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Abstract

Well-known debates among statistical inferential paradigms emerge from conflicting views
on the notion of probability. One dominant view understands probability as a representation
of sampling variability; another prominent view understands probability as a measure of
belief. The former generally describes model parameters as fixed values, in contrast to the
latter. We propose that there are actually two versions of a parameter within both
paradigms: a fixed unknown value that generated the data and a random version to describe
the uncertainty in estimating the unknown value. An inferential approach based on CDs
deciphers seemingly conflicting perspectives on parameters and probabilities.

1 Introduction
Frequentist inference is connected to the logic of probability through the notion of
empirical randomness. Sample estimates are useful insofar as one has a sense of the
extent to which the estimator may vary from one sample to another. The bounds of a
confidence interval are particular observations of random variables, where the
randomness is inherited by the random sampling of data. For example, 95%
confidence intervals for parameter θ can be calculated for any random sample from a
normal N θ; 1� � distribution. With repeated sampling (assuming a correct model),
approximately 95% of these intervals are guaranteed to yield an interval covering the
fixed value of θ.

Bayesian inference produces a probability distribution for the different values of a
particular parameter, even though the quality of this distribution is often difficult to
assess without invoking an appeal to the notion of repeated performance. For data
observed from an N θ; 1� � distribution, generating a credible interval for θ requires an
assumption about the plausibility of different possible values of θ; that is, one must
assume a prior (in addition to assuming the model is correct). However, depending on
the context—is θ the efficacy of a newly created drug, or is θ the efficacy of a new
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version of an older drug?—there may or may not be an informed choice for the prior.
Without appealing to the long-run performance of the interval, how can one compare
a 95% credible interval a; b� � versus another 95% interval a0; b0� � based on the same data
but a different prior?

We explore a paradigm that elucidates the philosophical tie between statistical
estimation and inference by targeting distribution estimators with desirable
properties, that is, confidence distribution (CD) estimators. Although we believe this
perspective has broad potential to address many challenging problems in modern
statistics (e.g., Xie and Singh 2013; Reid and Cox 2015), for clarity, we restrict our
attention to a simple inferential setting assuming a relationship between observed
data, xobs � x1; . . . ; xnf g, and an unknown, one-dimensional parameter, θ. Most often,
this relationship is characterized through the likelihood function, but we prefer a
general description of this relationship as a data-generating model dependent on θ;
symbolically, xobs � Model θ� � �def Mθ: Critically, a data-generating model need not
correspond to a tractable likelihood. Because model-selection criteria are not the
focus of this article, we assume throughout that Mθ is correct.

The purpose of this article is not to critique any statistical inferential paradigm;
however, to clarify our perspective, we present some key questions. By broadening
the perspective of statistical estimation to include distribution estimators with
desirable performance standards, we find possible resolutions. Ultimately, we
challenge a common assertion that Bayesian and frequentist methods differ primarily
in their interpretation of a model parameter and conventional adherence to a
singular role for probability in statistical inference.

1.1 Statistical inference
The main distinction between Bayesian and frequentist inference is that the former
requires an initial distribution estimator, a prior, which is refined by conditioning
upon the observed data. Broadly speaking, there are two Bayesian techniques for
selecting a prior. A subjective Bayesian strictly employs the prior as a representation
of the degrees of an agent’s belief. Subjective methods can be prohibitively
challenging in practice. Objective Bayesians instead use the prior to represent the
population of possible parameter values. Objective Bayesian priors need not follow
probability laws and may even depend on the same data used in the data-generating
model (likelihood). Frequentists do not require a prior, but as demonstrated later,
they can produce data-dependent distribution functions on the parameter space.

A strong example of agreement between Bayesian and frequentist paradigms is
easily identified within an objective Bayesian context. Objective Bayesianism provides
statistical answers conditioned upon xobs while also respecting the (frequentist)
notion that statistical methodology should ensure successful conclusions most of the
time. This agreement on a necessary standard of performance for a statistical method
is an appeal to the notion of calibration (Reid and Cox 2015). Of the paradigms
discussed, only subjective Bayesians may disregard calibration.

In any case, the quantification of uncertainty serves an essential purpose (although
this may not be the end goal), and there emerges a dual nature in the treatment of the
model parameter; that is, there may be both a random version of a parameter and a
deterministic version. Through the notion of CD estimators (defined later), we find
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that certainty about a parameter θ can be expressed probabilistically even without an
assumed prior distribution. This begs the question, Are epistemic meanings justifiable
from calibrated methods that do not assume a (proper) prior?

2 Dualities in statistical inference
2.1 The dual role of parameters
New learners are often taught that Bayesian and frequentist methods differ in the
interpretation of model parameters—a parameter is a fixed unknown quantity for
frequentists but a random variable for Bayesians. This is a subtle misunderstanding
that we attempt to clarify. Parameter θ represents a deterministic value, presumably
having generated xobs; however, it may also be associated with a random variable
describing the uncertainty in determining what the particular value is. This dual role
is apparent in the original manuscript of Thomas Bayes’s famous theorem and is also
evident in modern statistical methods reliant on computer-simulated data.

In lemma 1 of section 2, Bayes (1764) describes the following setting. Consider an
arbitrary flat surface (say, a billiard table) of length 1. A first player rolls ball W along
the billiard table and secretly marks the location where it stops. A second player rolls
ball O n different times on the same billiard table. If the only information (i.e., data)
the second player observes is a report from the first player on whether or not ball O
lands to the left of ball W on each of the n trials, then what inference can the second
player make concerning the location of ball W?

In modern statistical terms, Bayes’s billiard table experiment assumes a U 0; 1� �
prior distribution, and the sample of observed data is realized from a binomial model.
In this context, θ0 (where ball W landed) is a realization from the prior distribution,
θ � U 0; 1� �, so the sample is generated from a binomial distribution with n trials and
probability of success θ0.

Bayes’s scenario clearly displays two versions of the parameter at play, which
Thornton and Xie (forthcoming) call the duality of a parameter. In application,
estimating the fixed version of the parameter that generated the observed data is the
main objective. We denote this target value with the symbol θ0. There is, however,
some uncertainty in exactly how to assess θ0, given xobs. To address this uncertainty, a
Bayesian approach elects to work with a random representation of θ (the prior),
which is then updated to produce a data-informed posterior distribution. In this
approach, “[p]arameters must have a distribution describing the available
information about their values : : : [but] this is not a description of their variability
(since they are fixed unknown quantities), [rather it is] a description of the
uncertainty about their true values” (Berger et al. 2015). One may surmise that
probabilistic statements about an unknown parameter (e.g., the prior or posterior)
are not statements asserting the parameter is actually a random variable itself;
rather, these statements describe the (un)certainty in estimating an unobserved,
fixed, data-generating value.

Many modern inference problems rely on computer simulations to mimic
whatever type of randomness (i.e., descriptions of [un]certainty or sample variability)
is used to answer the posed inferential question. We refer to the intentional use of
computer simulations to generate possible values of a random variable as artificial
randomness. Artificial randomness is not exactly empirical, nor is it clearly
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epistemological. Indeed, the interpretation of artificial randomness is an interesting
open philosophical question.

Several established statistical methods utilize artificial randomness, including
approximate Bayesian computing and frequentist bootstrap methods; see, for
example, Beaumont (2019) and Efron (2000). Once again, two versions of θ emerge in
these methods: those values simulated via artificial randomness, say, θ�, and a
deterministic value that is connected to the observed data, θ0. Typically, such
methods are theoretically supported by a probabilistic matching condition, which can
be represented as an approximate (or exact) matching between two random entities:

θ� 	 f X� �� �jX � xobs� � 
 f X� � 	 θ0� �; (1)

where θ� is produced through (post-data) artificial randomness, and f X� � is a function
of the random sample of data, X, whose distribution depends on the unknown model
parameter. This is a statement about the probability law governing the random
sample, X (right-hand side), matching the probability law inducing the artificially
random parameter values, θ� (left-hand side).

Thornton and Xie (forthcoming) describe this matching condition more generally,
across Bayesian, frequentist, and fiducial paradigms. The common element among
any statistical method employing this theorem is that there are two versions of the
model parameter at play. The first version is a fixed target value related to the
observed sample of data. The second version is a result of artificial randomness and
describes the unknown parameter probabilistically (after conditioning on xobs). In this
way, these complex modern inference problems mirror Bayes’s original proposal,
wherein the objective is a statement regarding a deterministic target, but probability
is used to describe the uncertainty associated with that target, given an observed
data set.

Traditionally, both Bayesians and frequentists rely on the assumption that the
model is correct in their use of the likelihood function. In modern applications where
no likelihood may be available, these methods differ in the extent to which they
require assumptions about the underlying data-generating process.

2.2 The role of probability
Starting with a specific relationship between the data and the unknown parameter,
Mθ, both Bayesian and frequentist methods attempt to characterize the value of θ that
is most in line with a single, observed data set. Although the estimating procedures of
both paradigms are the same, the use of probability may differ depending on which
statistical principles are prioritized.

Bayesian inference requires one to characterize the unknown parameter
probabilistically both before and after observing data. The probability law may be
arbitrary (subjective priors) or derived from existing knowledge, theories, and/or
data (objective priors). Although the requirement of a probability law to describe
uncertainty in the value of θ before observing data is often relaxed in practice (i.e.,
using “improper priors”), the philosophical justification for inference from a Bayesian
methodology cannot permit this violation. For this reason, we restrict our discussion
of probabilistic certainty to those cases of Bayesian inference that use a proper prior.
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The first major conundrum we encounter within a Bayesian paradigm is presented
in example 2.1.

Example 2.1. Suppose the second participant in Bayes’s billiard table experiment is
told that out of their n � 14 rolls, ball O has landed to the left of ball W three times.
The location of ballW , known only to the first participant, is θ0 � 0:34 units from one
edge of the billiard table. Player 2 decides to use a Bayesian approach and
characterizes their uncertainty about θ0 with a Beta 0:5; 2� � prior distribution.

Suppose player 2 has a friend who has been watching this game from the
beginning. This friend (player 3) may also use a Bayesian approach to assess the
location of ball W but may differ in their characterization of uncertainty. Let’s say
player 3 chooses to model their uncertainty with a Beta 3; 2� � distribution.

Player 2 is 95% confident that the location of ball W is between 0:058 and 0:432,
whereas player 3 is just as confident that the location of ball W is actually between
0:133 and 0:535. (More accurately, but no less confusing, player 2 can logically state
that there is a 95% chance that ball W lies between 0:058 and 0:432, whereas player 3
can assert that there is a 95% chance W lies between 0:133 and 0:535.)

In this example, the disagreement between these two intervals is inconsequential.
However, in more realistic applications where θ represents, say, the efficacy of a new
drug, this disagreement is dire. One interval contains the value 0:5, whereas the other
does not. Whose analysis is preferable? Practically, in any situation where Mθ is
agreed upon, the basis for any scholarly debate comes down to the choice of prior.
Without an appeal to the notion of error control, there is no readily agreed-upon
answer to compare posterior distributions resulting from different priors. To this
point, another conundrum is presented in example 2.2.

Example 2.2. Revising the billiard table setting, suppose the entire bar has crowded
around the trio, intrigued by their bizarre game. Player 1 alone knows the location
where ball W stopped (θ0 � 0:34) but decides to let another 49 members of the
captivated audience roll ball O a total of n � 14 times and patiently proceeds to tell
each person the number of times ball O lands to the left of ball W. By this time, there
has been a lengthy discussion on which prior to use for the unknown location of ball
W, and now everyone selects a Beta 0:5; 5� � prior. Because each of the now 50 players
has their own observed data, each player derives their own posterior conditioned on
these data. Despite the fact that everyone uses the same prior and the same
likelihood, the different data yield different posterior distributions and different
inferential conclusions about the location of ballW. Figure 1a shows the resulting 95%
credible intervals for all 50 players, who are equally certain in their estimation of the
location of ballW . In the end, a handful of players will feel cheated, having missed the
target (blue dashed line) despite using the exact same procedure!

The inconsistent conclusions in example 2.2 result from the fact that although the
likelihood implies a probabilistic structure governing the behavior of the data (a type
of empirical probability), there is no consideration of hypothetical data within a
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Bayesian paradigm. This unfortunately results in uncalibrated inferential conclusions.
We consider this a serious issue because the implications extend beyond any
individual practitioner, instead calling into question the general validity of statistical
inference.

A frequentist take on Bayes’s theorem understands a prior as an initial distribution
estimator for a parameter and the resulting posterior as an updated (or improved)
version of this estimator. Estimators, whether distribution, point, or interval, are
evaluated according to their performance properties relative to the inferential
context. Reid and Cox (2015) call inferential methods that target a standard of
performance calibrated.

Definition 2.1 “A method of statistical inference is calibrated if it does not
produce systematically misleading conclusions when used repeatedly” (Reid and
Cox 2015).

Figure 1b shows the resulting confidence intervals if the audience instead used a
frequentist approach. There is no longer a need for a prior, and this approach is
designed to control the number of individuals unable to capture θ0.

Although the aim of Bayesian methodology is to produce a posterior (i.e., a data-
informed distribution estimator for a model parameter), most practitioners agree on
the importance of calibrated inferential conclusions. On the other hand, frequentist
methods are designed to ensure calibration but do not often target a distribution
estimator. Distribution estimators can be much more informative than a single
(confidence) interval or p-value and empower the researcher by reinforcing the role
of statistics as a reliable language of science rather than a prescriptive rule book
declaring what constitutes a scientific discovery. In the next section, we present a
framework orienting statistical inference around the performance of a calibrated
distribution estimator called a confidence distribution (CD).

Individual Player
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Figure 1. Fifty independent experiments produce 95% credible/confidence interval estimates for θ0 (blue) in
the billiard table experiment.
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3 Calibrated distribution estimators
Statistical estimation, the primary step toward statistical inference, is motivated by a
concrete goal: use observable data to approximate the value of an unknown model
feature. Statistical inference is distinguished by the incorporation of probabilistic
logic into a statement of estimation. Thus far we have discussed Bayesian and
frequentist methods of statistical inference. Here, we present a new framework to
directly incorporate probabilistic logic into the estimator itself (much like a posterior
distribution) while ensuring calibrated inferential conclusions (as in classical
frequentist methodologies).

3.1 Confidence distribution defined
Although the concept of CDs can be most immediately traced back to Fisher (1922) and
Cox (1958), the modern interpretation of these functions is a major development
within statistical theory (Xie and Singh 2013; Schweder and Hjort 2016). This
development untangles CDs from Fisher’s flawed fiducial reasoning. Today, CDs enjoy
new attention from the statistical community because the modern definition (which
follows) avoids the circular reasoning of Fisher’s fiducial inference by defining the
estimator according to (calibrated) performance standards. This definition is aligned
with Xie and Singh (2013) in understanding a CD as an estimator for the parameter of
interest rather than a distribution of the parameter.

Definition 3.1 A sample-dependent function on the parameter space, that is, a
function on X × Θ, Hn �� � � Hn X; �� �, is called a CD for θ 2 Θ if

[R1] For each given sample x 2 X , the function Hn �� � � Hn x; �� � is a distribution
function on the parameter space Θ; and

[R2] The function can provide confidence intervals for the parameter θ at all
confidence levels (Xie and Singh 2013).

In his discussion to Xie and Singh (2013), David Cox states that CDs “provide simple
and interpretable summaries of what can reasonably be learned from data.” CDs are a
general descriptive concept in statistical estimation. Any data-dependent function
defining a distribution on the parameter space, whose performance is calibrated
across random samples of data, is a CD. Bayesian posteriors can be CDs, as can
bootstrap distributions. However, there are many other ways to obtain a CD.

Example 3.1. Suppose our data are random observations from an N µ; σ2� �
distribution where σ2 � 1. Suppose further than we observe a sample of size

n � 15 with mean x̄ � 0:06. A CD for µ can be Hn µ� � � Hn µ; X̄
� � � Φ µ	X̄

1=
����
15

p
� �

because

Hn µ� � satisfies the two requirements in definition 3.1, where Φ �� � is a standard
normal (cumulative) distribution function.

Consider two ways in which one could derive the CD in example 3.1. If the primary
interest is to assess the evidence for a particular claim about µ, say, Cµ, it makes sense
to consider the p-value of this claim, given the observed data. Allowing c to vary
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produces a function defined on the parameter space, that is, the CD Hn µ� �.
Alternatively, one could derive this distribution estimator as the posterior from an
objective Bayesian procedure assuming a flat (improper) prior. Regardless of how the
CD is derived, the resulting function defines a probability distribution on the parameter
space. Once data are observed, random draws from this distribution can be artificially
generated to produce (nonrandom) observed instances of a CD random variable.

Definition 3.2 Let xobs � x1; . . . ; xn� � be an observed sample of data drawn from a
distribution involving parameter θ, and let Hn θ� � be a CD for θ. Then, θ�CDjxobs � Hn �� �
is referred to as a CD random variable (Xie and Singh 2013).

The notion of a CD random variable is distinct from the idea of a random
parameter. A CD random variable is a randomized estimator for a fixed unknown,
much in the same way that a bootstrap procedure produces a randomized estimator
for a parameter. On the left-hand side of equation 1, θ� can be understood as a CD
random variable for θ. Furthermore, a CD, by definition, produces calibrated
inferential conclusions about θ. Thus, a CD and a CD random variable provide
measures of corroboration for any inferential statement about θ while embodying the
duality of a parameter.

3.2 Severity and confidence distributions
We now explore a connection between CDs and severe inference whereby error
probabilities distinctly characterize the severity with which a claim about θ has been
tested (Mayo 2018). Because a CD is constructed with respect to error probabilities, it
also contains the mathematical information necessary to quantify the severity of any
related test of a claim about θ.

Definition 3.3 Strong severity requirement. “We have evidence for a claim C just
to the extent it survives a stringent scrutiny. If C passes a test that was highly capable
of finding flaws or discrepancies from C, and yet none or few are found, then the
passing result : : : is evidence for C” (Mayo 2018, 14).

Continuing with example 3.1, as a functional estimator, Hn µ� � contains a wealth of
inferential information about the unknown parameter µ. For instance, one may
calculate the p-value associated with testing claim Cµ : µ ≤ c by evaluatingR
c
	∞ dHn µ� � � Hn c� �. The p-value is a mathematical summary of the support our
estimator, Hn µ� �, lends to claim Cµ. This is a useful summary based on the pre-data
rationale to use a method that controls error probabilities. Post-data, we want to
understand how severely our claim has been tested. In this example, the severity with
which claim Cµ is tested is inversely related to Hn c� �. Figure 2 shows Hn c� � (black) and
the severity curve (blue) for varying values of c. The similarities between figure 2 and
figure 3.3 of Mayo (2018) are not coincidental and indeed illustrate the relationship
between severity and CDs.

As an estimator, a CD is not dependent on any particular hypothesis but
summarizes the inferential information about θ contained in the data. A post hoc
severity assessment of this information can always be calculated because the severity
will be a function of a CD. It seems that, provided the strong severity requirement is
met, a CD may supply not only an empirical but also an evidential interpretation of
the conclusions of a test about θ. Therefore, we wonder, is a prior a requirement for
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characterizing epistemic uncertainty probabilistically? And if so, under what
conditions on the prior?

4 Conclusion
A duality in model parameters arises as an unlikely connection between frequentist
and Bayesian inference tasks. Statistical inference through CDs codifies this duality
while connecting the developments of error probability and severity. In this context,
Neyman’s “confidence” is a corroboration measure (similar to the measure to control
erroneous conclusions in the severity development). In contrast to a posterior, a CD
need not be interpreted as a probabilistic statement about the parameter; rather, it is
a data-dependent estimator for which a particular behavioral property holds. A CD
contains inferential information corresponding to any level of confidence or
significance as a calibrated method. CDs can be derived through Bayesian or
frequentist procedures, guaranteeing calibrated performance regardless. It is not
necessary to assume a prior to derive a CD that characterizes the most plausible
values of an unknown parameter. This begs the philosophical question, If a (perhaps
entirely subjective) prior in Bayesian inference can have epistemic meaning, what
about a data-informed, calibrated distribution estimator?

We briefly mentioned a third (less popular) inferential framework known as
fiducial inference (Fisher 1922). Statisticians today understand fiducial inferential
procedures as inversion methods that solve a structural (algorithmic) model for the
target parameter (Hannig et al. 2016). The notion of parameter duality can be found in
classical fiducial literature; however, Fisher’s original interpretation is incoherent
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Figure 2. For example 3.1, where x̄obs � 0:6, a CD for µ (black) is related to the severity (blue) of testing
the claim Cµ : µ ≤ c. Significance levels at α � 0:1 and α � 0:05 are marked with dashed lines.
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and leads to a number of paradoxes. Instead, we understand modern fiducial
approaches as another procedure whereby one may obtain a CD.

A calibrated statistical inferential paradigm afforded by distribution estimators
bypasses the historically conflicting perspectives on parameters and probabilities. In
fact, there are many equivalent calibrated distribution estimators besides CDs. We
find the concept of CDs appealing because of the simplicity of the required conditions.
A CD has a performance guarantee (unlike subjective Bayesian posteriors), and as an
estimator, there are mathematical ways to consider optimal choices of CDs for any
given problem. Objective Bayesian procedures often yield a posterior that ends up
being a CD, but the definition of a CD lends procedural guidance as to how to choose
among different posteriors in addition to permitting alternate approaches (besides
Bayes’s theorem) to derive a CD.

References
Bayes, Thomas. 1764. “An Essay toward Solving a Problem in the Doctrine of Chances.” Philosophical

Transactions of the Royal Society of London 53:370–418.
Beaumont, Mark A. 2019. “Approximate Bayesian Computation.” Annual Review of Statistical Applications

6 (1):379–403. doi: 10.1146/annurev-statistics-030718-105212.
Berger, James O., Jose M. Bernardo, and Dongchu Sun. 2015. “Overall Objective Priors.” Bayesian Analysis

10 (1):189–221. doi: 10.1214/14-BA915.
Cox, David R. 1958. “Some Problems Connected with Statistical Inference.” Annals of Mathematical Statistics

29 (2):357–72.
Efron, Bradley. 2000. “The Bootstrap and Modern Statistics.” Journal of the American Statistical Association

95 (452):1293–96. doi: 10.2307/2669773.
Fisher, Ronald A. 1922. “On the Mathematical Foundations of Theoretical Statistics.” Philosophical

Transactions of the Royal Society of London, A 222 (594–604):309–68.
Hannig, Jan, Hari Iyer, Randy C. S. Lai, and Thomas C. M. Lee. 2016. “Generalized Fiducial Inference: A

Review and New Results.” Journal of the American Statistical Association 111 (515):1346–61. doi: 10.1080/
01621459.2016.1165102.

Mayo, Deborah G. 2018. Statistical Inference as Severe Testing: How to Get beyond the Statistics Wars.
Cambridge: Cambridge University Press.

Reid, Nancy, and David R. Cox. 2015. “On Some Principles of Statistical Inference.” International Statistics
Review 83 (2):293–308. doi: 10.1111/insr.12067.

Schweder, Tore, and Nils Lid Hjort. 2016. Confidence, Likelihood, Probability: Statistical Inference with
Confidence Distributions (Cambridge Series in Statistical and Probabilistic Mathematics, Series Number 41).
Cambridge: Cambridge University Press.

Thornton, Suzanne, and Minge Xie. Forthcoming. “Bridging Bayesian, Frequentist, and Fiducial
Inferences Using Confidence Distributions.” In Handbook of Bayesian, Fiducial, and Frequentist Inference,
edited by James Berger, Xiao-Li Meng, Nancy Reid, and Minge Xie. New York: Chapman & Hall.

Xie, Minge, and Kesar Singh. 2013. “Confidence Distribution, the Frequentist Distribution Estimator of a
Parameter: A Review (Including Discussions and Rejoinder).” International Statistics Review 81 (1):3–77.
doi: 10.1111/insr.12000.

Cite this article: Thornton, Suzanne and Minge Xie. 2024. “An Exploration of Parameter Duality in
Statistical Inference.” Philosophy of Science. https://doi.org/10.1017/psa.2023.174

10 Suzanne Thornton and Minge Xie

https://doi.org/10.1017/psa.2023.174 Published online by Cambridge University Press

https://doi.org/10.1146/annurev-statistics-030718-105212
https://doi.org/10.1214/14-BA915
https://doi.org/10.2307/2669773
https://doi.org/10.1080/01621459.2016.1165102
https://doi.org/10.1080/01621459.2016.1165102
https://doi.org/10.1111/insr.12067
https://doi.org/10.1111/insr.12000
https://doi.org/10.1017/psa.2023.174
https://doi.org/10.1017/psa.2023.174

	An Exploration of Parameter Duality in Statistical Inference
	1. Introduction
	1.1. Statistical inference

	2. Dualities in statistical inference
	2.1. The dual role of parameters
	2.2. The role of probability

	3. Calibrated distribution estimators
	3.1. Confidence distribution defined
	3.2. Severity and confidence distributions

	4. Conclusion
	References


