ON MEASURES OF POLYNOMIALS IN SEVERAL VARIABLES: CORRIGENDUM

Gerald Myerson and C.J. Smyth

1.

In [2], it was asserted in Theorem 3 that the measure $M\left(x_{0}+\ldots+x_{n}\right)$ is asymptotically $c \vee n+O(1)$, where c was an explicit constant. The value of c given was incorrect, and should be $e^{-\frac{1}{2} \gamma}$ where γ is Euler's constant. This was pointed out by the first author. In fact

$$
\begin{equation*}
M\left(x_{0}+\ldots+x_{n}\right)=e^{-\frac{1}{2} \gamma} V n+O(\log n / V n) \tag{1}
\end{equation*}
$$

where we have tried to make amends by improving the error term.

2.

The mistake in the proof of Theorem 3 occurred in the third line, where, in the notation of [2], $\log _{+}\left|e^{i \theta} 1+\ldots+e^{i \theta} n\right|$ was incorrectly split up as $f(C, S)+x_{n}(C, S)$. Here

$$
\begin{aligned}
& C=C(n, \theta)=n^{-\frac{1}{2}}\left(\sqrt{ } 2 \cos \theta_{1}+\ldots+\sqrt{ } 2 \cos \theta_{n}\right), \\
& S=S(n, \theta)=n^{-\frac{1}{2}}\left(\sqrt{ } 2 \sin \theta_{1}+\ldots+\sqrt{ } 2 \sin \theta_{n}\right)
\end{aligned}
$$

Using the corrected identity
(2) $\log _{+}\left|e^{i \theta_{1}}+\ldots+e^{i \theta} n\right|=\frac{1}{2} \log n+\frac{1}{2} \max \left(-\log n, \log \left(\frac{1}{2}\left(c^{2}+S^{2}\right)\right)\right)$

Received 2 June 1982.
and replacing the f of [2] by

$$
f(x, y)=\max \left(-\log n, \log \left(\frac{1}{2}\left(x^{2}+y^{2}\right)\right]\right),
$$

we have
(3) $\log M\left(x_{0}+\ldots+x_{n}\right)$

$$
\begin{aligned}
& =\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \log _{+}\left|e^{i \theta_{1}}+\ldots+e^{i \theta_{n}}\right| d \theta_{1} \ldots d \theta_{n} \\
& =\frac{1}{2} \log n+\frac{1}{2} \int_{R^{2}} f(z) d Q_{n}(z)
\end{aligned}
$$

where $z=(x, y)$ and $Q_{n}(z)$ fis the distribution function of (C, S). Now
(4)

$$
\begin{aligned}
\int f d \Phi & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \cdot \frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} d x d y \\
& =-\gamma+O(\log n / n)
\end{aligned}
$$

on transforming to polar coordinates, and then using $\int_{0}^{\infty} \log u \cdot e^{-u} d u \stackrel{?}{=}-\gamma$, where $u=\frac{1}{2} r^{2}$.

To estimate $\int f d\left(Q_{n}-\Phi\right)$, use Theorem 20.1 of [1]. (Take $s=4$. We have $P_{0} \equiv \Phi$ and $P_{1} \equiv 0$ since $\mu_{v}=0$ for $|\nu|=3, x_{3}(z)=0$ from (6.21) and (7.6). Clearly $|f| \leq \log 2 n$, and one can check that $\int d P_{2}=O(1)$, so that $\left.\int f d P_{2}=O(\log n).\right)$

We obtain

$$
\begin{equation*}
\int f d\left(Q_{n}-\Phi\right)=O(\log n / n) \tag{5}
\end{equation*}
$$

Combining (3), (4) and (5) gives (1), on exponentiation.

3.

Theorem 20.1 of [1] can be used to work out an asymptotic expansion for $\int f d\left(Q_{n}-\Phi\right)$. Also, it is not difficult to obtain more terms in the
asymptotic expansion of $\int f d \Phi$ using (4), and hence one could obtain more terms in the expansion of $M\left(x_{0}+\ldots+x_{n}\right)$. However, we have not worked out the details.
4.

Please note the following errata to [2]:
p. 50, line -10, insert " \mathbf{i} with" before "non-zero";
p. 53, line 5, change cos to cot;
p. 54, line -2 , change $\frac{(-1)^{j-1}}{j}$ to $\frac{(-1)^{j-1}}{j^{2}}$;
p. 59, line 13, insert "sup" before $\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right|$;
p. 59, line -1 , change $n^{\frac{3}{4}}$ to $n^{\frac{1}{2}}$;
p. 62 , line 4 , change \log to $\log _{+}$.

References

[1] R.N. Bhattacharya and R. Ranga Rao, Normal approximations and asymptotic expansions (John Wiley \& Sons, New York, London, Sydney, 1976).
[2] C.J. Smyth, "Measures of polynomials in several variables", Bull. Austral. Math. Soc. 23 (1981), 49-63.

Department of Mathematics, State University of New York, Buffalo, New York 14214, USA;

Department of Mathematics, James Cook University of North Queensland, Townsville,
Queensland 4811, Australia.

