Canad. Math. Bull. Vol. 49 (1), 2006 pp. 117-126

A Double Triangle Operator Algebra From $SL_2(\mathbb{R}_+)$

R. H. Levene

Abstract. We consider the w*-closed operator algebra \mathcal{A}_+ generated by the image of the semigroup $SL_2(\mathbb{R}_+)$ under a unitary representation ρ of $SL_2(\mathbb{R})$ on the Hilbert space $L^2(\mathbb{R})$. We show that \mathcal{A}_+ is a reflexive operator algebra and $\mathcal{A}_+ = \text{Alg } \mathcal{D}$ where \mathcal{D} is a double triangle subspace lattice. Surprisingly, \mathcal{A}_+ is also generated as a w*-closed algebra by the image under ρ of a strict subsemigroup of $SL_2(\mathbb{R}_+)$.

1 Introduction

Given a set S of operators on a Hilbert space, let w*-alg S denote the w*-closed operator algebra generated by S. Write M_{λ} , D_{μ} and V_t for the unitary operators on the Hilbert space $L^2(\mathbb{R})$ defined by

$$M_{\lambda}f(x) = e^{i\lambda x}f(x), \quad D_{\mu}f(x) = f(x-\mu) \text{ and } V_{t}f(x) = e^{t/2}f(e^{t}x)$$

Katavolos and Power [3, 4] introduced two nonselfadjoint operator algebras. These are the *Fourier binest algebra*

(1)
$$\mathcal{A}_{p} = \mathbf{w}^{*} - \mathrm{alg}\{M_{\lambda}, D_{\mu} \mid \lambda, \mu \ge 0\}$$

and the hyperbolic algebra

(2)
$$\mathcal{A}_h = \mathbf{w}^* - \mathrm{alg}\{M_\lambda, V_t \mid \lambda, t \ge 0\}$$

These algebras have several interesting properties. First, whilst they contain no finite rank operators, the Hilbert–Schmidt operators they contain form a w*-dense set. Secondly, their invariant subspace lattices Lat \mathcal{A} are naturally topologically isomorphic to Euclidean manifolds; in fact Lat \mathcal{A}_p is isomorphic to the closed unit disc and Lat \mathcal{A}_h is a compact connected 4-manifold. Thirdly, \mathcal{A}_p and \mathcal{A}_h are reflexive, that is, $\mathcal{A} = \text{Alg Lat }\mathcal{A}$, where as usual, Alg \mathcal{L} is the algebra of operators leaving every element of the subspace lattice \mathcal{L} invariant. The reflexivity of \mathcal{A}_h is proven in [6].

As observed in [4], both A_p and A_h are examples of *Lie semigroup algebras*. These are weak operator topology closed operator algebras generated by the image of a Lie semigroup in a unitary representation of the ambient Lie group. It is therefore

Received by the editors February 24, 2004.

The author is supported by an EPSRC grant.

AMS subject classification: Primary: 46K50; secondary:47L55.

[©]Canadian Mathematical Society 2006.

natural to look at examples of Lie semigroup algebras and ask if they share the properties of \mathcal{A}_p and \mathcal{A}_h . In this note we consider the Lie group $SL_2(\mathbb{R})$ of 2×2 matrices with determinant +1 and the Lie semigroup $SL_2(\mathbb{R}_+)$ given by

$$SL_2(\mathbb{R}_+) = \{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in SL_2(\mathbb{R}) \mid a, b, c, d \ge 0 \}.$$

This is generated (as a semigroup) by elements of the form

$$r_{\alpha} = \begin{pmatrix} lpha & 0 \\ 0 & lpha^{-1} \end{pmatrix}, \quad u_{\beta} = \begin{pmatrix} 1 & eta \\ 0 & 1 \end{pmatrix}, \quad l_{\gamma} = \begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix}$$

for $\alpha > 0$ and $\beta, \gamma \ge 0$. If we add the generator $j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ then we get the full group $SL_2(\mathbb{R})$. We will use the standard *principal series* representations $\rho_{h,s}$ of $SL_2(\mathbb{R})$ on $L^2(\mathbb{R})$ given by

(3)
$$\rho_{h,s}\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} f(x) = \frac{\operatorname{sgn}(\beta x + \delta)^h |\beta x + \delta|^{is}}{|\beta x + \delta|} f\left(\frac{\alpha x + \gamma}{\beta x + \delta}\right),$$

where $h \in \{0, 1\}$, $s \in \mathbb{R}$ and $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(\mathbb{R})$. As is well known (see, for example, [8]), $\rho_{h,s}$ is a unitary representation on $L^2(\mathbb{R})$ for each $h \in \{0, 1\}$ and $s \in \mathbb{R}$. It is irreducible, that is, Lat $\rho_{h,s}(SL_2(\mathbb{R}))$ is trivial, unless h = 1 and s = 0.

Let us write \mathcal{A}_+ for the w^{*}-closed algebra generated by $\rho_{h,s}(SL_2(\mathbb{R}_+))$. Then

$$\mathcal{A}_{+} = \mathsf{w}^{*} - \mathrm{alg}\{\rho_{h,s}(r_{\alpha}), \rho_{h,s}(l_{\gamma}), \rho_{h,s}(u_{\beta}) \mid \alpha > 0 \text{ and } \beta, \gamma \geq 0\}.$$

A computation reveals that for $\alpha > 0$ and $\gamma \ge 0$,

(4)
$$\rho_{h,s}(r_{\alpha}) = \alpha^{-is} V_{2\log\alpha}$$
 and $\rho_{h,s}(l_{\gamma}) = D_{-\gamma}$

but the expression for $\rho_{h,s}(u_\beta)$ looks unpleasantly complicated. However, since $u_\beta = jl_{-\beta}j^{-1}$,

$$\rho_{h,s}(u_{\beta}) = \rho_{h,s}(j)\rho_{h,s}(l_{-\beta})\rho_{h,s}(j)^{-1} = YD_{\beta}Y^{*}$$

where $Y = Y_{h,s} = \rho_{h,s}(j)$.

In Sections 2 and 3, we fix h = 1, s = 0 and write $\rho = \rho_{1,0}$ and $Y = Y_{1,0}$. We will show that, in this exceptional case, A_+ is in fact an example of a known class of reflexive operator algebras [5, 7]. These are algebras of the form Alg \mathcal{D} where \mathcal{D} is a double triangle lattice, *i.e.*, a 5-element subspace lattice with the following Hasse diagram.

This analysis also gives the unexpected result that \mathcal{A}_+ is generated as a w^{*}-closed algebra by $\rho(S)$ where S is the strict subsemigroup of $SL_2(\mathbb{R}_+)$ which is generated by $\{r_\alpha, l_\gamma \mid \alpha > 0, \gamma \ge 0\}$. In contrast, the corresponding norm-closed algebras generated by $\rho(S)$ and $\rho(SL_2(\mathbb{R}_+))$ are distinct.

2 Invariant Subspace Lattices

In [4], the authors examine the w^{*}-closed algebra A_h defined by (2). They show that the invariant subspace lattice of A_h is

Lat
$$\mathcal{A}_h = \{ K_{\alpha,\lambda,\mu} \mid \alpha \in \mathbb{C}^*, \ \lambda, \mu \ge 0 \} \cup \{ L^2([-a,b]) \mid a,b \in [0,\infty] \}$$

where

$$\mathbb{C}^* = \mathbb{C} \setminus \{0\}, \quad arphi_lpha(x) = egin{cases} 1 & x \geq 0, \ lpha & x < 0, \ lpha & x < 0, \end{cases}$$

and $K_{\alpha,\lambda,\mu}$ is the closed subspace

$$K_{\alpha,\lambda,\mu} = \varphi_{\alpha}(x)e^{i(\lambda x + \mu x^{-1})}H^2(\mathbb{R}).$$

We also use the notation $L^2(S)$ for the subspace of functions in $L^2(\mathbb{R})$ vanishing off the closed subset *S* of \mathbb{R} .

Let \mathcal{A}_{ℓ} be the "lower triangular" subalgebra of \mathcal{A}_+

$$\mathcal{A}_{\ell} = \mathbf{w}^* \text{-alg}\{\rho(r_{\alpha}), \rho(l_{\gamma}) \mid \alpha > 0, \gamma \ge 0\}.$$

Armed with knowledge of Lat \mathcal{A}_h , an expression for Lat \mathcal{A}_ℓ is fairly easy to come by. As in [5], a *double triangle lattice* of subspaces of \mathcal{H} is a five-element subspace lattice $\mathcal{L} = \{(0), K, L, M, \mathcal{H}\}$ such that $K \cap L = L \cap M = M \cap K = (0)$ and $K \lor L = L \lor M = M \lor K = \mathcal{H}$.

Lemma 2.1 The invariant subspace lattice of A_{ℓ} is

(5) Lat
$$\mathcal{A}_{\ell} = \{ F^*(\varphi_{\alpha} H^2(\mathbb{R})) \mid \alpha \in \mathbb{C}^* \} \cup \{ (0), H^2(\mathbb{R}), \overline{H^2(\mathbb{R})}, L^2(\mathbb{R}) \}.$$

In particular, the double triangle lattice

$$\mathcal{E} = \{(0), H^2(\mathbb{R}), L^2(\mathbb{R}_-), \overline{H^2(\mathbb{R})}, L^2(\mathbb{R})\}$$

is contained in Lat \mathcal{A}_{ℓ} .

Proof Recall from (4) that $\rho(r_{\alpha}) = V_{2 \log \alpha}$ and $\rho(l_{\gamma}) = D_{-\gamma}$. Thus

$$\mathcal{A}_{\ell} = \mathbf{w}^* \text{-alg}\{D_{-\lambda}, V_t \mid \lambda \ge 0, t \in \mathbb{R}\}$$

Let *F* be the unitary operator on $L^2(\mathbb{R})$ given by $Ff = \hat{f}$, the Fourier–Plancherel transform. Since $FV_tF^* = V_{-t}$ and $FD_{-\lambda}F^* = M_{\lambda}$,

$$F\mathcal{A}_{\ell}F^* = w^*\text{-alg}\{V_t, M_{\lambda} \mid \lambda \ge 0, t \in \mathbb{R}\}.$$

Comparing this to the generator description (2) of the hyperbolic algebra \mathcal{A}_h , we see that the algebra $F\mathcal{A}_\ell F^*$ contains \mathcal{A}_h and that

Lat
$$F\mathcal{A}_{\ell}F^* = \{K \in \operatorname{Lat}\mathcal{A}_h \mid V_tK \subseteq K \text{ for each } t < 0\}.$$

Now $V_t K_{\alpha,\lambda,\mu} = K_{\alpha,e^t\lambda,e^{-t}\mu}$, and for t < 0 and $\lambda, \mu \ge 0$ this is contained in $K_{\alpha,\lambda,\mu}$ only if $\lambda = \mu = 0$. Similarly, when t < 0, $V_t L^2([-a,b]) \subseteq L^2([-a,b])$ only if $a, b \in \{0,\infty\}$. Thus

Lat
$$F\mathcal{A}_{\ell}F^* = \{\varphi_{\alpha}H^2(\mathbb{R}) \mid \alpha \in \mathbb{C}^*\} \cup \{(0), L^2(\mathbb{R}_+), L^2(\mathbb{R}_-), L^2(\mathbb{R})\}.$$

Since Lat $FA_{\ell}F^* = F \operatorname{Lat} A_{\ell}$, we can apply F^* to either side of this equation to obtain (5).

To see that $\mathcal{E} \subseteq \text{Lat } \mathcal{A}_{\ell}$, observe that $F^*(\varphi_1 H^2(\mathbb{R})) = F^* H^2(\mathbb{R}) = L^2(\mathbb{R}_-)$.

In fact, \mathcal{E} is a sublattice not only of Lat \mathcal{A}_{ℓ} but also of the smaller lattice Lat \mathcal{A}_{+} .

Lemma 2.2 $\mathcal{E} \subseteq \operatorname{Lat} \mathcal{A}_+$.

Proof Since $\mathcal{A}_+ = w^* - \operatorname{alg}(\mathcal{A}_{\ell} \cup \mathcal{A}_1)$, we have Lat $\mathcal{A}_+ = \operatorname{Lat} \mathcal{A}_{\ell} \cap \operatorname{Lat} \mathcal{A}_1$ where the algebra \mathcal{A}_1 is generated by the one-parameter semigroup $\{\rho(u_{\beta})\}_{\beta \ge 0}$. Let $\beta \ge 0$. Recall that $\rho(u_{\beta}) = YD_{\beta}Y^*$. Since $Y^* = -Y$ and

$$Yf(x) = x^{-1}f(-x^{-1}),$$

 $H^2(\mathbb{R})$ reduces Y and so $H^2(\mathbb{R})$ and $\overline{H^2(\mathbb{R})}$ are invariant under $\rho(u_\beta)$. Moreover,

$$\rho(u_{\beta})L^{2}(\mathbb{R}_{-}) = YD_{\beta}Y^{*}L^{2}(\mathbb{R}_{-}) = YD_{\beta}L^{2}(\mathbb{R}_{+}) \subseteq YL^{2}(\mathbb{R}_{+}) = L^{2}(\mathbb{R}_{-}).$$

This shows that $\mathcal{E} \subseteq \text{Lat } \mathcal{A}_1$ and we have already seen in Lemma 2.1 that \mathcal{E} is a sublattice of Lat \mathcal{A}_ℓ . Hence $\mathcal{E} \subseteq \text{Lat } \mathcal{A}_\ell \cap \text{Lat } \mathcal{A}_1 = \text{Lat } \mathcal{A}_+$.

The next theorem is an immediate consequence of a result of Lambrou and Longstaff [5, Corollary 2.1], which they prove in a Banach space setting. The Hilbert space version which we use is attributed in [5] to an earlier result of H. K. Middleton.

Theorem 2.3 Let $\mathcal{D} = \{(0), K, K^{\perp}, M, \mathcal{H}\}$ be a double triangle lattice of subspaces of a Hilbert space \mathcal{H} . Then

Lat Alg
$$\mathcal{D} = \{N_{\alpha} \mid \alpha \in \mathbb{C}^*\} \cup \{(0), K, K^{\perp}, \mathcal{H}\},\$$

where if [J] denotes the orthogonal projection onto the subspace J of H,

$$N_{\alpha} = ([K] + \alpha[K^{\perp}]) M \text{ for } \alpha \in \mathbb{C}^*.$$

Moreover, the infimum and supremum of any two distinct elements of Lat Alg D are the zero subspace and H respectively.

A Double Triangle Operator Algebra From $SL_2(\mathbb{R}_+)$

Remark For our purposes it would suffice to know that Lat Alg \mathcal{D} contains the set $\{N_{\alpha} \mid \alpha \in \mathbb{C}^*\} \cup \{(0), K, K^{\perp}, \mathcal{H}\}$. This can be established with an attractive argument using techniques of Halmos [1, 2] which makes use of the fact that the subspaces K and M in \mathcal{D} are in generic position and that N_{α} is the graph of the unbounded closed operator $[K]M \to K^{\perp}$, $[K]g \mapsto \alpha[K^{\perp}]g$ for $g \in M$ and $\alpha \in \mathbb{C}^*$. There is also a very short proof of this fact in [7].

It is natural to define $N_0 = K^{\perp}$ and $N_{\infty} = K$. Indeed, if we do so then when viewed as a set of projections endowed with the strong operator topology, Lat Alg \mathcal{D} becomes the union of a topological sphere $\{N_{\alpha} \mid \alpha \in \mathbb{C} \cup \{\infty\}\}$ with the two disjoint points $\{(0), \mathcal{H}\}$. Let us henceforth write N_{α} for the subspaces so obtained in the case $\mathcal{D} = \mathcal{E}, K = H^2(\mathbb{R}), K^{\perp} = \overline{H^2(\mathbb{R})}, M = L^2(\mathbb{R}_-), \mathcal{H} = L^2(\mathbb{R})$; that is,

$$N_{\alpha} = \begin{cases} \left([H^{2}(\mathbb{R})] + \alpha [\overline{H^{2}(\mathbb{R})}] \right) L^{2}(\mathbb{R}_{-}) & \text{for } \alpha \in \mathbb{C}^{*}, \\ H^{2}(\mathbb{R}) & \alpha = 0, \\ \overline{H^{2}(\mathbb{R})} & \alpha = \infty. \end{cases}$$

We will also write B for the "ball lattice"

$$\mathcal{B} = \operatorname{Lat} \operatorname{Alg} \mathcal{E} = \{ N_{\alpha} \mid \alpha \in \mathbb{C} \cup \{\infty\} \} \cup \{(0), L^{2}(\mathbb{R}) \}.$$

Lemma 2.4 For each $\alpha \in \mathbb{C}^*$, $F^*(\varphi_{\alpha}H^2(\mathbb{R})) = N_{\alpha}$. Thus Lat $\mathcal{A}_{\ell} = \mathcal{B}$.

Proof Let $\alpha \in \mathbb{C}^*$. Since $\varphi_{\alpha} = \chi_{\mathbb{R}_+} + \alpha \chi_{\mathbb{R}_-}$,

$$\varphi_{\alpha}H^{2}(\mathbb{R}) = \left(\left[L^{2}(\mathbb{R}_{+}) \right] + \alpha \left[L^{2}(\mathbb{R}_{-}) \right] \right) H^{2}(\mathbb{R}).$$

But

$$FN_{\alpha} = F([H^{2}(\mathbb{R})] + \alpha[\overline{H^{2}(\mathbb{R})}])L^{2}(\mathbb{R}_{-})$$
$$= ([FH^{2}(\mathbb{R})] + \alpha[F\overline{H^{2}(\mathbb{R})}])FL^{2}(\mathbb{R}_{-})$$
$$= ([L^{2}(\mathbb{R}_{+})] + \alpha[L^{2}(\mathbb{R}_{-})])H^{2}(\mathbb{R})$$
$$= \varphi_{\alpha}H^{2}(\mathbb{R}).$$

So $N_{\alpha} = F^*(\varphi_{\alpha} H^2(\mathbb{R}))$, and by Lemma 2.1,

Lat
$$\mathcal{A}_{\ell} = \{N_{\alpha} \mid \alpha \in \mathbb{C}^*\} \cup \{(0), H^2(\mathbb{R}), \overline{H^2(\mathbb{R})}, L^2(\mathbb{R})\} = \mathcal{B}.$$

Remark In [4], the subspaces $\varphi_{\alpha}H^2(\mathbb{R})$ are introduced and are then shown to be invariant under \mathcal{A}_h . On the other hand, Theorem 2.3 and Lemma 2.4 together show that the subspaces $\varphi_{\alpha}H^2(\mathbb{R})$ lie in the reflexive closure Lat Alg $F\mathcal{E}$ of the double triangle lattice

$$F\mathcal{E} = \{(0), L^2(\mathbb{R}_+), L^2(\mathbb{R}_-), H^2(\mathbb{R}), L^2(\mathbb{R})\}.$$

It is easy to see that $F\mathcal{E} \subseteq \text{Lat } \mathcal{A}_h$, so we also have $\text{Lat } \text{Alg } F\mathcal{E} \subseteq \text{Lat } \mathcal{A}_h$. Thus we obtain a transparent argument showing that each subspace $\varphi_{\alpha}H^2(\mathbb{R})$ lies in $\text{Lat } \mathcal{A}_h$.

Corollary 2.5 Lat $\mathcal{A}_{+} = \operatorname{Lat} \mathcal{A}_{\ell} = \mathcal{B}$.

Proof Since $A_{\ell} \subseteq A_+$, it follows that Lat $A_+ \subseteq$ Lat A_{ℓ} . By Lemma 2.2, $\mathcal{E} \subseteq A_+$, so by Lemma 2.4 we have

$$\mathcal{B} = \operatorname{Lat}\operatorname{Alg}\mathcal{E} \subseteq \operatorname{Lat}\operatorname{Alg}(\operatorname{Lat}\mathcal{A}_{+}) = \operatorname{Lat}\mathcal{A}_{+} \subseteq \operatorname{Lat}\mathcal{A}_{\ell} = \mathcal{B}.$$

3 Reflexivity

We show that A_+ is a reflexive operator algebra. Our method is somewhat surprising: we identify A_+ with what appears at first sight to be the proper subalgebra A_{ℓ} . Let $A_B = \text{Alg }\mathcal{B}$. Since Lat $A_+ = \mathcal{B}$, it follows that

$$\mathcal{A}_{\ell} \subseteq \mathcal{A}_{+} \subseteq \operatorname{Alg}\operatorname{Lat} \mathcal{A}_{+} \subseteq \mathcal{A}_{B}.$$

We will show that all of these inclusions are actually equalities.

Lemma 3.1 The Hilbert–Schmidt operators in each of the algebras A_{ℓ} and A_{B} are w^* -dense.

Proof As shown in [6], there is a sequence X_n of Hilbert–Schmidt contractions in \mathcal{A}_h which converge in the strong operator topology to the identity. Since the Hilbert–Schmidt operators \mathcal{C}_2 form an ideal in $\mathcal{L}(L^2(\mathbb{R}))$, for any operator algebra \mathcal{A} we have $F(\mathcal{A} \cap \mathcal{C}_2)F^* = F\mathcal{A}F^* \cap \mathcal{C}_2$. Now, since $\mathcal{A}_h \subseteq F\mathcal{A}_\ell F^*$, the sequence X_n lies in $F\mathcal{A}_\ell F^* \cap \mathcal{C}_2 = F(\mathcal{A}_\ell \cap \mathcal{C}_2)F^* \subseteq F(\mathcal{A}_B \cap \mathcal{C}_2)F^*$.

Let \mathcal{A} be either $F\mathcal{A}_{\ell}F^*$ or $F\mathcal{A}_BF^*$ and let $T \in \mathcal{A}$. Then the sequence X_nT is a bounded sequence of Hilbert–Schmidt operators which tends to T in the SOT. Since the SOT and the w*-topology agree on bounded sets and \mathcal{A} is w*-closed, this shows that the Hilbert–Schmidt operators are dense in \mathcal{A} . So the Hilbert–Schmidt operators are also dense in $F^*\mathcal{A}F$ and the proof is complete.

We introduce some notation which will help us pin down the Hilbert–Schmidt operators in \mathcal{A}_{ℓ} and \mathcal{A}_{B} . Let *q* be the function defined on $\mathbb{R} \setminus \{0\}$ by

$$q(x) = egin{cases} x^{-1/2} & x > 0, \ -i|x|^{-1/2} & x < 0. \end{cases}$$

Then q is the restriction to $\mathbb{R} \setminus \{0\}$ of a branch of the analytic function $z \mapsto z^{-1/2}$ defined on $\mathbb{C} \setminus \mathbb{R}_-$. Observe that the map $M_{\overline{q}}: L^2(\mathbb{R}) \to L^2(|x| \, dx)$ is a unitary isomorphism onto the Hilbert space $L^2(|x| \, dx)$. As in [6], we work with the space $V = M_{\overline{q}}H^2(\mathbb{R})$. Let $W' = L^2(e^t \, dt)$. Given a function $k \in L^2(\mathbb{R}^2)$ supported on $Q = \{(x, y) \in \mathbb{R}^2 \mid xy \ge 0\}$, let \overline{k} be "k with a change of variables," defined by

$$k(x,t) = k(x,e^t x).$$

A Double Triangle Operator Algebra From $SL_2(\mathbb{R}_+)$

A calculation reveals that $\tilde{k} \in L^2(|x| dx) \otimes W'$ and that the map $k \mapsto \tilde{k}$, is an isometry $L^2(Q) \to L^2(|x| dx) \otimes W'$.

For $k \in L^2(\mathbb{R}^2)$, we define the Hilbert–Schmidt operator Int k on $L^2(\mathbb{R})$ by

$$(\operatorname{Int} k)f(x) = \int_{\mathbb{R}} k(x, y)f(y) \, dy$$

The following lemma shows that it is natural for us to consider functions supported on *Q*. Its proof is routine and we omit it.

Lemma 3.2 Let Int k be a Hilbert–Schmidt operator leaving $L^2(\mathbb{R}_+)$ and $L^2(\mathbb{R}_-)$ invariant. Then supp $k \subseteq Q$.

Proposition 3.3 Let Int k be a Hilbert–Schmidt operator leaving invariant $L^2(\mathbb{R}_+)$, $L^2(\mathbb{R}_-)$ and $\varphi_a H^2(\mathbb{R})$ for a > 0. Then $\tilde{k} \in V \otimes W'$. In particular,

$$F(\mathcal{A}_B \cap \mathcal{C}_2)F^* \subseteq \{\operatorname{Int} k \mid \tilde{k} \in V \otimes W'\}$$

Outline of proof As observed in [4], when a > 0 we have

(6)
$$\varphi_a H^2(\mathbb{R}) = |x|^{i\pi^{-1}\log a} H^2(\mathbb{R}).$$

Having made this identification, the proof proceeds almost exactly as the proof of [6, Proposition 2.4]. In short, we consider the equation

$$\langle (\operatorname{Int} k) | x |^{i\sigma} h_1, | x |^{i\sigma} \overline{h_2} \rangle = 0$$

which holds for every $\sigma \in \mathbb{R}$ and each $h_1, h_2 \in H^2(\mathbb{R})$ by virtue of our hypotheses and (6). After a calculation we see that this implies that for almost every *t*, the function $x \mapsto \tilde{k}(x, t)$ lies in *V*. It follows from Lemma 3.2 that for almost every *x*, the function $t \mapsto \tilde{k}(x, t)$ lies in *W'*. Hence $\tilde{k} \in V \otimes W'$.

The result follows upon observing that every Hilbert–Schmidt operator Int *k* in $FA_BF^* \cap \mathcal{C}_2 = F(A_B \cap \mathcal{C}_2)F^*$ satisfies the hypotheses.

Proposition 3.4 If $\tilde{k} \in V \otimes W'$, then Int $k \in F(\mathcal{A}_{\ell} \cap \mathcal{C}_2)F^*$. That is,

$$F(\mathcal{A}_{\ell} \cap \mathcal{C}_2)F^* \supseteq \{\operatorname{Int} k \mid \tilde{k} \in V \otimes W'\}.$$

Outline of proof The proof follows [6, Section 3] exactly when we replace the space $W = L^2(\mathbb{R}_+, |x| \, dx)$ there with W' here and recall that $\mathcal{A}_h \subseteq F\mathcal{A}_\ell F^*$. We refer the reader to [6] for the details.

Theorem 3.5 $A_{\ell} = A_{+} = A_{B}$. In particular, A_{+} is reflexive.

Proof We know that $\mathcal{A}_{\ell} \subseteq \mathcal{A}_{+} \subseteq \mathcal{A}_{B}$. Hence by Propositions 3.3 and 3.4, $\mathcal{A}_{\ell} \cap \mathcal{C}_{2} = \mathcal{A}_{B} \cap \mathcal{C}_{2}$. By Lemma 3.1, this set of Hilbert–Schmidt operators is w*-dense in each of the w*-closed algebras \mathcal{A}_{ℓ} and \mathcal{A}_{B} , so $\mathcal{A}_{\ell} = \mathcal{A}_{B} = \mathcal{A}_{+}$. Since $\mathcal{A}_{B} = \text{Alg }\mathcal{B}$ is plainly reflexive, the proof is complete.

Question 3.1 It is shown in [5] that A_B contains operators of every even rank and their ranges are dense in $L^2(\mathbb{R})$. Is there an alternative proof of Theorem 3.5 in which these finite rank operators take the place of the Hilbert–Schmidt operators?

Remark Let A_u be the "upper triangular" algebra

$$\mathcal{A}_{u} = \mathbf{w}^{*} - \mathrm{alg}\{\rho(r_{\alpha}), \rho(u_{\beta}) \mid \alpha > 0, \ \beta \ge 0\}.$$

Then by Theorem 3.5 we also have $A_+ = A_u$; indeed, let *Z* be the unitary on $L^2(\mathbb{R})$ given by $Zf(x) = x^{-1}f(x^{-1})$. Then for $\alpha > 0$ and $\beta, \gamma \ge 0$,

$$Z\rho(r_{\alpha})Z^* = \rho(r_{\alpha^{-1}}), \quad Z\rho(u_{\beta})Z^* = \rho(l_{\beta}) \text{ and } Z\rho(l_{\gamma})Z^* = \rho(u_{\gamma}).$$

So $\mathcal{A}_u = Z \mathcal{A}_\ell Z^* = Z \mathcal{A}_+ Z^* = \mathcal{A}_+ = \mathcal{A}_\ell.$

Theorem 3.5 exhibits a curious collapse phenomenon:

$$\begin{aligned} \mathcal{A}_{+} &:= \mathsf{w}^{*}\text{-alg}\{\rho(r_{\alpha}), \rho(l_{\gamma}), \rho(u_{\beta}) \mid \alpha > 0, \ \beta, \gamma \geq 0\} \\ &= \mathsf{w}^{*}\text{-alg}\{\rho(r_{\alpha}), \rho(l_{\gamma}) \mid \alpha > 0, \ \gamma \geq 0\} =: \mathcal{A}_{\ell}, \end{aligned}$$

although it is not clear at first sight why $\rho(u_{\beta}) \in \mathcal{A}_{\ell}$. It is interesting to ask in which topologies this collapse occurs. We show that the norm-closed algebras do not coincide.

Proposition 3.6 Let \mathcal{A}_{ℓ}^{n} and \mathcal{A}_{+}^{n} denote the norm-closed operator algebras generated by

$$\mathbb{S}_{\ell} = \{\rho(r_{\alpha}), \rho(l_{\gamma}) \mid \alpha > 0, \gamma \ge 0\}$$

and

$$\mathbb{S}_{+} = \{\rho(r_{\alpha}), \rho(l_{\gamma}), \rho(u_{\beta}) \mid \alpha > 0 \text{ and } \beta, \gamma \ge 0\}$$

respectively. Then $\mathcal{A}_{\ell}^{n} \subsetneq \mathcal{A}_{+}^{n}$.

Proof Fix $\beta > 0$. Intuitively, elements of S_{ℓ} "fix ∞ " whereas $\rho(u_{\beta})$ is a "shift through ∞ ". We exploit this perspective to show that $\rho(u_{\beta}) \notin A_{\ell}^{n}$.

Given t > 0, let $J_t = (-\infty, -t] \cup [t, \infty)$. Let $\mathcal{A}_{\ell}^{\circ}$ denote the algebra generated by S_{ℓ} , so that $\mathcal{A}_{\ell}^{\circ}$ is the set of finite sums of finite products of elements of S_{ℓ} .

First, we claim that for any t > 0 and each $T \in \mathcal{A}_{\ell}^{\circ}$, there is an $s \in \mathbb{R}$ such that whenever $g \in L^2(\mathbb{R})$ and $\operatorname{supp} g \subseteq J_s$, we have $\operatorname{supp} Tg \subseteq J_t$. If $\alpha > 0$ and $T = \rho(r_{\alpha})$, then $T = V_{2\log\alpha}$, so $s = t\alpha^{-2}$ suffices. If $\gamma \ge 0$ and $T = \rho(l_{\gamma})$ then $T = D_{-\gamma}$, so $s = t + \gamma$ suffices. A simple induction argument establishes the claim for $T = \rho(a_1a_2\cdots a_n)$ where $a_i \in S_{\ell}$ and another induction shows that the claim holds for a finite sum of such operators.

Our second claim is that we can find a t > 0 such that for $f \in L^2(\mathbb{R})$ with supp $f \subseteq J_t$, we have supp $\rho(u_\beta)f \cap J_t = \emptyset$. In fact, $t = 4\beta^{-1}$ will do, as a simple but slightly tedious calculation will confirm.

Fix $t = 4\beta^{-1}$ and $T \in \mathcal{A}_{\ell}^{\circ}$. Compute a value of *s* for *T* and *t* and let $g \in L^{2}(\mathbb{R})$ with ||g|| = 1 and supp $g \subseteq J_{s}$. Since *Tg* and $\rho(u_{\beta})g$ are orthogonal and $\rho(u_{\beta})$ is unitary,

$$||T - \rho(u_{\beta})||^{2} \ge ||Tg - \rho(u_{\beta})g||^{2} = ||Tg||^{2} + ||\rho(u_{\beta})g||^{2} \ge ||\rho(u_{\beta})g||^{2} = 1.$$

The algebra $\mathcal{A}_{\ell}^{\circ}$ is norm-dense in \mathcal{A}_{ℓ}^{n} , so this shows that $\operatorname{dist}(\rho(u_{\beta}), \mathcal{A}_{\ell}^{n}) \geq 1$. Thus $\rho(u_{\beta}) \notin \mathcal{A}_{\ell}^{n}$.

4 Questions

Fix $(h, s) \neq (1, 0)$. Let $\rho_{h,s}$ be the irreducible representation in the principal series given by (3) and let \mathcal{A}_+ be the w^{*}-closed operator algebra generated by $\rho_{h,s}(SL_2(\mathbb{R}_+))$. Now Lemma 2.1 still holds for \mathcal{A}_+ ; indeed, the subalgebra \mathcal{A}_ℓ is independent of our choice of *h* and *s*. However, the author has been unable to find an analogue of Lemma 2.2, since $Y_{h,s} = \rho_{h,s}(j)$ is no longer reduced by $H^2(\mathbb{R})$ and the only proper subspace obviously invariant for \mathcal{A}_+ is $L^2(\mathbb{R}_-)$. This prompts the following two questions in the irreducible case:

Question 4.1 Is Lat $A_+ = \{(0), L^2(\mathbb{R}_-), L^2(\mathbb{R})\}$?

Question 4.2 Is A_+ reflexive?

On a more general theme, we pose the following. Recall that when (h, s) = (1, 0), the lattice Lat A_+ with the strong operator topology is the union of a Euclidean manifold with a finite number of discrete points. We call such a lattice a nearly Euclidean lattice. Of the three Lie semigroup algebras A_p , A_h and A_+ that we have seen, all are reflexive and all have nearly Euclidean invariant subspace lattices.

Question 4.3 Which operator algebras do other unitary representations of $SL_2(\mathbb{R}_+)$ lead to? Are they reflexive, and are their invariant subspace lattices nearly Euclidean?

Acknowledgements The author wishes to thank Prof. S. C. Power for suggesting this line of enquiry and for providing the idea behind the proof of Proposition 3.6.

References

- [1] P. R. Halmos, *Two subspaces*. Trans. Amer. Math. Soc. 144(1969), 381–389.
- [2] _____, Reflexive lattices of subspaces. J. London Math. Soc. (2) 4(1971), 257–263.
- [3] A. Katavolos and S. C. Power, *The Fourier binest algebra*. Math. Proc. Cambridge Philos. Soc. 122(1997), 525–539.
- [4] _____, Translation and dilation invariant subspaces of $L^2(\mathbb{R})$. J. Reine Angew. Math. 552(2002), 101–129.
- M. S. Lambrou and W. E. Longstaff, *Finite rank operators leaving double triangles invariant*, J. London Math. Soc. (2) 45(1992), 153–168.
- [6] R. H. Levene and S. C. Power, Reflexivity of the translation-dilation algebras on L²(ℝ). Internat. J. Math. 14(2003), 1081–1090.

R. H. Levene

- [7] W. E. Longstaff, *Nonreflexive double triangles*. J. Austral. Math. Soc. Ser. A **35**(1983), 349–356.
 [8] P. J. Sally, Jr., *Harmonic analysis and group representations*. In: Studies in Harmonic Analysis, MAA Stud. Math. 13, Math. Assoc. Amer., Washington, D.C., 1976, pp. 224–256.

Pure Mathematics Department University of Waterloo Waterloo, ON N2L 3G1 e-mail: rupert.levene@cantab.net