A generalization of Lagrange multipliers: Corrigendum

B.D. Craven

There is a lacuna in the proof of Lemma lof [1]; the projector q is assumed without proof. An alternative, valid proof is as follows.

LEMMA 1. Let S, U_{0}, V_{0} be real Banach spaces; let $A: S \rightarrow U_{0}$ and $B: S \rightarrow V_{0}$ be continuous linear maps, whose null spaces are $N(A)$ respectively $N(B)$; let $N(A) \subset N(B)$: Let A map S onto U_{0}. Then there exists a continuous linear map $C: U_{0} \rightarrow V_{0}$ such that $B=C \circ A$.

Proof. Let p denote the canonical projector of S onto the quotient space $S / N(A)$; define $A_{0}: S / N(A) \rightarrow V$ by $A_{0}(x+N(A))=A x$; then $A=A_{0} \circ p$, and A_{0} is a continuous bijection of $S / N(A)$ onto U_{0}. Hence A_{0}^{-1} exists, continuous by Banach's bounded inverse theorem. Define $g: S / N(A) \rightarrow V_{0}$ by $g(x+N(A))=B x$, for each $x \in S$. This definition is unique since $B x=0$ for each $x \in N(A) \subset N(B)$; and then $g \circ p=B$, so g is continuous since B is continuous and p is open. Define $C=g \circ A_{0}^{-1}: V \rightarrow W$. Then C is continuous, and

$$
C \circ A=\left(g \circ A_{0}^{-1}\right) \circ\left(A_{0} \circ p\right)=g \circ p=B
$$

Also the last line of page 354 of [1] should read: $\varphi^{\prime}(0)$ is invertible for sufficiently small $\|w\|$, since A is invertible, and $\|\varphi(0)\|=\|h(0, w)\|<\varepsilon$ if \ldots.

Reference

[1] B.D. Craven, "A generalization of Lagrange multipliers", Bull. Austral. Math. Soc. 3 (1970), 353-362.

Department of Mathematics,
University of Melbourne,
Parkville,
Victoria.

