easy to see that FE ⊆ Lat Ah, so we also have Lat Alg FE ⊆ Lat Ah. Thus we

obtain a transparent argument showing that each subspace ϕαH2(R) lies in Lat Ah.

https://doi.org/10.4153/CMB-2006-012-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-012-3
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Corollary 2.5 Lat A+ = Lat Aℓ = B.

Proof Since Aℓ ⊆ A+, it follows that Lat A+ ⊆ Lat Aℓ. By Lemma 2.2, E ⊆ A+, so
by Lemma 2.4 we have

B = Lat Alg E ⊆ Lat Alg(Lat A+) = Lat A+ ⊆ Lat Aℓ = B.

3 Reflexivity

We show that A+ is a reflexive operator algebra. Our method is somewhat surprising:
we identify A+ with what appears at first sight to be the proper subalgebra Aℓ. Let
AB = Alg B. Since Lat A+ = B, it follows that

Aℓ ⊆ A+ ⊆ Alg Lat A+ ⊆ AB.

We will show that all of these inclusions are actually equalities.

Lemma 3.1 The Hilbert–Schmidt operators in each of the algebras Aℓ and AB are

w∗-dense.

Proof As shown in [6], there is a sequence Xn of Hilbert–Schmidt contractions in
Ah which converge in the strong operator topology to the identity. Since the Hilbert–
Schmidt operators C2 form an ideal in L(L2(R)), for any operator algebra A we have

F(A ∩ C2)F∗
= FAF∗ ∩ C2. Now, since Ah ⊆ FAℓF

∗, the sequence Xn lies in
FAℓF

∗ ∩ C2 = F(Aℓ ∩ C2)F∗ ⊆ F(AB ∩ C2)F∗.

Let A be either FAℓF
∗ or FABF∗ and let T ∈ A. Then the sequence XnT is a

bounded sequence of Hilbert–Schmidt operators which tends to T in the SOT. Since
the SOT and the w∗-topology agree on bounded sets and A is w∗-closed, this shows
that the Hilbert–Schmidt operators are dense in A. So the Hilbert–Schmidt operators
are also dense in F∗AF and the proof is complete.

We introduce some notation which will help us pin down the Hilbert–Schmidt
operators in Aℓ and AB. Let q be the function defined on R \ {0} by

q(x) =

{

x−1/2 x > 0,

−i|x|−1/2 x < 0.

Then q is the restriction to R \ {0} of a branch of the analytic function z 7→ z−1/2

defined on C \ R−. Observe that the map Mq : L2(R) → L2(|x| dx) is a unitary
isomorphism onto the Hilbert space L2(|x| dx). As in [6], we work with the space
V = MqH2(R). Let W ′

= L2(et dt). Given a function k ∈ L2(R
2) supported on

Q = {(x, y) ∈ R
2 | xy ≥ 0}, let k̃ be “k with a change of variables,” defined by

k̃(x, t) = k(x, et x).
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A calculation reveals that k̃ ∈ L2(|x| dx)⊗W ′ and that the map k 7→ k̃, is an isometry
L2(Q) → L2(|x| dx) ⊗W ′.

For k ∈ L2(R
2), we define the Hilbert–Schmidt operator Int k on L2(R) by

(Int k) f (x) =

∫

R

k(x, y) f (y) dy.

The following lemma shows that it is natural for us to consider functions supported

on Q. Its proof is routine and we omit it.

Lemma 3.2 Let Int k be a Hilbert–Schmidt operator leaving L2(R+) and L2(R−) in-

variant. Then supp k ⊆ Q.

Proposition 3.3 Let Int k be a Hilbert–Schmidt operator leaving invariant L2(R+),

L2(R−) and ϕaH2(R) for a > 0. Then k̃ ∈ V ⊗W ′. In particular,

F(AB ∩ C2)F∗ ⊆ {Int k | k̃ ∈ V ⊗W ′}.

Outline of proof As observed in [4], when a > 0 we have

(6) ϕaH2(R) = |x|iπ
−1 log aH2(R).

Having made this identification, the proof proceeds almost exactly as the proof of
[6, Proposition 2.4]. In short, we consider the equation

〈(Int k)|x|iσh1, |x|
iσh2〉 = 0

which holds for every σ ∈ R and each h1, h2 ∈ H2(R) by virtue of our hypotheses
and (6). After a calculation we see that this implies that for almost every t , the func-
tion x 7→ k̃(x, t) lies in V . It follows from Lemma 3.2 that for almost every x, the
function t 7→ k̃(x, t) lies in W ′. Hence k̃ ∈ V ⊗W ′.

The result follows upon observing that every Hilbert–Schmidt operator Int k in
FABF∗ ∩ C2 = F(AB ∩ C2)F∗ satisfies the hypotheses.

Proposition 3.4 If k̃ ∈ V ⊗W ′, then Int k ∈ F(Aℓ ∩ C2)F∗. That is,

F(Aℓ ∩ C2)F∗ ⊇ {Int k | k̃ ∈ V ⊗W ′}.

Outline of proof The proof follows [6, Section 3] exactly when we replace the space
W = L2(R+, |x| dx) there with W ′ here and recall that Ah ⊆ FAℓF

∗. We refer the

reader to [6] for the details.

Theorem 3.5 Aℓ = A+ = AB. In particular, A+ is reflexive.

Proof We know that Aℓ ⊆ A+ ⊆ AB. Hence by Propositions 3.3 and 3.4, Aℓ∩C2 =

AB ∩ C2. By Lemma 3.1, this set of Hilbert–Schmidt operators is w∗-dense in each of
the w∗-closed algebras Aℓ and AB, so Aℓ = AB = A+. Since AB = Alg B is plainly
reflexive, the proof is complete.
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Question 3.1 It is shown in [5] that AB contains operators of every even rank and
their ranges are dense in L2(R). Is there an alternative proof of Theorem 3.5 in which

these finite rank operators take the place of the Hilbert–Schmidt operators?

Remark Let Au be the “upper triangular” algebra

Au = w∗-alg{ρ(rα), ρ(uβ) | α > 0, β ≥ 0}.

Then by Theorem 3.5 we also have A+ = Au; indeed, let Z be the unitary on L2(R)

given by Z f (x) = x−1 f (x−1). Then for α > 0 and β, γ ≥ 0,

Zρ(rα)Z∗
= ρ(rα−1 ), Zρ(uβ)Z∗

= ρ(lβ) and Zρ(lγ)Z∗
= ρ(uγ).

So Au = ZAℓZ
∗

= ZA+Z∗
= A+ = Aℓ.

Theorem 3.5 exhibits a curious collapse phenomenon:

A+ := w∗-alg{ρ(rα), ρ(lγ), ρ(uβ) | α > 0, β, γ ≥ 0}

= w∗-alg{ρ(rα), ρ(lγ) | α > 0, γ ≥ 0} =: Aℓ,

although it is not clear at first sight why ρ(uβ) ∈ Aℓ. It is interesting to ask in which
topologies this collapse occurs. We show that the norm-closed algebras do not coin-
cide.

Proposition 3.6 Let An
ℓ and An

+ denote the norm-closed operator algebras generated

by

Sℓ = {ρ(rα), ρ(lγ) | α > 0, γ ≥ 0}

and

S+ = {ρ(rα), ρ(lγ), ρ(uβ) | α > 0 and β, γ ≥ 0},

respectively. Then An
ℓ ( An

+.

Proof Fix β > 0. Intuitively, elements of Sℓ “fix ∞” whereas ρ(uβ) is a “shift

through ∞”. We exploit this perspective to show that ρ(uβ) 6∈ A
n
ℓ .

Given t > 0, let Jt = (−∞,−t] ∪ [t,∞). Let A◦
ℓ denote the algebra generated by

Sℓ, so that A◦
ℓ is the set of finite sums of finite products of elements of Sℓ.

First, we claim that for any t > 0 and each T ∈ A◦
ℓ , there is an s ∈ R such

that whenever g ∈ L2(R) and supp g ⊆ Js, we have supp Tg ⊆ Jt . If α > 0 and
T = ρ(rα), then T = V2 log α, so s = tα−2 suffices. If γ ≥ 0 and T = ρ(lγ) then
T = D−γ , so s = t + γ suffices. A simple induction argument establishes the claim
for T = ρ(a1a2 · · · an) where ai ∈ Sℓ and another induction shows that the claim

holds for a finite sum of such operators.
Our second claim is that we can find a t > 0 such that for f ∈ L2(R) with

supp f ⊆ Jt , we have supp ρ(uβ) f ∩ Jt = ∅. In fact, t = 4β−1 will do, as a simple
but slightly tedious calculation will confirm.
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Fix t = 4β−1 and T ∈ A◦
ℓ . Compute a value of s for T and t and let g ∈ L2(R)

with ‖g‖ = 1 and supp g ⊆ Js. Since Tg and ρ(uβ)g are orthogonal and ρ(uβ) is

unitary,

‖T − ρ(uβ)‖2 ≥ ‖Tg − ρ(uβ)g‖2
= ‖Tg‖2 + ‖ρ(uβ)g‖2 ≥ ‖ρ(uβ)g‖2

= 1.

The algebra A
◦
ℓ is norm-dense in A

n
ℓ , so this shows that dist(ρ(uβ), An

ℓ ) ≥ 1. Thus
ρ(uβ) /∈ An

ℓ .

4 Questions

Fix (h, s) 6= (1, 0). Let ρh,s be the irreducible representation in the principal series
given by (3) and let A+ be the w∗-closed operator algebra generated by ρh,s(SL2(R+)).
Now Lemma 2.1 still holds for A+; indeed, the subalgebra Aℓ is independent of

our choice of h and s. However, the author has been unable to find an analogue
of Lemma 2.2, since Yh,s = ρh,s( j) is no longer reduced by H2(R) and the only proper
subspace obviously invariant for A+ is L2(R−). This prompts the following two ques-
tions in the irreducible case:

Question 4.1 Is Lat A+ = {(0), L2(R−), L2(R)}?

Question 4.2 Is A+ reflexive?

On a more general theme, we pose the following. Recall that when (h, s) = (1, 0),

the lattice Lat A+ with the strong operator topology is the union of a Euclidean man-
ifold with a finite number of discrete points. We call such a lattice a nearly Euclidean
lattice. Of the three Lie semigroup algebras Ap, Ah and A+ that we have seen, all are

reflexive and all have nearly Euclidean invariant subspace lattices.

Question 4.3 Which operator algebras do other unitary representations of SL2(R+)
lead to? Are they reflexive, and are their invariant subspace lattices nearly Euclidean?
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