A generalization of Lagrange multipliers: Corrigendum

B.D. Craven

There is a lacuna in the proof of Lemma 1 of [1]; the projector q is assumed without proof. An alternative, valid proof is as follows.

LEMMA 1. Let S, U_0 , V_0 be real Banach spaces; let $A : S \rightarrow U_0$ and $B : S \rightarrow V_0$ be continuous linear maps, whose null spaces are N(A)respectively N(B); let $N(A) \subset N(B)$: let A map S onto U_0 . Then there exists a continuous linear map $C : U_0 \rightarrow V_0$ such that $B = C \circ A$.

Proof. Let p denote the canonical projector of S onto the quotient space S/N(A); define $A_0: S/N(A) \rightarrow V$ by $A_0(x+N(A)) = Ax$; then $A = A_0 \circ p$, and A_0 is a continuous bijection of S/N(A) onto U_0 . Hence A_0^{-1} exists, continuous by Banach's bounded inverse theorem. Define $g: S/N(A) \rightarrow V_0$ by g(x+N(A)) = Bx, for each $x \in S$. This definition is unique since Bx = 0 for each $x \in N(A) \subset N(B)$; and then $g \circ p = B$, so g is continuous since B is continuous and p is open. Define $C = g \circ A_0^{-1}: V \rightarrow W$. Then C is continuous, and

$$C \circ A = \left(g \circ A_0^{-1}\right) \circ \left(A_0 \circ p\right) = g \circ p = B$$
.

Also the last line of page 354 of [1] should read: $\varphi'(0)$ is invertible for sufficiently small $\|w\|$, since A is invertible, and $\|\varphi(0)\| = \|h(0, w)\| < \varepsilon$ if

Received 16 November 1977.

159

B.D. Craven,

Reference

[1] B.D. Craven, "A generalization of Lagrange multipliers", Bull. Austral. Math. Soc. 3 (1970), 353-362.

Department of Mathematics, University of Melbourne, Parkville, Victoria.

160