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Low-grade inflammation is a characteristic of the obese state, and adipose tissue releases many inflammatory mediators. The source of

these mediators within adipose tissue is not clear, but infiltrating macrophages seem to be especially important, although adipocytes them-

selves play a role. Obese people have higher circulating concentrations of many inflammatory markers than lean people do, and these are

believed to play a role in causing insulin resistance and other metabolic disturbances. Blood concentrations of inflammatory markers are

lowered following weight loss. In the hours following the consumption of a meal, there is an elevation in the concentrations of inflam-

matory mediators in the bloodstream, which is exaggerated in obese subjects and in type 2 diabetics. Both high-glucose and high-fat

meals may induce postprandial inflammation, and this is exaggerated by a high meal content of advanced glycation end products

(AGE) and partly ablated by inclusion of certain antioxidants or antioxidant-containing foods within the meal. Healthy eating patterns

are associated with lower circulating concentrations of inflammatory markers. Among the components of a healthy diet, whole grains, veg-

etables and fruits, and fish are all associated with lower inflammation. AGE are associated with enhanced oxidative stress and inflammation.

SFA and trans-MUFA are pro-inflammatory, while PUFA, especially long-chain n-3 PUFA, are anti-inflammatory. Hyperglycaemia induces

both postprandial and chronic low-grade inflammation. Vitamin C, vitamin E and carotenoids decrease the circulating concentrations of

inflammatory markers. Potential mechanisms are described and research gaps, which limit our understanding of the interaction between

diet and postprandial and chronic low-grade inflammation, are identified.

Preamble

Inflammation is a normal defence mechanism that protects the

host from infection and other insults; it initiates pathogen

killing as well as tissue repair processes and helps to restore

homeostasis at infected or damaged sites. It is typified

by redness, swelling, heat, pain and loss of function, and

involves interactions among many cell types and the pro-

duction of, and responses to, a number of chemical mediators.

Self-regulation of the inflammatory response involves the

activation of negative feedback mechanisms such as the

secretion of anti-inflammatory cytokines, inhibition of pro-

inflammatory signalling cascades, shedding of receptors for

inflammatory mediators and activation of regulatory cells. As

such, and controlled properly, regulated inflammatory

responses are essential to remain healthy and maintain

homeostasis. Pathological inflammation involves a loss of

tolerance and/or of regulatory processes. Where this becomes

excessive, irreparable damage to host tissues and disease can

occur(1). Such diseases are characterised by markedly elevated

concentrations of inflammatory markers and of activated

inflammatory cells at the site of tissue damage and in the

systemic circulation. While the existence of inflammatory

diseases has been long recognised, it is only more recently

that the condition of chronic low-grade inflammation has

received attention, particularly in relation to obesity, the

metabolic syndrome and CVD. Chronic low-grade inflam-

mation is characterised by raised concentrations of inflamma-

tory markers in the systemic circulation. This article sets out to

explain the nature of chronic low-grade inflammation in the

context of overweight and obesity, and to describe the factors

that might influence it, in particular those related to diet.

The literature in the areas of adipose tissue, obesity and

inflammation, and dietary components and inflammation is

vast, and it is not possible to mention all studies here.

In particular, the review of diet and its components and

inflammation is not exhaustive, although the main studies of

relevance are included.

Concept and markers of low-grade inflammation

Obesity and low-grade inflammation

The concept of systemic, chronic, but low-grade inflammation

as a risk factor for the metabolic syndrome and for type 2

diabetes is based on the observation of elevated blood

levels of inflammation-associated markers in people with

incident type 2 diabetes or with the metabolic syndrome(2,3).

The up-regulation of systemic indicators of inflammation

such as leucocyte count, and serum and plasma concen-

trations of acute-phase proteins, pro-inflammatory cytokines,

chemokines, soluble adhesion molecules and prothrombotic

mediators is modest, usually less than 2-fold above what

is observed in controls. Diagnostic criteria for low-grade

inflammation have not been precisely defined, but the

phenotype per se is not disputed.

Systemic concentrations of pro-inflammatory mediators are

higher in obese (BMI .30 kg/m2) than in normal-weight per-

sons(4,5). Serum or plasma concentrations of TNF-a or IL-6 in

healthy adults are typically 0·01–2 pmol/l(6). Other inflamma-

tory mediators, such as monocyte chemoattractant protein

(MCP)-1, interferon (IFN)-g-induced protein-10 and IL-18,

may reach mean concentrations of 10 pmol/l; macrophage

migration inhibitory factor (MIF) and regulated on activation,

normal T expressed and secreted (RANTES) concentrations

may get close to the nanomolar range; and C-reactive protein

(CRP) concentration is often above 10 nmol/l. The variation in

concentrations of most mediators among non-obese or obese

individuals is at least 10-fold. Hence, there is a substantial

overlap between non-obese and obese persons. However,

there is a positive relationship between BMI and other

measures of obesity such as waist circumference and circulat-

ing concentrations of CRP and other inflammatory markers(7).

A mechanistic link between obesity and low-grade inflam-

mation was first proposed by Hotamisligil et al.(8) who showed

that white adipose tissue synthesises and releases the pro-inflam-

matory cytokine TNF-a. The expression of TNF-a is elevated

in adipocytes of obese and insulin-resistant mice, while insulin

sensitivity is improved following administration of anti-TNF-a

antibodies. Based on these data, it was suggested that adipose

tissue plays an important immune role and may be a major
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source of pro-inflammatory mediators which initiate the

development of chronic inflammation, insulin resistance and

atherosclerosis, all of which are characteristics of the metabolic

dysregulation associated with obesity. The discovery of leptin

modified the view of adipose tissue as being an ‘inert’ energy

store to being the largest endocrine gland in the body. Leptin is

produced and secreted by white adipose tissue. The discovery

of leptin introduced the concept of ‘adipocytokines’ or

‘adipokines’, substances produced by adipose tissue and which

circulate in the bloodstream, so exerting systemic effects as

hormones(9). Some adipokines are produced within adipose

tissue exclusively by adipocytes (e.g. leptin, adiponectin, serum

amyloid A (SAA)), while others are produced by both adipo-

cytes and other cell types of the non-adipocyte fraction of

adipose tissue. It is now recognised that macrophages accu-

mulate in the adipose tissue in obesity(10,11) (Fig. 1) and that

these may represent major contributors to the production of

adipokines(12,13).

Adipose tissue as a source of inflammatory mediators

Adipose tissue expresses and secretes into the systemic circu-

lation a growing list of hormones, inflammatory mediators and

immune system effectors. The products of adipose tissue can

be categorised into several groups (Table 1):

(1) Hormones: many of the hormones produced by adipose

tissue affect the immune system and insulin sensi-

tivity. Leptin appears to be pro-inflammatory(14), while

adiponectin appears to be anti-inflammatory and

insulin-sensitising(15). Similarly, visfatin(16) and resistin(17)

contribute to the development of insulin resistance,

while omentin(18,19) appears to be an insulin sensitiser.

It should be noted that most studies identifying the

roles of these hormones have been performed in rodents

and the immune and insulin-sensitising effects of these

hormones in humans remain unclear(20,21).

(2) Acute-phase proteins: these proteins are secreted in the

acute phase of inflammation and include plasminogen

activator inhibitor 1 (PAI-1)(22), pentraxine-3, lipocalin

24p3, haptoglobin, SAA(23) and a1-glycoprotein.

(3) Cytokines: these are the classic peptide mediators of

inflammation and include IL-1, IL-1 receptor antagonist

(IL-1ra)(24–26), IL-6, IL-7, IL-18(27–30), IL-10(31,32), MIF(33)

and TNF-a.

(4) Chemokines: these include IL-8(34,35), MCP-1, -3, -4, RANTES

(now known as chemokine (C–C motif) ligand (CCL) 5),

angiopoietin, metallothioneins, macrophage inflammatory

protein (MIP)-1a and -1b (now known as CCL3 and CCL4,

respectively)(36), and induced protein-10(37).

(5) Growth factors: transforming growth factor (TGF)-b(38).

(6) Components of the alternative complement system:

adipsin and factors C2, C3, C4, C7, B and D (these

are expressed more highly in omental compared with

subcutaneous adipose tissue(39,40)).

(7) Retinol-binding protein 4 which is linked with insulin resis-

tance(41,42), although its precise role has been debated(43).

Adipose tissue distribution and its impact on inflammation

Obesity is characterised by an expansion of the mass of

adipose tissue and dramatic changes in its distribution in the

body. Simplistically speaking, accumulation of adipose tissue

in the thorax and abdomen (variously termed abdominal,

central, visceral, splanchnic or android obesity) results in an

increased risk for diabetes and atherosclerosis, while excess

adipose tissue in the lower part of the body (termed

gynoid obesity) does not appear to be associated with major

metabolic consequences(44,45). The increase in abdominal fat

mass is associated with a chronic elevation of the circulating

concentrations of inflammatory mediators including several

acute-phase inflammatory proteins such as CRP(46,47), pro-

and anti-inflammatory cytokines, adhesion molecules and

pro-thrombotic molecules(22,47–49). It should be noted that

the liver and the lymphoid organs are usually the major pro-

duction sites of these inflammatory mediators but in obesity,

adipose tissue becomes a major producer resulting in a chronic

and constant local and systemic inflammatory milieu (Table 2).

Abdominal obesity is a risk factor for type 2 diabetes, hyperten-

sion, dyslipidaemia and CVD(50), and also probably obesity-

associated hepatic diseases (non-alcoholic fatty liver disease

and non-alcoholic steatohepatitis). Glucose intolerance is sig-

nificantly more common in subjects with abdominal obesity

compared with those with fat mass accumulation in their

lower part of the body. Plasma TAG concentrations are also sig-

nificantly more elevated in individuals with abdominal obesity.

It appears that the anatomical localisation of adipose tissue is

of paramount importance in relation to its physiological func-

tion, i.e. handling of lipids (lipogenesis, lipolytic activity),

expression of multiple genes, and response to insulin, catechol-

amines, sex hormones and cortisol(51). In addition, the profile

of adipokines produced is dissimilar between the subcutaneous

and abdominal adipose tissues. Thus, leptin is preferentially

expressed and secreted by subcutaneous adipose tissue(52),

while the expression of adiponectin, visfatin, omentin, resistin,

PAI-1, IL-8, IL-7, IL-1a, MCP-1, TGF-b, growth-related oncogen-

a, CCL5 and MIP-1b is higher in abdominal fat. In contrast to

such distributions, there are reports that IL-6 and TNF-a seem

to be equally synthesised by the different sites(28,36,53–59). It is

important to mention that in severe obesity, the part played

by the abdominal or the very abundant subcutaneous adipose

tissue in the systemic delivery of inflammatory mediators

is still not well understood. Nevertheless, the distinct profile

of adipokine secretion between the abdominal and subcu-

taneous adipose tissues probably contributes to the increased

risk of metabolic and cardiovascular complications and to the

development of other complications such as hepatic steatosis

and non-alcoholic steatohepatitis in obese individuals. Finally,

other adipose tissue depots in so-called ‘ectopic sites’, such

as within the liver, heart or skeletal muscle, may contribute

to the production of inflammatory mediators in the absence

of obesity. In this regard, the local production of the inflamma-

tory molecules by adipose tissue within the heart may

be important; the amount of this tissue and its proximity to

the coronary vessels could contribute to the development of

coronary pathologies(60,61).
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Cell populations of adipose tissue

Adipose tissue is a heterogeneous tissue composed of several

cell types: mature adipocytes, pre-adipocytes, fibroblasts,

endothelial cells, mast cells, granulocytes, lymphocytes and

macrophages. Cells within adipose tissue, apart from mature

adipocytes, are collectively termed the stroma-vascular

fraction. The various cell types have not been precisely

characterised, nor has the relative change of their quantitative

contributions to the tissue in obesity. Because of the hetero-

geneity of cells in the adipose tissue, the cellular source of

the inflammatory factors secreted by the tissue into the sys-

temic circulation remains unknown. In vitro studies have

demonstrated that mature adipocytes express inflammatory

factors such as TNF-a(56). SAA is overexpressed and secreted

in abundance by isolated adipocytes from obese subjects, as

is leptin, while secretion of adiponectin is suppressed. SAA

and leptin production by adipose tissue depends on adipocyte

size(18,19,23,62). Adipocyte size also influences the expression of

other inflammatory mediators as demonstrated by fraction-

ation studies of adipocytes coupled with studies of gene

expression profiles(62). Adipocyte size, for example, deter-

mines the production of IL-6, IL-8, MCP-1 and granulocyte

colony-stimulating factor(29). Although adipocyte hypertrophy

precedes the development of type 2 diabetes(63), a growing

number of studies indicate that the principal site of production

of inflammatory mediators appears to be the stroma-vascular

fraction(36,64–67). More recent studies in mice have suggested

that the infiltration of obese adipose tissue by macrophages

is accompanied or even preceded by an influx of T-lympho-

cytes(68–71) and that T-cells have a key early role(69). Early

work indicated the presence of CD3-positive T-lymphocytes

in human adipose tissue(72), and more recent studies have

shown high numbers of T-cells in the adipose tissue of

Lean adipose tissue

Weight gain

Obese adipose tissue

Adipocyte

Blood
vessel

Macrophage Apoptotic
adipocyte

Macrophage-
derived factors
    Resistin (human)
    IL-1β

Crosstalk

Pro-inflammatory cytokines and chemokines
    TNF
    IL-6
    CCL2

Adipocytokines
   Adiponectin
   Leptin
   Resistin

Fig. 1. Schematic representation of the interaction between adipocytes and macrophages showing some of the molecules released. Expansion of adipose tissue

during weight gain leads to the recruitment of macrophages through various signals (e.g. chemokines such as chemokine (C–C motif) ligand 2 (CCL2)) released

by adipocytes. Macrophages accumulate around apoptotic adipocytes. Mediators synthesised by adipocytes and resident macrophages contribute to local and

systemic inflammation. Reproduced with permission from Tilg & Moschen(10).
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diet-induced obese insulin-resistant mice(71). Furthermore,

Wu et al.(71) demonstrated the presence of CD3-positive

T-lymphocytes in human adipose tissue and described the

expression of RANTES, a T-cell-specific chemokine, and its

respective receptor CCR5 in the visceral adipose tissue of mor-

bidly obese patients. A recent study in mice reported mainly

CD8-positive lymphocyte infiltration in hypoxic areas within

the adipose tissue(70). Most recently, it has been shown that

pro-inflammatory T-lymphocytes are present in visceral

adipose tissue and may contribute to local inflammatory cell

activation before the appearance of macrophages, suggesting

that these cells could play an important role in the initiation

and perpetuation of adipose tissue inflammation as well as

the development of insulin resistance(69).

It has been proposed that macrophages and mature adi-

pocytes are derived from the same precursor cells and show

close gene expression profiles including the Toll-like recep-

tors (TLR). Pre-adipocytes exert ‘macrophage-like’ effects

when exposed to strong pro-inflammatory environments(73,74).

It should be noted, however, that the vast majority of the

macrophage infiltration in adipose tissue in obesity originates

most probably from the circulation. In obese subjects, these

macrophages typically aggregate in crowns around apoptotic

adipocytes(31) (Figs. 1 and 2). Although these macrophages

express activation markers, they could be pro- or anti-

inflammatory depending on the degree of obesity and its evol-

ution as suggested by studies in mice showing that weight

gain is accompanied by transformation from a macrophagic

M2 (anti-inflammatory) phenotype towards an M1 (pro-

inflammatory) profile(75) (Fig. 3)(76). Consequently, secretion

profiles of the adipose tissue can change depending on

the phenotype of the cell population infiltrating it during

the different stages of obesity (initiation, aggravation, mainten-

ance and weight loss; Fig. 4)(77).

Adipose tissue macrophages may contribute to the mainten-

ance of the low-grade inflammatory state linked to obesity(36).

Factors that induce the infiltration and activation of macro-

phages in the adipose tissue are probably multifactorial. Para-

crine, autocrine and endocrine signals, as well as mechanical

modifications (hypertrophy and adipocyte hyperplasia),

could play a role in this phenomenon. Many adipokines

synthesised by the adipose tissue are candidates to attract

inflammatory cells. In vitro studies have suggested that

leptin itself (at supra-physiological levels) induces adhesion

proteins, hence facilitating the migration of monocytes(78).

Conversely, adiponectin may inhibit this process(79). Very

little is known about the role of selectins, integrins and

elements of adhesion to the extracellular matrix, in the process

of macrophage attraction to the adipose tissue. Gene

expression studies with human adipose tissue have demon-

strated that the levels of expression of MCP-1, colony-stimulat-

ing factor-3 and the urokinase plasminogen activator CD87

increase significantly in the adipose tissue of subjects with

morbid obesity(31). MCP-1 is a strong chemoattractant and it

acts via its receptor CCR2. MCP-1 is synthesised predominantly

by macrophages and endothelial cells and, to a lesser extent,

by adipocytes. In one study, CCR2 gene knockout mice

showed a reduction of macrophage infiltration in the adipose

tissue and improvement of insulin sensitivity(80). This led to

the suggestion that MCP-1 and its receptor CCR2 are major

players in the macrophage accumulation within the adipose

tissue(80). However, contradictory data suggest that MCP-1

might not be such a crucial candidate(81). The role of MCP-1

in the macrophage accumulation in human obesity needs to

be established. Other candidate molecules and other mechan-

isms continue to be explored. Local hypoxia could also play

an important role in the attraction and retention of macro-

phages within the adipose tissue(82). Hypoxia-inducible

factor-1a, a transcription factor normally induced by hypoxia,

is overexpressed in the subcutaneous adipose tissue of obese

subjects and its expression is decreased during weight

reduction(31). Tissue hypoxia induces macrophage attraction

into solid tumours as well as into atherosclerotic plaques. Adi-

pose tissue of obese subjects could be hypoxic in some areas

and a local expression of chemokines could be induced.

It should be noted that leptin, which possesses indirect

chemoattractant properties, is induced by hypoxia(83).

It is generally considered that macrophage accumulation in

adipose tissue is detrimental. However, macrophage accumu-

lation could be related to an adaptation process associated

with the augmentation of fat mass, and macrophage accumu-

lation could be necessary for the upkeep of the tissue and

perhaps to limit its expansion. It appears that macrophage

aggregates within the adipose tissue are localised around

apoptotic adipocytes, suggesting that one of their functions

is to clean up the debris of dying and dead cells(84). In

addition to their role in cleaning up the old cells, the accumu-

lation of macrophages may also be useful for the formation of

new vessels, particularly at the site of inflammation and in

ischaemic zones when adipose tissue grows(85). Macrophages

also control fat mass growth and modify the biology of adipo-

cytes and pre-adipocytes in a paracrine manner. The specific

effects of TNF-a and IL-6 on different adipocyte functions

(increased lipolysis, modification of adipocyte secretion

patterns and induction of adipocyte insulin resistance) have

been shown(86). In the presence of a medium derived from

human macrophages, human pre-adipocytes showed a drastic

change in their phenotype, acquiring a pro-inflammatory

phenotype and secreting significant amounts of IL-6 and

IL-8, and they grew well(87), but differentiated poorly(87,88).

Table 1. Cytokines expressed or secreted by human adipose tissue

Family Example(s)

Chemokines MCP-1 (known as CCL2), MCP-3,
MCP-4, RANTES (known as CCL5),
MIP-1a (known as CCL3)

IL IL-6, IL-8 (acts as a chemokine), IL-1ra, IL-10, IL-18
Interferons IP-10
TNF TNF-a
Growth factors Vascular endothelial growth factor, TGF-b,

hepatocyte growth factor
Others Leptin

MCP, monocyte chemoattractant protein; CCL, chemokine (C–C motif) ligand;
RANTES, regulated on activation, normal T expressed and secreted; MIP,
macrophage inflammatory protein; IL-1ra, IL-1 receptor antagonist; IP, interferon-
g-induced protein; TGF, transforming growth factor.
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These cellular alterations are induced in co-cultures without

direct cellular contact, suggesting the key role of soluble

factors, although it cannot be excluded that a direct cell–cell

interaction also plays a role in modifying pre-adipocyte or

adipocyte biology. The mature adipocyte also endures pro-

found modifications of its biology in culture systems with a

medium from activated macrophages. Other than the pro-

inflammatory state, increased lipolysis and resistance to insulin

have been observed(89,90). TNF-a has been proposed to

mediate these effects. From the molecular point of view, the

NF-kB pathway, implicated in the primary regulation of

inflammatory responses(91–93) (Fig. 5)(94), is induced in the

pre-adipocyte(87) and in the adipocyte in the presence of a

medium from macrophages(95). The NF-kB pathway is also

brought into play in macrophages in contact with a medium

from adipocytes. TLR appear to be important players which

lead to the induction or suppression of genes orchestrating

the inflammatory response. TLR-4 is the bacterial lipopolysac-

charide (LPS) receptor, but data have shown that the NEFA

produced by adipocytes after adrenergic stimulation are also

strong inducers of the TLR-4/NF-kB system(95) (Fig. 5). TLR-4

is expressed by adipocytes and is overexpressed during

obesity(96). TLR-4 knockout mice are protected from insulin

resistance induced by lipid infusions(97).

Based on these different studies, a dual effect of macro-

phages of the adipose tissue could be expected: first, a local

‘beneficial’ effect in clearing out old adipocytes, and in the

control and of the development of fat mass and second,

a deleterious local and systemic effect via the increase in the

production and secretion of adipokines, promoting the pro-

gression of complications of obesity and the induction of insu-

lin resistance.

Adipokines and chronic low-grade inflammation

Adipokines and the complications of obesity. Inflammatory

molecules are likely candidates exerting a molecular link

between the adipose tissue and the metabolic, cardiovascular,

hepatic and thrombotic complications, and certain cancer

types occurring in conjunction with or as a consequence

of human obesity. A myriad of candidate adipokines are

proposed to play this role(98–100). In the cardiovascular

field, they can be considered as risk factors, and even

directly play a pathophysiological role favouring the initiation

and progression of atherosclerosis. Relationships between

abnormalities of cardiac function in obese subjects, the

accumulation of abdominal fat and low-grade inflammation

have been suggested(101,102). Among the candidates secreted

by the adipose tissue, the increase in IL-6, IL-8 and MCP-1

and the decrease in adiponectin are considered to be particu-

larly important(101,102). The studies of the pathophysiological

links between adipokines and cardiovascular health can be

illustrated by the analysis of the effects of adiponectin in

rodents. Overexpression of adiponectin results in diminished

size of the lesions observed following acute ischaemic

myocardial infarction, increased angiogenic properties and

reduced size of atheromatous plaques in the genetically pre-

disposed apoE2/2 mouse(103).

Table 2. Modification of circulating inflammatory marker concentrations in relation to obesity and weight loss

Effect of obesity Effect of weight loss

Acute-phase proteins
C-reactive protein Increase Decrease
Fibrinogen Increase Decrease
Orosomucoid Increase Decrease
Haptoglobin Increase Decrease
Serum amyloid A Increase Decrease

Cytokines
IL-6 Increase Decrease
IL-8 Increase Decrease
IL-18 Increase Decrease
IL-10 Increase Decrease
IL-1 receptor antagonist Increase Decrease
TNF-a Increase None or decrease
Monocyte chemoattractant protein-1 Increase Decrease
Monocyte chemoattractant protein-4 Increase Not known
Macrophage migration inhibitory factor Increase Decrease

Other adipokines
Leptin Increase Decrease
Visfatin Increase Decrease
Resistin Decrease None or increase
Adiponectin Decrease Increase
Omentin Decrease Not known

Adhesion proteins/extracellular matrix remodelling proteins/prothrombotics
Matrix metalloproteinase 9 Increase Decrease
Soluble intercellular adhesion molecule-1 Increase Decrease
Soluble vascular cell adhesion molecule-1 Increase Decrease
Soluble E-selectin Increase Decrease
Hepatocyte growth factor Increase Not known
Plasminogen activator inhibitor 1 Increase Decrease
Cathepsin S Increase Decrease
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Several inflammatory mediators produced by adipose tissue,

such as CCL5, IL-1b and IL-8, as well as markers of oxidative

stress, are increased in diabetic or glucose-intolerant patients,

and the amelioration of hyperglycaemia by insulin therapy

reduces circulating concentrations of these molecules(104,105).

The increase in the concentrations of TNF-a, IL-6, IL-1b,

IL-8, resistin and many other factors produced by macrophage

activation could contribute to the deterioration of insulin

sensitivity (Fig. 6)(106). The precise relationship between the

importance of macrophage and T-cell accumulation in adi-

pose tissue depots, adipokine secretion and the modifications

of insulin sensitivity needs to be further addressed in humans.

Macrophage accumulation is more abundant in the abdomi-

nal adipose tissue(65) than in the subcutaneous tissue, and this

could explain some of the risks associated with the accumu-

lation of intra-abdominal fat. For example, a relationship

between the increase in macrophages in the abdominal adi-

pose tissue and hepatic inflammation and fibrosis has been

reported(65). In another study, the expression of the MCP-1

and colony-stimulating factor-1 genes and proteins was associ-

ated with macrophage accumulation in obese subjects(107).

Since the abdominal adipose tissue is partly drained by the

portal system, it cannot be excluded that some adipokines,

together with high NEFA fluxes and hormones delivered by

the adipose tissue, could contribute to the alteration of hepatic

function observed in obese subjects, the mechanism of which

needs to be better dissected.

Adipokines and weight loss. Even modest weight

reduction improves the metabolic and cardiovascular risks

associated with human obesity. Measures of endothelial acti-

vation also improve after weight reduction(108–110). Many

studies have shown that weight loss induced by a decrease

in energy intake, and sometimes an increase in exercise,

reduces systemic inflammation. A reduction in concentrations

of numerous inflammatory molecules and endothelial risk

factors, and an increase in adiponectin concentration have

been observed during weight-loss programmes, and these are

sometimes associated with improvement of insulin sensi-

tivity(111). Such changes have been described for CRP(112),

IL-6(113), IL-18(114), IL-1ra(26), PAI-1(115), SAA(23,116), cathepsin

S(117), matrix metalloproteinase-9(118), soluble adhesion mol-

ecules (soluble intercellular adhesion molecule-1 (sICAM-1),

soluble vascular cell adhesion molecule-1 (sVCAM-1))(110),

tissue factor(119), MIF(120), MCP-1(121), soluble receptors of

TNF (sTNFR) and for eotaxin, an inflammatory factor

implicated in asthma, another complication of obesity(122).

Weight loss induced by gastric bypass reduced the circulating

concentrations of visfatin(123) and TNF-a(124,125). One study

followed sixty obese patients during the course of weight

loss induced by bariatric surgery and reported a reduction of

30 % of initial weight, a decrease in CRP, SAA, orosomucoid

protein, IL-6, TNF-a and fibrinogen concentrations, and an

increase in adiponectin concentration(126). After the surgery,

the concentration of IL-6 dropped slowly while the concen-

trations of SAA and CRP dropped more quickly(126).

There was a significant modification in the expression of

inflammatory genes in the subcutaneous adipose tissue

of obese women following a hypoenergetic diet(127). The

expression of 100 genes linked to inflammatory processes

was modified after 4 weeks (41 % increased and 59 %

decreased). These genes belonged to at least twelve functional

families including cytokines, the complement factor cascade,

acute-phase proteins of inflammation, and molecules involved

in cellular adhesion and in the remodelling of the extracellular

matrix. The improvement of the inflammatory profile (at the

level of gene expression) involved both the decreased

expression of pro-inflammatory factors and the increased

expression of anti-inflammatory factors such as IL-10 and

IL-1ra. The modification of the inflammatory gene expression

profile was very similar in subjects following bariatric

Non-obese subject

Macrophages

Obese subject

Obese subject

Fig. 2. Adipose tissue from non-obese and obese human subjects showing macrophage infiltration. Macrophages are stained with HAM56 antibody. Reproduced

with permission from Cancello et al.(65).
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surgery and was associated with a reduction of macrophage

infiltration. In this study, the protein expression of IL-10

increased, suggesting a possible M1 to M2 (pro-inflammatory

to anti-inflammatory) switch of macrophage phenotypes(31).

Overall, the mitigation of the systemic inflammatory profile

observed during weight loss is associated with modifications

of adipose tissue inflammatory gene expression, and this

may be linked with altered profiles of inflammatory protein

secretion. The eventual consequence of this phenomenon on

the local biology of the adipose tissue remains to be identified.

Chronic low-grade inflammation and insulin resistance

Experimental model systems in vitro

In obesity and the metabolic syndrome, key organs displaying

increased insulin resistance are the liver, skeletal muscle,

adipose tissue and the endothelium (Fig. 6). Experimental

model systems in vitro have shown that hepatocytes as well

as muscle cells, adipocytes and endothelial cells respond to

exposure to the pro-inflammatory cytokines TNF-a, IL-6

and/or IL-1b with impaired insulin signalling(128). Since

these cytokines mediate their effects by binding to their

cognate receptors, downstream components of the signalling

cascade must interfere with insulin receptor function. Several

such pathways have been identified (Fig. 7)(128). Pro-

inflammatory cytokine signalling usually activates the kinases

IkB kinase b and C-jun N-terminal kinase 1, both of which

in turn phosphorylate the Ser 307 residue of insulin receptor

substrate (IRS)-1. This prevents the phosphorylation of

tyrosine residues of IRS-1 by the insulin receptor and the

downstream signalling cascade. TNF-a mediates insulin resist-

ance also via the activation of p38 mitogen-activated protein

kinase (MAPK) which interferes with the IRS–phosphatidyl-

inositol 3-kinase–Akt pathway(129). Another mechanism

involves cytokine-induced suppressor of cytokine signalling 1

and 3, which also prevent tyrosine phosphorylation of IRS

proteins, by direct interference, or ubiquitylation and sub-

sequent degradation(130,131). Induction of suppressor of cyto-

kine signalling 3 by IL-6 occurs via the signal transducer

and activator of transcription 3 (STAT3) mammalian target of

rapamycin (mTOR) pathway(132).

In vivo models

The impairment of insulin signalling by TNF-a has also been

observed in vivo after infusion of the cytokine into

rodents(133,134). A critical mediator downstream of TNF-a

appears to be MIF, since mice with a disrupted MIF gene pre-

serve normal insulin signalling(135). In this context, it is of

interest that adipocytes are able to secrete MIF(33). The latter

finding demonstrates that there are still substantial gaps in

our understanding of the pro-inflammatory cytokine signalling

Classically activated
macrophage

LPS, IFN-γ

TNF-γ , IL-Iβ,
IL-6, resistin,
NO, etc.

Alternatively activated
macrophage

Lean
insulin sensitive

Obese
insulin resistant

Anti-inflammatory
NEFA
IL-13
IL-4

Proinflammatory
NEFA
Chemokines
TNF-α

Adipocyte

IL-10
IL-4, IL-3

IL-10

Fig. 3. Schematic representation of factors regulating macrophage polarity and insulin resistance in adipose tissue. Under lean conditions, adipocytes secrete factors,

such as IL-13, that promote alternative activation of macrophages. Alternatively activated (M2) macrophages secrete anti-inflammatory mediators, such as IL-10, and

may secrete insulin-sensitising factors. Obesity induces changes in adipocyte metabolism and gene expression, resulting in increased lipolysis and the release of

pro-inflammatory NEFA and factors that recruit and activate macrophages, such as chemokines and TNF-a. Activated M1 macrophages produce large amounts of

pro-inflammatory mediators, such as TNF-a, IL-1b and resistin, that act on adipocytes to induce an insulin-resistant state. This establishes a positive feedback loop

that further amplifies inflammation and insulin resistance. IFN, interferon; LPS, lipopolysaccharide. Reproduced with permission from Olefsky & Glass(76).
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cascade leading to insulin resistance. Most importantly, it

remains unclear where other known regulators of insulin

sensitivity fit into the chain of events. There is convincing

evidence that reactive oxygen species (ROS) are critical to

the effects of TNF-a on insulin signalling(136), and also that

mitochondrial dysfunction is involved(137). The impact of

insulin on cellular metabolic activity, proliferation and differ-

entiation can also be impaired by inflammatory mediators

via an indirect pathway, i.e. by enhancing or suppressing

the production of hormones that modulate cellular responses

to insulin. These effects include the up- or down-regulation of

the synthesis of resistin(138), leptin, adiponectin(139), lipocalin

2(140), osteopontin(141), and of insulin itself. When considering

the subnanomolar systemic concentration of many pro-

inflammatory mediators (see section ‘Obesity and low-grade

inflammation’), it is possible that only a few of them contri-

bute to the metabolic derangements seen in obesity and the

metabolic syndrome.

A different situation emerges when paracrine effects of

inflammatory mediators are considered. As described above,

there is substantial local production of inflammatory mediators

in organs affected by insulin resistance. Hepatocytes, adipo-

cytes, muscle cells and the endothelium are sites of inflamma-

tory mediator synthesis, but local activated macrophages

appear to be the dominant site of synthesis and secretion,

which leads to spillover into the general circulation(66,67,142).

Paracrine concentrations of inflammatory mediators are suffi-

cient to induce insulin resistance(128). Indeed, co-culture of

adipocytes with macrophages caused impairment of insulin

signalling(75). In addition to paracrine effects, it is conceivable

that the functions of liver cells are affected by inflammatory

mediators released from the abdominal adipose tissue because

of their blood link.

Evidence supporting the link between inflammatory
mediators and insulin resistance

In human subjects, the most direct approach to assess the

contribution of low-grade inflammation to the development

of insulin resistance and the metabolic syndrome is to analyse

the consequences of anti-inflammatory pharmacotherapy.

The longest experience is with the use of salicylates which

are weak inhibitors of IkB kinase b and of serine phosphoryl-

ation of IRS proteins(143,144). Early clinical trials with high

doses of salicylates, notably aspirin, yielded both positive

and negative effects on glycaemia and insulin resistance.

Later studies have revealed that only very high doses are

effective in improving glucose metabolism(145). A randomised

placebo-controlled pilot trial of salsalate treatment for 1 month

in twenty non-diabetic obese individuals found decreased

Over-nutrition

Adipose tissue
expansion/inflammation

Obesity-associated
pathologiesLean/healthy state

Insulin sensitivity
Normal endothelial function

Insulin sensitivity
Endothelial dysfuction

Anti-inflammatory adipokinesAdiponectin, omentin

TNF-α, IL-6, IL-8, MIF,
MCP-1, RANTES

Leptin, adipsin, chemerin,
visfatin, apelin, vaspin

SAA, haptoglobin, PAI-1

HGF, NGF, TGFβ, VEGF

Activation of COX, NOS,
RAS and MMP

Insulin sensitivity

Pro-inflammatory adipokinesAnti-inflammatory adipokines

Pro-inflammatory adipokines

Hypoxia/inflammation

Fig. 4. Schematic representation of the alterations in adipose tissue that accompany body-weight gain. In the lean state, the tissue secretes elevated levels of adi-

ponectin and other anti-inflammatory adipokines and is insulin responsive. Energy intake in excess of expenditure is followed by adipocyte hypertrophy and death

and chemotactic adipokine release (see Fig. 1). This facilitates macrophage infiltration into the tissue and exacerbates the inflammatory response. These

secretory changes are accompanied by local insulin resistance and hypoxia. Many of the adipokines released by inflamed adipose tissue cause insulin resistance

and endothelial dysfunction. COX, cyclo-oxygenase; HGF, hepatocyte growth factor; MIF, macrophage migration inhibitory factor; MMP, matrix metalloproteinase;

NGF, nerve growth factor; NOS, NO synthase; PAI-1, plasminogen activator inhibitor-1; RANTES, regulated on activation, normal T expressed and secreted;

SAA, serum amyloid A; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; MCP, monocyte chemoattractant protein; RAS, renin-angiotensin

system. Reproduced with permission from Karastergiou & Mohamed-Ali(77).
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blood glucose and insulin responses to an oral glucose

challenge consistent with improved insulin sensitivity(146).

A secondary analysis of a prospective multicentre observa-

tional study of 4905 adults with rheumatoid arthritis, of

whom 1808 had taken hydroxychloroquine, indicated a

reduced risk of diabetes in patients using this drug(147).

More specific anti-inflammatory intervention is possible

through the use of recombinant proteins antagonising pro-

inflammatory mediators. A first controlled double-blind trial

was performed with daily injections of recombinant human

IL-1ra for 13 weeks. This resulted in decreased glycated Hb

levels and enhanced endogenous insulin production(148).

However, although there was a significant decrease in sys-

temic CRP and IL-6 concentrations in response to anti-inflam-

matory treatment, there was no change in insulin resistance

(homeostasis model assessment index and euglycaemic–

hyperinsulinaemic clamp studies). It is difficult to judge the

extent of inflammation persisting during therapy because

absolute serum concentrations of CRP and IL-6 were not

reported. There was no significant decrease in circulating

TNF-a, MCP-1 or IL-8 concentrations, which indicates that

there was no general down-regulation of pro-inflammatory

cytokines. Another target-specific approach is the neutralis-

ation of TNF-a by injections of recombinant antibodies or

sTNFR. In animal models of insulin resistance, infusion of

TNF-a antibodies has been reported to ameliorate insulin sig-

nalling(8,149). In obese non-diabetic or diabetic individuals,

several studies have observed improvement of insulin sensi-

tivity after prolonged treatment with neutralising TNF-a anti-

bodies(150,151), whereas other trials did not report such

effects of TNF-a antibody injections, despite dampening of

systemic inflammation(152). Possible explanations are that the

recombinant antibodies do not reach sufficiently high concen-

trations in target tissues, or that TNF-a neutralisation is effective

only in skeletal muscle tissue but not in adipose tissue as has

been observed in rats(153). The overall conclusion is that results

of studies of anti-inflammatory therapy generally support

the concept of inflammatory mediators as contributors to the

pathogenesis of insulin resistance, but have as yet not provided

clear evidence of a critical pathogenic role of TNF-a or IL-1.

Postprandial inflammatory response

The foregoing discussion has dealt with chronic changes in

concentrations of inflammatory mediators but a rise in

inflammation also appears to take place acutely following

meals. The postprandial inflammatory response lasts for

only few (4–8) h but it recurs several times a day following

eating. Although the postprandial inflammatory response has

been known for several years(154), it is only recently that its

probable importance in the generation of insulin resistance

and atherosclerosis has been appreciated(155–157). Several

cells in the body associated with the innate immune

system, including abdominal adipocytes and monocytes/

macrophages, respond to acute postprandial elevation of

several components of a meal by mounting a transient

inflammatory response. The most efficient triggers of the

postprandial inflammatory response appear to be TAG,

SFA, oxysterols and glucose(158–161). The pathophysiological

significance of a postprandial inflammatory response in

causing insulin resistance, the metabolic syndrome and

atherosclerosis is currently under investigation, and this

response appears to play a much more crucial role than pre-

viously thought(162).

Non-dietary factors influencing the magnitude of the
postprandial inflammatory response

Body weight. Obesity is considered an important determi-

nant of the magnitude of the postprandial inflammatory

response(163), perhaps being more important than any specific

component of a meal inducing the response. The exaggerated

postprandial inflammatory response of the obese is reversible

upon reduction of body weight(155,164).

Hyperglycaemia and type 2 diabetes. Patients with type 2

diabetes exhibit a higher postprandial inflammatory response

than non-diabetics, irrespective of their body weight(165,166).

Infiltrated
macrophages

NF-kB

NF-kB

TLR4

TNF-α

Chemoattraction

Lipolysis

Adipokine
secretion

(MCP-1.....)

Hypertrophied
adipocytes

TNFR1

TLR4

NEFA

CXCR
CCR

Fig. 5. Schematic representation of the cross-talk between adipocytes and

macrophages of adipose tissue in obesity. TNF-a produced by macrophages

activates adipocytes via TNF-a-receptor-1 (TNFR1) and the NF-kB pathway.

TNF-a also induces lipolysis leading to the release of NEFA. Saturated

NEFA in turn activate the Toll-like receptor 4 (TLR4)/NF-kB pathway in both

macrophages and adipocytes, thereby further amplifying the inflammatory

process. Some of the adipokines produced (e.g. monocyte chemoattractant

protein-1 (MCP-1)) exert chemoattractant activity through binding to specific

receptors (CXC chemokine receptor (CXCR) and CC chemokine receptor

(CCR)) of macrophages, leading to their infiltration in obese adipose tissue.

Reproduced with permission from Maury & Brichard(94).
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The magnitude of the postprandial inflammatory response

appears to correlate with the degree of insulin resistance(165).

Drugs. Certain medications including statins and angioten-

sin II receptor antagonists ameliorate the postprandial inflam-

matory response in obese patients(167).

Pathophysiology of the postprandial inflammatory
response

The daily influx of TAG, SFA, glucose and other food com-

ponents initiates an acute innate immune (i.e. inflammatory)

response that lasts for a few hours. Meals or food components

may contain LPS which directly triggers systemic inflam-

mation. Related to this effect, the absorptive process may

allow translocation of LPS from gut bacteria into the systemic

circulation(168). Meals may contain oxidised components

which initiate oxidative stress and/or inflammatory responses

upon absorption. Postprandial hyperglycaemia can suppress

antioxidant capacity(169) and thus its ability to curb an

inflammatory reaction. Hyperglycaemia induces the pro-

duction of free radicals which themselves initiate an inflam-

matory reaction. A six-transmembrane protein of prostate 2

(STAMP2) has been proposed as a major determinant of

the postprandial inflammatory response(170), acting to block

activated inflammatory signalling pathways in adipocytes

and possibly in macrophages. In vivo, feeding induces

STAMP2 expression in visceral white adipose tissue(170). Fur-

thermore, the visceral tissue of STAMP gene knockout mice

is resistant to insulin action(170,171).

Ageing and low-grade inflammation

Ageing is associated with complex changes in, and a dysregul-

ation of, the immune system, including its inflammatory com-

ponent. The ageing of the immune system, immunosenescence,

has been suggested to be a consequence of continuous

attrition caused by chronic antigenic overload(172). Ageing is

accompanied by a low-grade, chronic inflammatory state

clearly shown by 2- to 4-fold increases in serum levels of

several inflammatory mediators in older persons(173). Studies

have reported increased plasma/serum levels of the pro-

inflammatory cytokine IL-6 in healthy subjects with advanced

age (55–75 v. 26–54 years)(174), an increase of 0·016 pg/ml per

year of life(175) and a significant increase with overall age

(from 20 to 102 years)(176), and in elderly diabetic subjects

(65–80 years)(177). Ageing is also associated with increased

concentrations of TNF-a(178,179), CRP(180) and IL-1ra(176,181). It

is hypothesised that failure of anti-inflammatory mechanisms

to neutralise inflammatory processes that are continuously

triggered lifelong plays a role in chronic low-grade inflam-

mation in the elderly(182). In line with this, it has recently

been shown that ageing (two groups with a mean age of

77·9 and 102·5 years, respectively v. a group with a mean

age of 43·5 years) is characterised by a profound reduction

in anti-inflammatory lipoxin A4 levels(183).

The effect of ageing on the immune system, however,

cannot be completely separated from the contribution of

co-morbidity, medication use or malnutrition(184,185). Since

several inflammatory markers act as disease markers, it is

possible that some of the chronic low-grade inflammation

patterns found in the elderly may be related to the presence

of co-morbidities(180,186). Interestingly, however, successful

ageing (ageing without co-morbidities) has also been

associated with chronic low-grade inflammation(173). Other

factors that may affect and modulate circulating levels of

inflammatory mediators, including obesity, infections,

physical activity, age-related decline in sex hormones and

altered host–microbiota interaction at the gut level, may

also be involved in the age-associated increase in low-

grade inflammation(172,187–189). Furthermore, high plasma

Over-nutrition

Macrophage

Endocrine
inflammatory

signals Fat
insulin

resistance

Paracrine and autocrine
inflammatory signals

Muscle
insulin

resistance

Liver
insulin

resistance Systemic
insulin resistance

Fig. 6. Schematic representation of the role of adipose tissue inflammation in the initiation and maintenance of systemic insulin resistance. Reproduced with

permission from de Luca & Olefsky(106).
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levels of IL-6 (and TNF-a) in the elderly were associated

with truncal fat mass(177), suggesting that some of this

effect might be mediated with age-associated increase in

fat mass.

There is strong evidence that low-grade elevations of

circulating inflammatory mediators are associated with the

development of age-related conditions such as atherosclero-

sis, cognitive decline and frailty. This may in part reflect

the inflammatory nature of these conditions which involve

local or generalised inflammation (e.g. neuroinflammation

in cognitive decline), with the increase in circulating con-

centrations of inflammatory mediators reflecting overspill

from the inflammatory lesion(s). Additionally, the increased

inflammatory burden could make a contribution to the

ongoing pathology and to a worsening clinical situation.

Increases in the levels of circulating TNF-a, IL-6, IL-2R and

CRP are also strong predictors of all-cause mortality risk

in longitudinal studies of several elderly cohorts(190–193).

However, whether increased inflammatory activity causes

age-associated pathology or reflects the sum of ongoing

pathological processes(173,194) remains uncertain. Survival

analyses in studies from the USA and Europe with several

populations (healthy, non-disabled, $65-year-old sub-

jects(191), high-functioning subjects aged 70–79 years(192),

disabled women aged $65 years(193) and relatively healthy

80-year-old people(190)), however, show that effects of

inflammatory mediators were independent of pre-existing

morbidity and other traditional risk factors for death. This

indicates that these inflammatory mediators influence

pathological processes or act as very sensitive markers of

subclinical disorders in the elderly(173).

Exercise and low-grade inflammation

Influence of acute and regular physical activity and fitness
on low-grade inflammation

The health benefits of a physically active lifestyle are well

recognised. Physical inactivity and obesity are also increas-

ingly recognised as modifiable behavioural risk factors for

a wide range of chronic diseases, and in particular for CVD(195).

Physical fitness, physical exercise and physical activity are

often used as interchangeable concepts, but it is important

to point out the differences among these. Physical activity is

any body movement that increases energy expenditure(196).
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Fig. 7. Schematic representation of the direct interaction between inflammatory and insulin signalling pathways. The insulin signalling cascade branches into

two main pathways. The PI3K-Akt pathway mediates insulin action on nutrient metabolism including glucose uptake. The Ras-mitogen-activated protein kinase

(MAPK) pathway mediates the insulin’s effect on gene expression, but also interacts with the PI3K-Akt pathway to control cell growth and differentiation. Acti-

vation of the insulin receptor leads to tyrosine phosphorylation of insulin receptor substrate (IRS)1, thereby initiating signal transduction. Stimulation of the

NF-kB and activator protein-1 (AP-1) Fos/Jun inflammatory pathways results in the activation of serine kinases, Ikkb and C-jun N-terminal kinase 1, which

reduce the signalling ability of IRS1. Related negative regulators of IRS proteins include the suppressor of cytokine signalling proteins and NO, which are

induced in inflammation, and promote IRS degradation. NO also reduces PI3K-Akt activity by nitrosylation of Akt. Reproduced with permission from de Luca

& Olefsky(128). TLR, Toll-like receptors.
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Self-reported data of physical activity are easy and feasible to

ask in a questionnaire or interview in large populations but

are a measurement subject to recall and reporting biases. Exer-

cise is planned, structured and repetitive physical activity,

while physical fitness is the capacity to perform physical

activity, and makes reference to a full range of physiological

and psychological qualities. To eliminate reporting bias that

could be present in self-reported physical activity measure-

ment, several studies have examined the relationship between

cardiorespiratory fitness and inflammatory markers. Maximal

oxygen consumption (VO2max) attained during a graded maxi-

mal exercise to voluntary exhaustion is considered as the

single best indicator of cardiorespiratory fitness(197). There

are excellent reviews of the evidence addressing the influence

of physical activity and fitness on low-grade inflammation

from epidemiological studies as well as clinical trials on

the general adult population(198–202), athletes(203,204), and in

children and adolescents(205).

Acute v. regular exercise. IL-6 and other cytokines that

are produced and released by skeletal muscles have been

suggested to be involved in mediating the health-beneficial

effects of exercise and to play important roles in the protection

against diseases associated with low-grade inflammation.

The following chain of events is based on observations by

Pedersen and colleagues and has been excellently reviewed

elsewhere(206–208):

(1) Contracting skeletal muscle is a major source of circulat-

ing IL-6 in response to acute exercise. Plasma IL-6

increases in an exponential fashion with exercise and is

related to exercise intensity, duration, the mass of

muscle recruited and endurance capacity. During heavy

exercise, such as a marathon, there is up to a 60-fold

increase in plasma IL-6 concentration(209), with the dur-

ation of the event explaining more than 50 % of the vari-

ation in concentration(210). Interestingly, IL-6 shows a

markedly lower response to acute exercise in trained

subjects.

(2) Physiological concentrations of IL-6 stimulate the appear-

ance in the circulation of the anti-inflammatory cytokines

IL-1ra and IL-10 and inhibit the production of the pro-

inflammatory cytokine TNF-a. The health benefits of

long-term regular exercise are ascribed to the anti-inflam-

matory response elicited by an acute bout of exercise,

which is partly mediated by muscle-derived IL-6.

(3) The anti-inflammatory effects of exercise may therefore

offer protection against TNF-induced insulin resistance.

Moreover, IL-6 stimulates lipolysis as well as fat oxidation.

The increase in IL-6 at the end of exercise is responsible

for the increased CRP levels during late recovery.

In response to regular physical activity, basal as well as

post-exercise plasma concentrations of IL-6 will decrease by

mechanisms that might include increased glycogen content,

improved antioxidant capacity and improved insulin sensi-

tivity. The lower concentrations of IL-6 in the circulation will

subsequently result in lower CRP levels.

Few studies have prospectively examined the effect of exer-

cise training on low-grade inflammatory status, and the data

obtained from intervention studies are less consistent when

compared with cross-sectional population studies. A lower

number of subjects or a good physical condition in the start

of some intervention studies may explain a part of this incon-

sistency. Nevertheless, two longitudinal studies in athletes

show that regular training induces a reduction in CRP concen-

tration(211,212). Conflicting findings exist in clinical trials that

have involved exercise only. Several training interventions

have not produced changes in basal IL-6 or CRP concen-

trations(213–218), while significant reductions in inflammatory

markers have been observed following training without

changes in BMI or body fat in elderly participants(219,220).

The largest trial was performed in 652 sedentary healthy,

young and middle-aged, white and black women and men

in the HEalth, RIsk factors, exercise Training And Genetics

(HERITAGE) Family Study(221). They were subjected to a

20-week standardised exercise training programme; there

was no control group, and each subject served as its own con-

trol. A non-significant reduction in CRP concentration was

consistent across all groups and varied between 1·2 and

2·2 mg/l. Considering that the over-time variation in CRP in

healthy individuals with stable lifestyle is small(222), the

reduction, although not significant, could nevertheless reflect

the true effect of exercise training. Further stratification

according to basal CRP levels showed a reduction by about

1·3 mg/l in subjects with initial CRP levels above 3·0 mg/l.

Effects of exercise in elderly people. Elderly people have

higher basal levels of inflammation independently of disease

status, and a considerable number of studies have been

carried out in this population to assess associations bet-

ween physical activity and inflammatory markers(190,223–230).

Rather consistent inverse, BMI-independent, associations

are found and the associations are suggested to be dose-

dependent; the more physically active the person, the lower

the inflammatory markers(208,224). Also subjects over 80 years

of age show consistent inverse associations between inflam-

mation and physical activity(190). Functional fitness was

inversely associated with IL-6 and IL-1ra concentrations (but

not with CRP, TNF-a, IL-10 or IL-1b) in a prospective popu-

lation-based study of 1020 participants aged 65 years and

older(223,231). Muscle strength was also evaluated in this study

and low hand-grip strength was associated with high levels of

CRP and IL-6(231). Other studies have also shown a negative

association of CRP, IL-6 and TNF-awith muscle strength(228,232).

Exercise intervention in elderly people or in patients

with CVD shows consistent anti-inflammatory effects. After

a 6-month individualised, supervised exercise programme

for forty-three subjects at high risk of IHD, a 35 %,

albeit non-significant, reduction in CRP concentration was

observed. The subjects exercised for a mean of 2·5 (range

0·3–7·4) h/week(233). One reason for the lack of a significant

effect despite the fairly large reduction in CRP concentration

is the small size of the study. Another study reported a

decrease in basal plasma IL-6 concentration after aerobic train-

ing in patients with coronary artery disease(234). A randomised

trial of thirty-nine patients with intermittent claudication

demonstrated that both serum CRP and SAA concentrations

were significantly reduced after 3 and 6 months of supervised
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exercise compared with controls(235). In a relatively large

intervention study of exercise training on cardiac rehabilitation

patients, the median CRP concentration was reduced by 41 %,

while CRP concentrations did not change in subjects who

did not exercise(236). Again, the exercise training seemed

to be more effective in those with the highest initial CRP

concentrations, independently of changes in body weight or

percentage of body fat, indicating that baseline levels of

low-grade inflammation may be an important factor.

Studies in patients with diabetes(237) or the metabolic syn-

drome(238,239) have consistently demonstrated inverse associ-

ations between fitness and inflammation, independently of

fatness. In one study, the independent associations of fitness

were in fact more prominent among metabolic syndrome

patients compared with healthy participants(238,239).

Effects of exercise in middle-aged and younger adults and

in children. Several studies of large population cohorts,

such as the British Regional Heart Study(225), the Greek

ATTICA study(240), the Third National Health and Nutrition

Examination Survey (NHANES)(241,242), the Men’s Health Pro-

fessionals’ Follow-Up Study(243), the Nurses’ Health Study(243)

and the Women’s Health Study(244), provide evidence for an

inverse, independent dose–response relationship between

plasma CRP concentration and level of physical activity in

both men and women, but the consistency is less than in

elderly subjects, or in disease states. In contrast, the associ-

ations found between self-reported physical activity and

TNFR1, TNFR2, IL-6 and CRP concentrations in a study includ-

ing healthy men from the Men’s Health Professionals’ Follow-

Up Study and healthy women from the Nurses’ Health

Study(243) were no longer significant when adjusting for BMI

and leptin. Thus, the effect of physical activity on circulating

markers of low-grade inflammation appears to be mediated

by weight loss. In another study in healthy men and

women, BMI, but not previous year or current physical

activity, predicted CRP concentration(245). Similarly, a cross-

sectional study(246) in men found no relationship between

leisure-time physical activity and CRP, fibrinogen and SAA

concentrations, after correction for BMI and current smoking

status. CRP levels in 2120 Finns were associated with obesity

indices and physical activity among both sexes(247); in multi-

variate analyses, the determinants of CRP concentration

included obesity and smoking in men, and obesity, oral con-

traceptive use and physical activity in women. The study

showed that about one in three of healthy women who

used oral contraceptives had a CRP concentration exceeding

3 mg/l, which should be taken into account when studying

younger females. Cross-sectional studies in men from the

Aerobics Center Longitudinal Study have demonstrated that

cardiorespiratory fitness levels are inversely associated with

CRP concentration and also the prevalence of elevated CRP

concentrations(248). Analyses with fibrinogen and white

blood cell count showed similar results(249). The competing

effect of weight and fitness (assessed by submaximal graded

exercise treadmill testing) on cardiorespiratory fitness levels

was studied in the NHANES, which included 2112 US adults

without previously diagnosed CVD(250). Both fitness and BMI

were independently associated with increased fasting insulin

and CRP concentrations. However, when patients with low,

moderate and high fitness were further stratified as normal,

overweight or obese, weight remained significantly associated

with CRP, but fitness did not. This study concludes that ‘fat but

fit’ subjects require weight-loss interventions to improve their

CRP levels. Future interventions should emphasise weight

control, even for those with high cardiorespiratory fitness.

In disease-free young populations, studies have assessed

the interaction between inflammatory markers (CRP, IL-6 and

TNF-a), physical activity or cardiorespiratory fitness and fat-

ness(47,251–258). Organised leisure-time exercise (assessed by

a questionnaire) in children has shown negative correlations

with serum IL-6 concentrations, independently of adiposity

and fat localisation(256), and in 10-year-old children, a border-

line significant negative association was observed between

CRP and self-reported physical activity, independently of

ponderal index(47). US children and young adults (aged

6–24 years) from the Columbia University BioMarkers Study

showed an inverse correlation between cardiovascular fitness

and CRP concentration but only in boys, which remained after

adjustment of confounders including BMI(251). Only one study

has used accelerometry (an objective measure of total physical

activity compared with leisure-time physical activity or

exercise) instead of questionnaires as well as cardiovascular

fitness(257). In this study of 9-year-old Swedish children, total

physical activity was unrelated to CRP, fibrinogen, C3 or C4

concentrations, but exercise was. Nevertheless, once body

fat was entered into the regression models, no associations

with cardiovascular fitness or physical activity and the inflam-

matory markers measured were observed(257). Similarly,

no associations were found between cardiorespiratory fitness

or self-reported physical activity and CRP concentration in

12-year-old healthy Welsh children(259).

CRP, C3 and ceruloplasmin (but not C4) concentra-

tions were negatively associated with muscle strength after

controlling for sex, age, pubertal status, weight, height,

socio-economic status and cardiorespiratory fitness, but did

not remain when adjusting for body fat. Nevertheless, when

stratifying according to overweight status, CRP (but not C3,

C4 or ceruloplasmin) concentration was associated with

muscle strength in overweight, but not in normal-weight,

adolescents after controlling for potential confounders,

including body fat and fat-free mass(260).

Conclusions for effects of physical activity and fitness on
low-grade inflammation

Most research on this topic hypothesised that the association

between fitness and inflammatory factors is independent of

fatness. Given that physical activity and obesity are often

inversely related, it is not clear as to whether the anti-

inflammatory health benefits of a physically active lifestyle

are due to exercise per se or result from favourable changes

in body composition. Related anti-inflammatory effects could

be mediated by increased insulin sensitivity and/or improved

concentrations of HDL-cholesterol, ROS or endothelial func-

tion, which all demonstrate anti-inflammatory actions(261),

and are related to both body fat and exercise. A systematic
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review addressed whether fitness or fatness has the greatest

impact on inflammatory factors(198). The review concluded

that both fitness and fatness are associated with systemic

inflammatory status, although the relative contributions of

both may be dependent on age, disease status and sex.

These determinants do most probably involve a strong back-

ground of low-grade inflammatory status, which consistently

is shown to determine any possible inverse association.

Although increasing physical activity may be an effective

therapy for weight loss and may also emerge as a promising

treatment for reducing overall inflammation, the magnitude

of the effect to produce clinically meaningful results in the

general population requires further research(200). Neverthe-

less, exercise is uniquely positioned to reduce inflammation,

and even small non-significant reductions in CRP levels may

contribute to clinical benefits by reducing cardiovascular and

metabolic risk(222).

A consideration of different approaches to identify
relationships between diet and its components and
markers of chronic low-grade inflammation

The following sections review the effects of dietary factors,

including dietary patterns, whole foods, individual nutrients

and other bioactive components on the markers of low-

grade inflammation described above. Due to the physiological

complexities detailed above, assessment of effects requires

careful attention to treatment interventions and study designs,

in the context of the endpoints described. Here, important

aspects of study design are briefly mentioned.

Epidemiological studies

Epidemiological studies, where available, are discussed for

each of the dietary factors. As mentioned above, body-

weight changes and exercise may have profound effects on

biomarkers of low-grade inflammation; therefore, adjustments

for BMI and activity level are critical. An accurate assess-

ment of the analysed dietary parameter is also necessary.

Although difficult to rectify, it is important to consider cultural

differences in food consumption habits, for example differ-

ences in coffee preparation procedure and brew strength

between the USA and Europe. Attention should also be

paid to the assessment of dietary patterns. For example, the

Mediterranean diet has been variously defined and scored as

inclusive or exclusive of fish, poultry, dairy, eggs, moderate

alcohol consumption and ratio of monounsaturated:saturated

fat. However, it is not clear whether these differences in

scoring would result in alternative conclusions being drawn,

and as such, this body of literature is best viewed in totality.

Intervention studies

Intervention studies, where available, are also discussed for

each of the dietary factors. The studies presented here

typically fall into three design categories: (1) chronic dietary

interventions in individuals with some degree of existing

low-grade inflammation, based on changes in markers

measured in fasting blood, sometimes in the context of

weight loss; (2) acute dietary interventions in which the

acute effect of a putative anti-inflammatory dietary treatment

is assessed against some background level of low-grade

inflammation; (3) challenge studies in which inflammation is

induced by either a dietary or exercise challenge, in the

presence or absence of a putative anti-inflammatory dietary

treatment. As with epidemiological studies, body weight and

activity levels require careful control and monitoring because

of their possible impact on low-grade inflammation. Chronic

interventions are most commonly either parallel-arm designs

or cross-over designs, and may be most relevant since

they directly evaluate the effect of the dietary component on

low-grade inflammation. However, acute intervention and

postprandial challenge studies may also provide valuable

insight, and postprandial inflammation has recently been

hypothesised to play an aetiological role in the progression

of CVD. Additionally, between-subject variations in bio-

markers of the inflammatory response can be controlled for

statistically in cross-over designs. In contrast to epidemiologi-

cal studies, which often have a large sample size and may

evaluate outcomes over a long duration, intervention studies

are most often relatively small and of short duration (hours

for acute studies; weeks to months for chronic studies).

Small studies can limit power to identify significant effects.

Another difficulty with intervention studies can be compliance

among subjects; although an ideal study design would include

actions to ensure compliance and would monitor this, such

approaches are not always considered. Lack of compliance

may limit the effectiveness of an intervention.

Dietary patterns and low-grade inflammation

For the purposes of this article, low-grade inflammation

was defined as elevated circulating concentrations of pro-

inflammatory cytokines, acute-phase proteins and adhesion

molecules, and low circulating concentrations of adiponectin.

Eating patterns

Studies on diet and disease have traditionally examined the

associations of individual nutrients, foods or food groups

with risk factors and health outcomes. However, this approach

has certain limitations: many nutrients are highly correlated,

and have synergistic or interactive effects; examination of

nutrients or foods singly may not provide enough statistical

power due to the small effect size; and the possibility of find-

ing significant associations by chance alone, due to multiple

testing, is large. In response to the challenges of the traditional

approach to understanding diet–disease relationships, more

recently, nutrition epidemiologists have studied dietary or

eating patterns that examine combinations of foods and nutri-

ents, in relation to health and disease(262,263). Dietary pattern

research is generally based on two kinds of methods: a priori

using diet scores; or a posteriori using data-driven techniques

such as factor analysis and cluster analysis(264–266).

Hypoenergetic diet. One diet-dependent but apparently

quite non-specific way of decreasing low-grade inflammation
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is energy restriction(267). Weight loss is accompanied by

decreased concentrations of circulating mediators of inflam-

mation, such as CRP, TNF-a, IL-6 and sICAM-1(155,268–270),

although it is difficult to dissect whether this effect is due to

the weight loss per se or to the nature of the diet used to

induce weight loss. On the other hand, it seems likely that

reduced secretion of pro-inflammatory mediators from adipo-

cytes or activated macrophages of adipose tissue contributes

to the effect of weight loss(31,36,65,67,142). However, energy

restriction itself may also play an anti-inflammatory role,

with key mediators of the effect being proteins of the sirtuin

and Forkhead box, sub-group O (FoxO) families which are

induced/activated during states of limited energy supply.

The sirtuins are NAD þ -dependent deacetylases of substrates

ranging from histones to transcriptional regulators. As a conse-

quence, metabolic efficiency is improved, cell defences

against stress are strengthened and inflammatory activities

are dampened, notably by decreasing the activation of

NF-kB(271–274). FoxO proteins are transcription factors which

regulate the expression of genes involved in energy homeo-

stasis, cell survival and inflammatory responses including

NF-kB(274–278). Early studies have shown that reduced

energy intake is paramount compared with the nature of

low-energy food, i.e. decreased concentrations of inflamma-

tory markers are observed with a low-energy, fat-rich as well

as with a low-energy, carbohydrate-rich diet(279). However, it

is conceivable that some dietary components are better regu-

lators of sirtuin or FoxO activity than others. Resveratrol, pre-

sent in red wine, was found to directly or indirectly interact

with sirtuins and promote their deacetylase activity. This led

to increased lifespan in model organisms and in animal

models(280,281). It is likely that dietary components will be

identified that mimic or counteract the anti-inflammatory

effects of energy restriction.

Mediterranean diet. The term Mediterranean diet refers to

a traditional dietary pattern characteristic of many parts of

Greece, Southern Italy, Southern Spain and elsewhere in the

Mediterranean region. The traditional Mediterranean diet is

rich in fruit, vegetables, whole-grains, legumes (beans), nuts,

fish and low-fat dairy products, with moderate consumption

of wine, and whose principal source of fat is olive

oil(282–286). Most studies have assessed the adherence to the

Mediterranean diet by assigning a score in relation to the con-

sumption of these foods. Others(284,285) have used modified

versions of this score by not considering certain food

groups, i.e. dairy products.

Observational studies have examined the association of the

Mediterranean diet with inflammatory markers in healthy per-

sons(282,283,285), and they generally report inverse correlations.

In a recent study(282) investigating psychological, behavioural

and biological risk factors for subclinical CVD in 345 middle-

aged male twins, an inverse association between adherence

to the Mediterranean diet and inflammation, as measured by

plasma IL-6 concentration, was noted. This association was

independent of several known cardiovascular risk factors,

and persisted when twins within pairs were compared,

suggesting that the results were not confounded by shared

environmental and genetic factors. Although a marginal

relationship between CRP concentration and the Mediterra-

nean diet was observed, this association was no longer signifi-

cant when other cardiovascular risk factors were considered in

the models. It is likely that IL-6 is a more sensitive marker of

chronic low-grade inflammation and that CRP reflects a

more downstream effect associated with IL-6. In a subsample

of the Nurses’ Health Study(285), a Mediterranean diet index

score was inversely associated with markers of inflammation

(circulating IL-6 and CRP) as well as markers of endothelial

dysfunction (the adhesion molecules sICAM-1, sVCAM-1 and

soluble E-selectin (sE-selectin)); these associations persisted

upon adjustment for traditional CVD risk factors. Similar find-

ings were reported in the ATTICA study, involving 1514 men

and 1528 women; specifically, subjects with greater adherence

to the Mediterranean diet (those in the highest tertile) had

17 % lower IL-6 and 20 % lower CRP concentrations, compared

with those in the lowest tertile in analyses that adjusted for

other cardiovascular risk factors(283). Although a marginal

association was noted between TNF-a and the Mediterranean

diet, it was not significant in adjusted models(283). In another

observational study with obese subjects (625 men and 712

women with abdominal adiposity), those with high CRP

levels (.3 mg/l) were less likely to adopt the Mediterranean

diet(287). The authors reported that adoption of the Mediterra-

nean diet in conjunction with moderate physical activity was

associated with a reduced likelihood of having high CRP

levels by 72 %, highlighting the potential importance of the

Mediterranean diet in diminishing inflammation. In subjects

at high risk for CVD, those with diabetes or with multiple

CHD risk factors, however, no association between the Medi-

terranean diet and CRP or adhesion molecule (sICAM-1 and

sVCAM-1) concentrations was seen(288). However, a significant

relationship between higher consumption of some typical

Mediterranean diet components (cereals, fruit, nuts and

virgin olive oil) and circulating inflammatory markers (IL-6)

and markers of endothelial function was noted in these

at-risk subjects.

Few intervention studies have been conducted to examine

the effect of consuming the Mediterranean diet on markers

of low-grade inflammation. In two cross-over studies invol-

ving short-term interventions (1–3 months) with healthy

subjects, differential effects of the Mediterranean diet on mar-

kers of inflammation (and endothelial dysfunction) were

observed. In the study by Ambring et al.(289), healthy subjects

received their typical Swedish diet for about 4 weeks, and a

Mediterranean-inspired diet for about 4 weeks in a random-

ised cross-over design, with 4 weeks of washout in-between.

A marked reduction in the number of leucocytes, including

monocytes, neutrophils and lymphocytes, and in the number

of platelets after 4 weeks of the Mediterranean diet was

noted, suggesting a lower inflammatory activity than during

the Swedish diet period. On the other hand, IL-6 and CRP con-

centrations did not change with the Mediterranean diet; the

authors speculated that the study may not have been powered

to detect those effects. In another study(290), twenty healthy

young males were provided three dietary interventions, each

lasting 4 weeks. First, all subjects consumed a diet high in

saturated fat, next they were randomly assigned to either
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of the two intervention diets: a Mediterranean-style diet

(MUFA-enriched diet, 22 % energy from MUFA) or a low-fat,

high-carbohydrate diet (,30 % energy from fat and 55 %

from carbohydrates). LDL was isolated and oxidised. Oxidised

LDL from subjects on either the Mediterranean diet or the

high-carbohydrate diet decreased TNF-a-induced VCAM-1

and E-selectin expression in human umbilical endothelial

cells in vitro. A consistent decline in inflammatory markers

has been observed in intervention studies involving obese

subjects or those with the metabolic syndrome. In a random-

ised controlled study with 120 pre-menopausal obese women,

the effects of a multidisciplinary approach (aiming at 10 %

weight reduction with a combination of a low-energy,

Mediterranean-style diet and increased physical activity)

were evaluated compared with a control group (given general

information about healthy choices and exercise)(111). The

intervention group received regular sessions (18 over a

2-year period) with a nutritionist to ensure compliance.

Significant reduction in several markers of inflammation

(CRP, IL-6 and IL-18) and an increase in adiponectin concen-

tration were noted in the Mediterranean diet group compared

with the control group. In a randomised controlled trial lasting

2 years, 180 subjects with the metabolic syndrome were

assigned either to a Mediterranean-style diet (instructions

were provided on increasing daily consumption of whole

grains, fruit, vegetables, nuts and olive oil) or to a control

group (prudent diet, with same macronutrient composition

as the Mediterranean diet)(284). After 2 years, body weight

decreased more in the intervention group and inflammatory

markers (CRP, IL-6, IL-7 and IL-18) decreased and endothelial

function improved, compared with the control group. Interest-

ingly, even after controlling for weight loss, the inflammatory

markers declined more in subjects following the Mediterra-

nean-style diet. In other related studies involving individuals

with the metabolic syndrome, a consistent reduction in CRP

concentration in the intervention group receiving the Mediter-

ranean diet has been shown(291,292). In the Prevención con

Dieta Mediterránea study, 772 asymptomatic subjects at high

cardiovascular risk (diabetes or more than three CHD risk fac-

tors) were randomly assigned to a low-fat diet or one of two

Mediterranean diets(293). Those allocated to the Mediterranean

diets received nutritional education and either free virgin olive

oil, or free nuts for 3 months. Both Mediterranean diets were

beneficial in terms of significant reductions in serum IL-6,

sICAM-1 and sVCAM-1 concentrations, while CRP concen-

tration was reduced only in the Mediterranean diet sup-

plemented with olive oil. Taken together, the results from

these often large intervention studies strongly suggest that

Mediterranean diets can lead to reductions in chronic low-

grade inflammation and improvement in endothelial function,

thereby offering cardioprotective effects.

Vegetarian diets. Observational studies have compared

vegetarian with non-vegetarian diets in healthy subjects in

relation to inflammatory markers. Dietary patterns consistent

with vegetarianism were associated with lower concentrations

of markers of chronic low-grade inflammation and endothelial

function when compared with non-vegetarian diets(294–296). In

one study comparing a group of thirty Taoist adults who had

been vegetarian for 5–55 years (average 22 years) with a

group of thirty age- and sex-matched non-Taoist adults con-

suming a non-vegetarian diet, lower CRP concentrations

were noted in the former group(295). Specifically, plasma

CRP concentration averaged 0·77 and 1·30 mg/l in vegetarians

and non-vegetarians, respectively. Another study with a simi-

lar design comparing vegetarians with non-vegetarians also

found that the average CRP concentration was significantly

lower in the vegetarian group (0·72 v. 1·62 mg/l)(294). Similarly,

lower levels of the adhesion molecules sICAM-1 and sE-selec-

tin have been reported in those following a vegetarian v. a

non-vegetarian diet(296). Thus, these cross-sectional studies

suggest that a vegetarian-style diet can lead to lower chronic

low-grade inflammation than an omnivorous diet. However,

it is important to recognise that vegetarians may differ from

non-vegetarians in aspects of lifestyle other than diet such as

physical activity, smoking behaviour and socio-economic

class. Studies considering vegetables and fruits are described

in section ‘Vegetables and fruits’.

Eating patterns. The healthy eating index (HEI) was

developed by the US Department of Agriculture, based on

the Dietary Guidelines for Americans and the Food Guide

Pyramid(297). It has ten subcomponents: grains, fruits, vege-

tables, dairy, meats, fats, saturated fat, cholesterol, Na and

dietary variety. Individuals are assigned scores for each of

the ten components (from 0 to 10) based on their typical

intakes; the maximum value for the HEI being 100. Recently,

the HEI was revised as the Alternate HEI (AHEI) to focus on

healthier items in the Food Guide Pyramid food groups(298)

such as protein source, ratio of polyunsaturated:saturated

fats and cereal fibre, as well as cis- v. trans-fat. Additionally,

moderate alcohol consumption and long-term multivitamin

use are also considered in the AHEI. The Diet Quality Index

(DQI) is a composite score of an overall healthy diet that

reflects an individual’s adherence to the eight diet and

health recommendations of the National Academy of Science.

The revised DQI (DQI-R) is based on similar guidelines but

also includes Fe and Ca intakes(299).

Using the data from NHANES III on a representative

sample of the US population, Ford et al.(300) found a negative

correlation between the HEI and CRP concentration after

adjustment for several CVD risk factors including BMI and

waist:hip ratio; when stratified by sex this finding was signifi-

cant in women only. The authors noted that this association

was primarily driven by grain consumption. The authors

speculated that because HEI score was determined based on

dietary intake data collected by a 24 h recall, the possibility

of misclassification of individuals with respect to HEI status

could have attenuated the associations. In a study by Fung

et al.(285), the association of several diet-quality scores, such

as the HEI, AHEI, DQI-R and an alternate Mediterranean diet

index with various markers of inflammation, was evaluated

in a subsample of the Nurses’ Health Study (n 690 healthy

women). The key findings were that the AHEI and alternate

Mediterranean diet index scores were negatively associated

with CRP, IL-6, sE-selectin and sICAM-1 concentrations, and

that these associations persisted upon adjustment for potential

confounding variables including BMI. In contrast, the HEI and
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DQI-R did not correlate with any of the inflammatory markers

when potential confounders were taken into consideration in

the regression models(285). A more recent study evaluated the

impact of the AHEI among 1922 women from the Nurses’

Health Study (62 % of whom were overweight) who had no

history of diabetes or CVD on plasma inflammatory marker

concentrations(301). After adjustment for age and energy

intake, women with the highest adherence to the AHEI had

24 % higher median total adiponectin and 32 % higher

median high-molecular-weight adiponectin concentrations,

as well as 16 % lower resistin, 41 % lower CRP and 19 %

lower sE-selectin concentrations than did women with the

lowest adherence to the AHEI. These associations remained

significant after adjustment for potential confounders. Inverse

associations between the AHEI and CRP, sTNFR2, IL-6, sICAM-

1 and sVCAM-1 concentrations were evident, but they did not

remain significant after adjustment for BMI. In a small cross-

sectional study involving 114 ‘apparently healthy’ overweight

or obese postmenopausal women, Boynton et al.(302) found

little evidence of an association between dietary quality, as

measured by the HEI and DQI, and markers of inflammation

(CRP and SAA). Marginal associations were noted between

the DQI and these inflammatory markers. These associations

were, however, attenuated and no longer significant, after

adjusting for adiposity (percentage of body fat or BMI),

suggesting that the decrease in CRP or SAA concentration

seen with a higher-quality diet is most probably mediated by

obesity. The authors speculated that consuming a healthier

diet may lead to decreased adiposity, which in turn could

result in less low-grade inflammation.

Several studies have examined the relationship between

consuming a ‘prudent diet’ and markers of low-grade inflam-

mation. In one study, in 732 healthy women from the

Nurses’ Health Study aged 43–69 years, a prudent pattern

was characterised by higher intakes of fruit, vegetables,

legumes, fish, poultry and whole grains, and a Western pattern

was characterised by higher intakes of red and processed

meats, sweets, desserts, French fries and refined grains(303).

The prudent pattern was inversely associated with plasma

concentrations of CRP and sE-selectin after adjustment for

age, BMI, physical activity, smoking status and alcohol con-

sumption. The Western pattern showed a positive relationship

with CRP, IL-6, sE-selectin, sICAM-1 and sVCAM-1 after adjust-

ment for all confounders except BMI; with further adjustment

for BMI, the coefficients remained significant for CRP,

sE-selectin, sICAM-1 and sVCAM-1.Using data from the

Nurses’ Health Study, Schulze et al.(304) identified a dietary

pattern that was significantly associated with increased con-

centrations of CRP, IL-6, sTNFR2, sE-selectin, sICAM-1 and

sVCAM-1. This pattern, which was high in sugar-sweetened

soft drinks, refined grains, diet soft drinks and processed

meat but low in wine, coffee, cruciferous vegetables and

yellow vegetables, was also associated with an increased

risk of diabetes. Most recently, Hoebeeck et al.(305) evaluated

the relationship between adherence to food-based dietary

guidelines and inflammatory markers among 2524 healthy

Belgian men and women aged 35–55 years. The dietary

index consisted of three subscores (dietary quality, diversity

and equilibrium) according to adherence to the Flemish

food-based dietary guidelines, using data from a semi-

quantitative FFQ. Higher dietary scores were inversely associ-

ated with IL-6 concentration and leucocyte numbers in the

bloodstream. Nettleton et al.(306) examined relationships

between dietary patterns and markers of inflammation and

endothelial activation among 5089 non-diabetic participants

in the Multi-Ethnic Study of Atherosclerosis. In this study,

four dietary patterns were derived by using factor analysis.

The fats and processed meats pattern (fats, oils, processed

meats, fried potatoes, salty snacks and desserts) was positively

associated with CRP and IL-6 concentrations. The beans,

tomatoes and refined grains pattern (beans, tomatoes, refined

grains and high-fat dairy products) was positively related

to sICAM-1 concentration. In contrast, the whole grains

and fruit pattern (whole grains, fruit, nuts and green leafy

vegetables) was inversely associated with CRP, IL-6 and

sICAM-1 concentrations, while the vegetables and fish pattern

(fish and dark-yellow, cruciferous and other vegetables) was

inversely related to IL-6 concentration. There are few such

studies using data from outside of the USA or Europe.

A cross-sectional study of 486 healthy Iranian women aged

40–60 years identified dietary patterns by factor analysis and

related these to circulating markers of inflammation(307). The

healthy dietary pattern (high in fruits, vegetables, tomatoes,

poultry, legumes, tea, fruit juices and whole grains) was

inversely related to plasma CRP, sE-selectin and sVCAM-1 con-

centrations after controlling for potential confounders; with

further adjustment for BMI and waist circumference, the

associations remained significant for CRP and sVCAM-1. In

contrast, the Western dietary pattern score (high in refined

grains, red meat, butter, processed meat, high-fat dairy,

sweets and desserts, pizza, potatoes, eggs, hydrogenated

fats and soft drinks) was positively related to CRP, SAA,

IL-6, sICAM-1 and sVCAM-1 concentrations; however, after

additional control for BMI and waist circumference, the

associations remained significant only for SAA and IL-6.The

traditional dietary pattern (high in refined grains, potatoes,

tea, whole grains, hydrogenated fats, legumes and casserole)

was positively associated with the plasma IL-6 concentration

after controlling for BMI and waist circumference. Nanri

et al.(308) investigated the relationship between dietary pat-

terns and circulating CRP concentration in 7802 Japanese

men and women with CRP ,3 mg/l. The dietary patterns

were derived from principal component analysis of the fre-

quency of consumption of forty-nine food items ascertained

by the FFQ. The following four dietary patterns were ident-

ified: healthy, high-fat, seafood and Westernised breakfast

patterns. The healthy dietary pattern, characterised by high

intakes of vegetables, fruits, soya products and fish, was inver-

sely related to CRP concentrations, even after adjustment for

age, BMI, smoking, alcohol consumption and physical activity

in both men and women. Neither the high-fat dietary pattern

nor the Westernised breakfast pattern was related to CRP

concentrations. Most recently, the relationship between two

dietary patterns (Healthy and Western), which were derived

by principal component analysis using data collected by a

FFQ from subjects in the Atherosclerosis Risk in Communities
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Study, and markers of inflammation has been described(309).

The measures of inflammation were quantified by flow

cytometry in fresh whole blood from 1101 white adults.

After multivariable adjustment, monocyte LPS receptor

(CD14), monocyte TLR-2 and platelet glycoprotein IIb

(CD41) showed inverse associations with the healthy dietary

pattern. In contrast, the Western dietary pattern was positively

associated with CD41 and platelet–granulocyte aggregates.

Taken together, these studies suggest that healthy eating

patterns are associated with lower concentrations of markers

of chronic low-grade inflammation.

Whole foods

Whole grains/refined grains. Published studies have so far

investigated a narrow and low range of whole grain intakes,

which limits the interpretation of associations between whole

grain intake and markers of low-grade chronic inflammation.

Observational studies (Table 3)(300,310–314) including data from

NHANES III have suggested that a high intake of whole grain

is inversely associated with plasma CRP concentration (quintile

(Q) 1 , 3·5 servings/d, Q5 . 9·7 servings/d)(300). In contrast,

Jensen et al.(310) reported no association between a moderate

whole grain intake (Q1 8·2 g/d, Q5 43·8 g/d) and markers of

inflammation (CRP, IL-6 and fibrinogen) in the Health Pro-

fessionals’ Follow-Up Study. However, bran intake correlated

inversely with CRP concentration and germ intake with IL-6 con-

centration(310). Data from the Nurses’ Health Study showed

lower CRP and sTNFR2 concentrations in diabetic women

with a moderate intake of whole grain compared with those

with a low intake(314). In another study with diabetic males

(n 780; from the Health Professionals’ Follow-Up Study),

Qi et al.(315) showed that cereal fibre was positively associated

with adiponectin concentration after controlling for a number

of confounding factors. A higher intake of whole grain (low

0·8 servings/d, high 2·1 servings/d) within a Mediterranean

diet in diabetic women was associated with increased adipo-

nectin concentration(312). Data from the Multi-Ethnic Study of

Atherosclerosis (MESA) showed a higher whole grain intake

(Q1 0·02 servings/d, Q5 1·39 servings/d) to be associated with

lower CRP concentration in elderly subjects(311).

Evidence from intervention studies (Table 4)(111,316–320)

includes a study whereby overweight and obese subjects con-

sumed a hypoenergetic diet with or without whole-grain

foods. CRP concentration decreased by 38 % (CRP at baseline

5·9–6·0 mg/l) in the whole-grain group independent of the

observed weight loss(319). However, plasma concentrations

of IL-6 and TNF-a and PAI-1 activity did not change within

the 12-week-study period. Based on the outcome of this

study, the authors concluded that the changes seen in CRP

concentration with a whole-grain diet were not part of a sys-

temic anti-inflammatory effect(319). In a study from Sweden

with a similar design but only a 6-week intervention (whole-

grain v. refined-grain products), the whole grain intake was

not associated with changes in the concentrations of CRP

and IL-6 or in PAI-1 activity of moderately overweight sub-

jects(316). Baseline CRP concentration (2·03–2·86 mg/l) and

BMI were much lower than in the previous study, which

may explain the different outcomes between these studies.

Recent intervention trials with whole grain (60–120 g/d) or

wholemeal intake (30–40 g/d) and comparable CRP baseline

concentrations also did not observe any changes in plasma

markers of inflammation(317,320). In the study by Brownlee

et al.(317), whole-grain products did not substitute refined-

grain products but were consumed in addition to the refined

products. Bioprocessing of whole wheat affected the anti-

inflammatory potential in a human intervention study when

compared with unprocessed whole wheat(321). Bioprocessing

modulated the ratio of pro-inflammatory:anti-inflammatory

cytokines during 24 h after the intake of 300 g whole wheat

bread. This study suggests that subtle changes in the proces-

sing of whole grains may be relevant for their anti-inflamma-

tory activity, which could in part explain the contradictory

findings of the human intervention studies.

Replacing a refined-wheat flour pizza by a similar pizza

prepared from whole-wheat flour resulted in a decreased

postprandial concentration of the pro-inflammatory cytokine

IL-18 in both non-diabetic and diabetic subjects(318).

In summary, whole grain intake appears to inversely associ-

ate with markers of low-grade inflammation. Processing status

of whole-grain products should be more precisely defined in

future studies. Potential mechanisms still have to be eluci-

dated, as well as the active constituents which may include

dietary fibre, minerals, vitamins and phytochemicals such as

lignans and phenolic acids.

Vegetables and fruits. A number of cross-sectional studies

have investigated the association between vegetable and fruit

intake and biomarkers of inflammation (Table 5)(288,322–330).

Study participants included healthy, normal-weight adults as

well as overweight/obese adults with associated diseases.

Each study applied different criteria to stratify the intake of

vegetables and fruits which makes it difficult to compare the

outcomes. Of the ten cross-sectional studies, seven reported

an inverse association between a high intake of vegetables

and fruits, either in combination or alone, and blood CRP con-

centrations(322–325,327–329). In one study, no association with

CRP was observed(288), while in a second study, an inverse

association was seen in men but not in women(327). For the

other biomarkers reported, the outcome is less consistent.

A recent study reported that a high intake of vegetables and

fruits was associated with a lower peripheral blood mono-

nuclear cell gene expression for several pro-inflammatory

cytokines and adhesion molecules(326). An important obser-

vation is that besides the quantity of total intake of vegetables

and fruits, the variety consumed in a given time has a signifi-

cant impact on these biomarkers. A high number of varieties

of vegetables and fruits were inversely correlated with blood

CRP levels(322). This suggests that plant-specific constituents

of vegetables and fruits such as the phytochemicals may con-

tribute to the anti-inflammatory activities.

A number of intervention studies have investigated the

impact of vegetables and fruits in total or of specific varieties

on biomarkers of inflammation (Table 6)(331–346). Of the four

studies focusing on vegetables and fruits as a food group,

three reported a reduction in blood concentrations of different

biomarkers of inflammation(318,342,345), while one study did
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not find any significant effect(336). In twelve studies with a

specific focus on a single variety of vegetable or fruit, incon-

sistent results were reported. Most studies have used fruits

or fruit extracts high in polyphenols. Results from such studies

suggest an anti-inflammatory effect; however, mostly, only a

single biomarker was affected, and never the complete set

of inflammation biomarkers investigated(331–334,337–340,346).

In conclusion, current evidence for specific effects of single

vegetable and fruit varieties is not convincing, while a high

overall intake of vegetables and fruits seems to be associated

with a lower state of inflammation.

Soya. Several randomised controlled intervention trials

have shown that supplementation with different quantities

of soya protein did not affect markers of inflammation

(CRP, IL-6, IL-18, sICAM-1, sVCAM-1 and sE-selectin)

(Table 7)(345,347–364). Variations in soya protein isoflavone con-

tents did not modulate the outcome in these studies. In one

study, reduced plasma CRP, TNF-a and IL-18 concentrations

were reported in postmenopausal Iranian women with the

metabolic syndrome consuming soya nuts but not soya pro-

tein(347). The major difference between soya protein and soya

nuts (comparable contents of isoflavones) was a much higher

content of PUFA in the soya nuts, suggesting that rather than

soya-specific constituents, the increased intake of PUFA may

be responsible for the reduction in biomarkers of inflam-

mation(347). The same group investigated in diabetic patients

with nephropathy the anti-inflammatory effect of textured

soya protein compared with animal protein after 4 years of

intake. Consumption of soya protein significantly lowered

plasma concentrations of CRP(348). In another study investi-

gating soya nuts in normotensive and hypertensive postmeno-

pausal women, no effect on CRP, IL-6, sICAM-1 or matrix

metalloproteinase-9 concentrations was observed compared

with the control diet(361). However, in hypertensive women,

levels of sVCAM-1 were significantly lower after soya nut

consumption(361). Again, the increased PUFA intake may have

caused this effect. Long-term soya exposure did not affect

CRP, IL-6, leptin and adiponectin concentrations in postmeno-

pausal women(357), or CRP, IL-6, leptin, adiponectin, MCP-1 or

MIP-1b concentrations in men(365). Short-term soya inter-

vention in postmenopausal women with or without exercise-

induced inflammation had no effect on IL-1b, IL-6 or TNF-a

concentrations(349,350). Among men with prostate cancer

undergoing androgen deprivation therapy, soya intervention

had no effect on the concentrations of several inflammatory

markers(366). Overall, these data suggest that soya protein

does not affect markers of inflammation, that soyabean

processing may affect the anti-inflammatory potential of

soyabean constituents and that the health status of the study

subjects might determine the anti-inflammatory efficacy of

specific foods.

Nuts. To date, only few studies have investigated the

effect of nuts on inflammatory markers. The MESA reported

that a high intake of nuts and seeds ($5 times/week) com-

pared with a low intake (rarely or no consumption) was

associated with lower plasma concentrations of CRP, IL-6 and

fibrinogen(367). In contrast, data from the Nurses’ Health Study

suggest that nut intake is not associated with inflammatory T
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markers including sTNFR2, CRP, fibrinogen, sICAM-1 and

sE-selectin(368). An 8-week intervention with walnuts or cash-

ews (63–108 g/d) in subjects with the metabolic syndrome

observed no effect on serum CRP concentrations(360). A pista-

chio intervention (60–100 g/d providing about 20 % of total

energy) for 4 weeks in healthy young subjects had no effect

on plasma CRP or TNF-a concentrations, while the concen-

tration of IL-6 was significantly reduced(369). A recent interven-

tion study with two doses of almonds (10 and 20 % of total

energy) in healthy adults reported reduced serum concen-

trations of sE-selectin and CRP, but IL-6 and fibrinogen were

not affected(370). No clear dose–response relationships were

observed. In contrast, an earlier study in hyperlipidaemic

subjects providing two doses of almonds did not observe

an effect on CRP concentrations(356). A systematic review on

walnut consumption and inflammatory markers also reported

inconsistent results for plasma CRP, while walnuts added to a

Mediterranean diet resulted in significantly lower sVCAM-1

concentrations(371). This suggests that rather than a general

anti-inflammatory effect, walnuts may exert anti-inflammatory

effects primarily in the endothelium. Major contributors to any

anti-inflammatory activity of nuts are likely to include PUFA,

Mg and phytochemicals including ellagic acid(372).

Fish. Increased frequency of fish consumption was associ-

ated with lower CRP and IL-6 concentrations in a cohort of

727 adults in the USA(373). sICAM-1 and sE-selectin concen-

trations also decreased but the effect of fish consumption was

weaker than what was observed for CRP and IL-6. sTNFR2 con-

centration was not associated with fish consumption. A study in

379 adults in Denmark reported a lack of association between

fish consumption and CRP concentration, even though the

subjects displayed a wide range of intakes including very high

intakes (e.g. over 30 % of subjects ate fish more than once

per d)(374). Data from 5037 adults in the NHANES showed no

association of fish consumption with CRP concentration after

adjusting for a range of confounders(375). In this study, 25 % of

subjects consumed fish more than 3 times per month. Most

recently, fish consumption among a cohort of 4077 Australian

adults was reported not to be associated with CRP concentration

before or after adjustment for confounders(376). In contrast to

these findings, a study in 3102 Greek adults reported that fish

consumption was ‘dose-dependently’ associated with lower

CRP, IL-6, TNF-a and SAA concentrations and white blood cell

counts; individuals consuming .300 g fish/week (n 259; 9 %)

had significantly lower concentrations of CRP (233 %), IL-6

(233 %), TNF-a (221 %), SAA (228 %) and leucocytes

(24 %) than seen in individuals not consuming fish (n 319;

11 %)(377). It is possible that the observations of Zampelas et al.

may be due to greater fish consumption than in the other

populations studied and/or to the type of fish consumed. No

studies have discriminated between consumption of lean v.

fatty fish. A 4-week intervention study with herring (150 g/d,

5 d/week) in overweight and obese adults in Sweden (n 13)

reported a trend towards lower CRP concentration compared

with the concentration seen when the subjects consumed

a reference diet, but the 30 % reduction in CRP was not sig-

nificant(378). The lack of statistical significance of the effect

seen may be due to the small sample size.T
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Tea. A cross-sectional study from Japan reported no

relationship between green tea consumption and the concen-

trations of several inflammatory markers(379), while a cross-

sectional study from Belgium detected significantly lower

CRP and SAA concentrations in regular tea drinkers after multi-

variate analysis(380). The effect of tea consumption (green or

black tea) has been investigated in several small intervention

studies usually with a fairly short duration (Table 8)(381–389).

Most studies indicate that tea consumption has no significant

effect on the markers of inflammation reported(382–386,388,389).

However, a longer supplementation period of 6 weeks with

black tea in healthy non-smoking men reduced plasma CRP

concentrations significantly(380,387). Overall, there are no con-

sistent data that tea consumption (black or green) has a ben-

eficial effect on inflammatory status, but studies of longer

duration than those currently reported need to be performed.

The modest or even absent effects of tea on inflammatory

and oxidative stress markers in vivo are surprising in view

of the potent inhibitory effects of tea components such as

catechins on the expression of pro-inflammatory mediators

in vitro (390–392). This may be due to the fact that the majority

of tea catechins undergo methylation, glucuronidation and

sulfation during uptake which may limit bioavailability(393).

Furthermore, studies in vitro have often used catechin con-

centrations .10mM, whereas plasma concentrations of cate-

chins after ingestion of tea rarely exceed 1mM
(394).

Coffee. Habitual coffee consumption was analysed for

association with markers of low-grade inflammation in cross-

sectional epidemiological studies which yield conflicting

results (Table 9)(304,395–398). Consumption of decaffeinated

coffee was not associated with changes in systemic levels of

soluble adhesion molecules, but CRP concentrations were

lower in decaffeinated coffee drinkers in one of the two

studies(396). The contradictory findings from observational

studies may reflect the fact that coffee contains a mixture

of bioactives with divergent effects on physiology(399–403).

A recent intervention study providing two doses of coffee

(4 and 8 cups of filtered coffee/d) in the same individuals

confirmed in part the observations from the cross-sectional

studies. While IL-18 (decreased) and adiponectin (increased)

were significantly modulated by coffee consumption, concen-

trations of CRP, leptin, SAA, IL-6, MIF and IL-1ra were not

affected(404). No dose–response relationship was seen in

this study. Plasma caffeine concentrations were positively

associated with plasma adiponectin concentrations(404).

Taken together, the available data do not allow a firm con-

clusion as to whether coffee consumption modulates low-

grade inflammation.

Cocoa. Cocoa has a high content of monomeric (epi-

catechin and catechin) and oligomeric (procyanidin)

flavanols(405–407). These latter polymeric fractions are present

in higher concentrations/amounts in cocoa compared with

other flavanol-rich foods such as red wine or green

tea(408,409). Thus, certain cocoa-based products are rich in

flavanols(410,411), some of which have been found in model

systems to possess potential anti-inflammatory activities. How-

ever, the effect of cocoa flavanols and their related procyani-

dins appears to be related to the degree of polymerisation,T
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b
le
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Table 6. Intervention studies investigating the effect of vegetable and fruit intake on markers of low-grade inflammation

Subjects n (sex) Age (years) Intake Study design and duration Effect on low-grade inflammation Reference

Healthy 13 (M)
12 (F)

23–40 High-fat meal
v. high-fat meal þ 400 g of vegetables

Single meal, short term # PAI-1 335

Healthy 6 (M)
6 (F)

Mean 22 500 ml/d of high-pressure orange juice Randomised, open label,
uncontrolled; 14 d

¼ CRP 343

Healthy 6 (M)
6 (F)

Mean 22 500 ml/d of vegetable soup Randomised, open label,
uncontrolled; 14 d

# MCP-1, PGE2

¼ TNF-a, IL-6, IL-1
342

Healthy 5 (M)
13 (F)

19–52 196 g/10 MJ v. 810 g/10 MJ of
vegetables þ fruit

Randomised, controlled,
parallel; 6 weeks

¼ CRP, sICAM-1, sP-selectin 336

Obese pre- and
postmenopausal women

24 (pre-)
20 (post-)

Mean 38 (pre-)
Mean 58·5 (post-)

36 g/d of lyophilised grape powder Randomised, controlled,
parallel; 4 weeks

# TNF-a, ¼ IL-6, CRP 346

Healthy 63 (M) 31–32 2, 5 or 8 servings/d of vegetables þ fruit Randomised, open label,
parallel; 4 weeks

# CRP with high intake
¼ IL-12, TNF-a

345

Overweight 25 (M)
29 (F)

Mean 49 Garlic powder (2·1 g/d) ( ¼ 5·2 g fresh garlic)
v. placebo

Randomised, double blind,
controlled; 3 months

¼ CRP, TNF-a, sICAM-1,
sVCAM-1, sE-selectin,
fibrinogen

344

Haemodialysis patients 4 (M)
6 (F)

100 ml/d of red grape juice Randomised, open label,
uncontrolled; 3 weeks

# MCP-1
¼ CRP, sICAM-1, sVCAM-1

332

Healthy 18 (M/F) 45–61 280 g/d of cherries Randomised, open label,
uncontrolled; 28 d

# CRP, RANTES
¼ IL-6

339

Healthy 61 (F)
59 (M)

40–74 300 mg/d of anthocyanins ( ¼ 100 fresh
bilberries) v. placebo

Randomised, controlled,
parallel; 3 weeks

# RANTES, IL-8, IFN-a
¼ CRP, IL-1, IL-6, TNF-a, MCP-1

337

Healthy 180 (M/F) 19–50 28 g/d of a frozen seabuckthorn
puree v. placebo

Randomised, controlled,
parallel; 3 months

# CRP 340

Patients with
peripheral arterial disease

47 (M/F) 57–61 250 ml orange juice þ 250 ml blackcurrant
juice v. placebo

Randomised, open label,
uncontrolled; 28 d

# CRP
¼ IL-6, PAI-1

334

Healthy postmenopausal
women

52 Mean 58 500 mg/d of elderberry extract ( ¼ 25 g/d
elderberries) v. placebo

Randomised, controlled,
parallel; 12 weeks

¼ CRP, IL-6, TNF-a, sTNFR1
and 2, RANTES

333

Metabolic syndrome 48 (M/F) Mean 52 (M)/48 (F) 960 ml/d water with 50 g/d of
freeze-dried blueberries ( ¼ 350 g/d fresh
blueberries) v. 960 ml/d water

Randomised, controlled,
parallel; 8 weeks

¼ CRP, sICAM-1, sVCAM-1,
IL-6, adiponectin

331

Elevated risk for CVD 62 (M/F) Mean 53 330 ml/d of bilberry juice diluted to 1 litre of
water v. water alone

Randomised, controlled,
parallel; 4 weeks

# CRP, IL-6, IL-15, MIG
¼ WBC count, IL-1, IL-1ra,

MCP-1, RANTES
" TNF-a

338

Healthy overweight 24 (M) Mean 56 500 ml/d of orange juice v. control drink Randomised, controlled,
parallel; 4 weeks

¼ CRP, IL-6, sICAM-1, sVCAM-1 341

M, male; F, female; # , decreased; PAI-1, plasminogen activator inhibitor-1; ¼ , no effect on; CRP, C-reactive protein; MCP-1, monocyte chemoattractant protein-1; sICAM-1, soluble intercellular adhesion molecule-1; sP-selectin,
soluble P-selectin; sVCAM-1, soluble vascular cell adhesion molecule-1; sE-selectin, soluble E-selectin; RANTES, regulated on activation, normal T expressed and secreted; IFN, interferon; sTNFR, soluble TNF receptor;
MIG, monokine-induced by IFN-g; WBC, white blood cell; IL-1ra, IL-1 receptor antagonist; " , increased.
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Table 7. Intervention studies investigating the effect of soya intake on markers of low-grade inflammation

Subjects n (sex) Age (years) Intake Study design and duration Effect on low-grade inflammation Reference

Hypercholesterolaemic
and postmenopausal

24 (F) 55 (SD 5) 25 g/d of soya protein v. milk protein Randomised, double blind,
controlled; 6 weeks

¼ sIL-2R, sE-selectin, sP-selectin,
sICAM-1, sVCAM-1

351

Healthy postmenopausal 50 (F) 50–75 40 g/d of soya protein v. casein Randomised, double blind,
controlled; 3 months

¼ CRP 363

Hypercholesterolaemics 32 (M/F) 57–59 25 g/d of soya protein v. milk protein Randomised, double blind,
cross-over; 6 weeks

¼ CRP, IL-6 355

Healthy postmenopausal 55 (F) 47–72 40 g/d of soya protein low
or high in isoflavones

Randomised, double blind,
controlled; 6 weeks

¼ CRP 354

Healthy and overweight 35 (M) 20–40 32 g/d of soya protein v. milk protein Randomised, double blind,
controlled; 57 d

¼ CRP 359

Healthy postmenopausal 52 (F) 50–65 706 ml/d of soya milk v. cows’ milk Randomised, double blind,
controlled; 14 d

¼ CRP, TNF-a 362

Postmenopausal with the
metabolic syndrome

42 (F) DASH diet with 1 serving/d of meat,
or soya protein or roasted soya nuts

Randomised, double blind,
controlled; 14 d

Soya protein: # CRP,
¼ sE-selectin

Soya nuts: # sE-selectin,
IL-18, TNF-a, CRP

347

Healthy postmenopausal 34 (F) 47–69 26 g/d of soya protein v. milk protein Randomised, double blind,
cross-over; 6 weeks

¼ CRP, sE-selectin,
sVCAM-1, sICAM-1

353

Hypercholesterolaemics 28 (M/F) .50 37·5 g/d of protein from whole soyabeans,
soyaflour, soyamilk or animal proteins

Randomised, double blind,
cross-over; 6 weeks

¼ CRP 358

Normotensive and
hypertensive
postmenopausal

60 (F) Mean ,55 25 g/d of soya protein (nuts)
v. non-soya protein

Randomised, double blind,
cross-over; 8 weeks

Normotensives: ¼ CRP,
IL-6, sICAM-1, sVCAM-1

Hypertensives: ¼ CRP,
IL-6, sICAM-1, # sVCAM-1

361

Healthy postmenopausal 75 (F) 46–74 20 g/d of soya protein v. milk protein Randomised, double blind,
controlled; 12 weeks

¼ TNF-a, IL-6, " adiponectin 352

Normal weight and obese
pre-menopausal

183 (F) Mean 43 2 servings/d of soya foods v. regular diet Randomised, controlled; 2 years ¼ CRP, IL-6, adiponectin 357

Healthy postmenopausal 31 (F) Mean 54 3 cups/d of soya milk v. low-fat cows’ milk Randomised, single blind,
controlled; 4 weeks

¼ TNF-a, IL-1b, IL-6 349, 350

Overweight and obese 20 (M/F) Mean 31 3 servings/d of soya milk v. cows’ milk Randomised, double blind,
cross-over; 28 d

¼ CRP, TNF-a, IL-6, IL-15,
MCP-1, adiponectin

364

Type 2 diabetics with
nephropathy

41 (M/F) Soya protein diet v. animal protein diet Longitudinal randomised; 4 years # CRP with soya protein diet 348

Obese with the metabolic
syndrome

64 (M/F) Mean 45 Walnut- or cashew nut-enriched
diet v. control diet

Randomised, controlled; 8 weeks Cashew nuts: " plasma glucose,
¼ lipid profiles, serum
fructosamine, blood pressure,
uric acids, S-hs CRP

360

Healthy hyperlipidaemic 41 (M/F) Mean 62 High- and low-isoflavone soya
diet v. control diet

Randomised, cross-over; 3 months Isoflavone: # blood lipids,
apolipoprotein B, homocysteine,
systolic blood pressure in men,
" urinary levels of daidzein,
glycitein, genistein, equol,
O-desmethylangolensin

356

F, female; ¼ , no effect on; sIL-2R, soluble IL-2 receptor; sE-selectin, soluble E-selectin; sP-selectin, soluble P-selectin; sICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1;
CRP, C-reactive protein; M, male; # , decreased; " , increased; MCP, monocyte chemoattractant protein; S-hs CRP, serum high-sensitivity C-reactive protein; DASH, dietary approaches to stop hypertension.
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and opposing effects on inflammatory cytokine production in

vitro of low- and higher-degree of polymerisation flavanols

have been reported(412,413). Because of the focus on in vitro

exploration of the effects of cocoa flavanols, there is a need

for well-designed human studies, using cocoa properly

characterised in terms of flavanol content. In an Italian study

of over 10 000 people, of whom half were free of any chronic

disease, 1317 people reported having eaten any chocolate

during the past year; 824 ate chocolate regularly in the form

of dark chocolate only(414). Regular consumption of small

doses of dark chocolate seemed to decrease inflammation:

after adjustment for multiple confounders, dark chocolate con-

sumption was inversely associated with CRP concentration.

Serum CRP concentrations were 1·32 (1·26–1·39 mg/l) in cho-

colate non-consumers and 1·10 (1·03–1·17 mg/l) in consu-

mers. A J-shaped relationship between dark chocolate

consumption and serum CRP was observed; consumers

of up to 1 serving (20 g) of dark chocolate every 3 d had

significantly lower serum CRP concentrations than non-

consumers or those consuming more than 20 g chocolate

per d. In a small uncontrolled intervention study, healthy

subjects (n 25) consumed dark chocolate (36·9 g/d) and a

cocoa powder drink (30·95 g powder/d) for 6 weeks; there

was no change in concentrations of CRP, TNF-a, IL-1b, IL-6

or soluble P-selectin (sP-selectin)(415). Another small (n 28),

uncontrolled intervention study with dark chocolate for 1

week found a reduction in CRP concentration in women but

not in men(416). Most recently, Monagas et al.(417) reported

the effect of a 4-week randomised cross-over trial of 40 g

cocoa powder in skimmed milk daily v. skimmed milk in

forty-two older subjects: serum concentrations of sICAM-1

and sP-selectin were lower after the cocoa powder interven-

tion. Thus, there is some evidence that cocoa and cocoa-rich

foods reduce low-grade inflammation.

Alcohol. The regular consumption of alcohol-containing

beverages such as wine or beer has been reported to be

inversely associated with several markers of low-grade inflam-

mation, in a dose-dependent manner: i.e. moderate daily

intake (1–2 drinks/d) was often found to be associated with

decreased concentrations of inflammatory markers, although

this was not the case in all studies (Table 10) (418–432).

The short-term effect of alcohol intake on markers of low-

grade inflammation has been studied in intervention trials

which either determined acute effects during the next hours

following ingestion or changes compared with baseline after

2–4 weeks of daily alcohol consumption (Table 11)(433–448).

Although most studies were of small size, findings were

quite consistent in that there was little change in low-grade

inflammation in the hours following alcohol intake. In one

study, a decrease in NF-kB activation was reported after con-

suming a fat-rich meal when red wine was also consumed

compared with consuming the fat-rich meal(438). In general,

findings are fairly similar for trials with wine, beer, vodka or

ethanol (see Table 11). After 2–4 weeks of daily intake of

alcoholic beverages, changes in low-grade inflammation

were noted in five out of eight trials, with decreases in con-

centrations of CRP, cytokines and soluble adhesion molecules,

and an increased concentration of adiponectin (see Table 11).

These effects were seen in trials with white or red wine, or

beer. The three ‘negative’ trials(433–436) used red wine or

beer. Some variation of outcome between trials is to be

expected, notably because the lifestyle and characteristics of

participants will not be identical between trials, in particular

with regard to the local diet and the amount of daily physical

activity. Nevertheless, when taken together, these studies

suggest some beneficial long-term effects of moderate daily

consumption of wine or beer on low-grade inflammation. It

is not clear whether such effects are to due to the alcohol con-

tent of the beverages tested, or to other components, such as

phenolic compounds in these fermented beverages.

Process-related compounds: advanced glycation end
products and advanced lipoperoxidation end products

Introduction

Humans have been using fire to cook food for thousands

of years. They used boiling, baking, broiling, roasting, grilling

or frying to make food more hygienic, digestible, nutritive

and durable, and particularly to improve its flavour, aroma

and texture. Despite man’s long history of exposure to

heated food, the demonstration that the Maillard reaction

also occurs and is associated with ageing and age-related

conditions, such as diabetic complications, atherosclerosis,

Alzheimer’s disease and hypertension, has raised the question

whether dietary Maillard reaction products (MRP) might rep-

resent a risk to human health. A plausible mechanism for

adverse health effects of dietary MRP could be their potential

promotion of a state of low-grade inflammation. In fact, con-

sumption of a Western diet rich in these products was found

to correlate with impaired glucose metabolism, insulin resist-

ance and increased risk of cardiovascular and renal disease

associated with the metabolic syndrome and related con-

ditions(449,450). However, although excellent work has been

published in the past few years, it is still unresolved whether

MRP are causally involved in the aetiology of these con-

ditions(451–453). In particular, whether the potential harm of

a Western diet is mainly due to the increased intake of Maillard

compounds produced by heating of carbohydrate- and/or

lipid-rich food or rather to the excess intake of energy, refined

sugars and saturated fats, together with the lower intake of

fresh fruits and vegetables, can be debated. Alternatively,

other factors generated by thermal treatment of food or

the thermal destruction of vitamins, polyphenols and anti-

oxidants during food processing could also contribute to

adverse health effects.

Advanced glycation end products and advanced
lipoxidation end products

Advanced glycation end products (AGE) are a family of

heterogeneous, partly uncharacterised compounds that

encompass both pre-melanoidins and melanoidins. Pre-

melanoidins are not coloured and in general exhibit no

fluorescence, whereas melanoidins are yellow to brown and

are often fluorescent. The pre-melanoidins include uncoloured
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non-cross-linking AGE such as pyrraline, carboxymethyllysine

and carboxyethyllysine(454,455). The melanoidins include all

the fluorescent cross-linked AGE formed in the ‘non-enzy-

matic browning reaction’, such as pentosidine, and crossline,

but also non-fluorescent cross-linked AGE such as glyoxal

lysine dimer, methylglyoxal lysine dimer and the alkyl

formyl glycosyl pyrroles, formed by the reaction between

two sugar molecules with a single lysine residue, and argi-

nine-lysine imidazole, believed to be an intermolecular

cross-link. In addition, some compounds that are not AGE in

the strict sense are sometimes also considered as AGE.

These include the products of the Amadori rearrangement

such as fructoselysine (formed with glucose) and the unstable,

reactive dicarbonyl intermediates formed by the breakdown of

sugars or Amadori intermediates, which may be included in

the pre-melanoidins. AGE accumulate in the circulation

under several physiological and pathological conditions,

including diabetes and related disorders. In addition, circulat-

ing AGE accumulate when renal function is impaired(456–459).

AGE are formed within the body (endogenous AGE) due to at

least three mechanisms(460):

(1) Enhanced carbohydrate (and/or lipid) substrate avail-

ability, such as in hyperglycaemia (and/or hyper-

lipidaemia), which favours the nucleophilic addition of

a carbonyl group from a reducing sugar to a free amino

group of a protein (protein glycation) to form a reversible

Schiff’s base, which then rearranges to the more stable

ketoamine or Amadori product and subsequently,

through dicarbonyl intermediates such as 3-deoxygluco-

sones, to the irreversible AGE.

(2) Increased oxidative metabolism, such as in the presence

of transition metals and oxidative stress, which cause

auto-oxidation of glucose (auto-oxidative glycation)

or Amadori products (glycoxidation) via formation of

dicarbonyl compounds, such as glyoxal.

(3) Increased non-oxidative metabolism, with accumulation

of reducing sugars other than glucose, such as in the

case of increased glucose flux through the glycolysis

and polyol pathway (intracellular glycation) and/or

thiamin deficiency, which result in the formation of the

AGE precursor methylglyoxal.

AGE may also be derived from food(454,461) or tobacco(462).

AGE are formed during cooking and food processing pro-

cedures, and could accumulate in the body after intestinal

absorption. It has been suggested from experimental

animal models and studies in both healthy and type 2 diabetic

subjects that dietary AGE represent a significant source of cir-

culating and tissue AGE, although the absorption of individual

AGE from food is largely unknown(463). Little is known about

possible tissue deposition of food-derived AGE but in healthy

animals, it has been shown that AGE are rapidly and comple-

tely excreted(464,465). Finally, accumulation of both endogen-

ous and exogenous AGE may be favoured by reduced

kidney clearance as in the case of renal failure(466) and by

impaired detoxification caused by the utilisation of cofactors

of detoxifying enzymes.T
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The so-called advanced lipoxidation end products (ALE) are

similar to AGE but, rather than originating from sugars and sugar

breakdown products, ALE are derived from lipid oxidation(467).

Metal-catalysed oxidation of unsaturated lipids such as

PUFA and cholesterol results in the formation of lipid hydroper-

oxides and oxycholesterols, respectively. Lipid hydroperox-

ides, in the presence of metal ions or at high temperature,

form epoxyhydroperoxides, ketohydroperoxides and cyclic

peroxides, which decompose to low-molecular-weight break-

down products such as aldehydes, ketones or alcohols, or con-

dense to polymers. Malondialdehyde and 4-hydroxy-2-nonenal

are the main aldehydes generated during lipid peroxidation of

n-6 PUFA(468), whereas 4-hydroxy-2-hexanal is the predomi-

nant compound derived from the oxidation of n-3 PUFA(469).

Reactive lipid peroxidation products can form ALE by reacting

with amino groups of proteins to generate labile or stable

adducts or cross-links in protein, some of which may be

coloured or fluorescent. Some reaction products, such as

carboxymethyllysine, can originate from both sugars and lipid

oxidation products(470), and have been called ‘either advanced

glycation and lipoxidation end products’(466).

Advanced glycation end products/advanced lipoxidation
end products receptors

The putative deleterious effects of AGE may be attributed to

direct physico-chemical effects such as modification of extra-

cellular matrix proteins, resulting in cross-links, leading to

increased vascular stiffness or modification of proteins result-

ing in altered function, as well as via binding to a variety of

cell-surface receptors(471). AGE receptors have a dual function

and are involved in both AGE removal and AGE-induced cell

activation(140). Cell activation can occur via receptor-mediated

generation of ROS through both mitochondrial and cytosolic

pathways involving the electron transport chain and

NAD(P)H oxidase, respectively(472,473). ROS can trigger pro-

inflammatory signalling pathways causing MAPK-dependent

activation of transcription factors such as NF-kB(474–476) and

consequent modulation of the gene expression of several

pro-inflammatory cytokines(474,475,477).

Several AGE-binding proteins have been identified, including

the 42–45 kD receptor for AGE (RAGE), a member of the Ig

superfamily(478), the 60 kD protein a 48-kDa member of the

oligosaccharyltransferase complex (OST-48) or AGE-receptor

(AGE-R)1, the 90 kD protein 80K-H or AGE-R2(479), and the

32 kD protein galectin-3 or AGE-R3(480). This redundancy

could imply binding and/or functional specificity among AGE

receptors; alternatively, not all these receptors might be relevant

for AGE binding in vivo (140,481). At present, RAGE seems to be

the only receptor involved in cell activation(140). On the other

hand, AGE-R1, AGE-R2 and AGE-R3 seem to behave as an

AGE-receptor complex rather than individual receptor mol-

ecules and exert a predominant scavenging function(482,483).

In addition to the classical AGE receptors, AGE are cleared

also by scavenger receptors, which share with AGE receptors

the ability to bind modified lipoproteins such as oxidised

LDL(484). The scavenger receptor family can be broadly

classified into eight classes (A–H), which are expressed onT
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macrophages but also on other cells, including endothelial,

mesangial and vascular smooth muscle cells(485,486). Though

the ability of AGE receptors and scavenger receptors to clear

pro-inflammatory compounds such as AGE and oxidised

LDL from the tissue or circulation would seem initially

beneficial, the final net effect is dependent upon the balance

between this scavenging function and several other functions

of these receptors, including the clearance of other modified

self and non-self ligands, downstream pathways with

formation of cholesterol-laden cells, the initiation of pro-

inflammatory signalling cascades, and the regulation of

cellular lipid influx/efflux and synthesis/degradation(487).

However, it should be emphasised that the ligand affinity

of AGE proteins to scavenger receptors is dependent on

their modification, with mildly modified AGE not showing

significant affinity(488).

Among the AGE receptors, RAGE was shown to be impli-

cated in atherogenesis, based on the observations that soluble

RAGE, which is able to bind circulating AGE and other RAGE

ligands, and therefore to prevent their pro-inflammatory

effects, inhibited the development of atherosclerosis in

diabetic apoE2/2 mice(489), arrested its progression when

treatment was started after establishment of lesions(490) and

prevented experimental diabetic nephropathy(491), which

was conversely accelerated by RAGE overexpression(492). In

addition, RAGE ablation prevented diabetic nephropathy(493)

and neuropathy(494,495). Thus, the cell-surface RAGE appears

to be involved in inducing pro-inflammatory signalling while

the soluble form of RAGE appears to prevent this, by seques-

tering ligands away from the cell-surface RAGE. Conversely,

galectin-3 was proposed to exert a prevailing protective role

as indicated by reports that galectin-3 ablation resulted in

(1) the acceleration of glomerulopathy induced by dia-

betes(496), (2) increased AGE levels(497) and (3) accelerated

ageing(498). In the vessel wall, galectin-3 was induced in pro-

liferating vascular smooth muscle cells and particularly in

foam cells from arteries of experimental animal models of

atherosclerosis and human patients with advanced athero-

sclerotic lesions(499,500), and recent studies have shown that

galectin-3 ablation accelerates lipid-induced atherogen-

esis(501). Also AGE-R1 seems to play a protective role, as indi-

cated by resistance to oxidant and inflammatory injury in

mesangial cells overexpressing this receptor(482,502). This was

supported by the association of low AGE-R1 expression with

susceptibility to diabetic nephropathy in non-obese diabetic

mice(503) and the presence of diabetic complications in type

1 diabetic patients(504). Finally, the participation of class A

and B scavenger receptors in the process of atherogenesis

has been clearly established by a large body of experimental

studies, with scavenger receptor AI (SR-AI) and II and CD36

showing a predominant pro-atherogenic role and scavenger

receptor BI (SR-BI) exerting a protective function towards

lesion development(487). Thus, the net effect of the interaction

of AGE with AGE-binding receptors that can result in either

clearance or cell activation would be determined by the relative

expression of these different receptors on the respective cells.

Table 10. Observational studies on the association between alcohol intake and markers of low-grade inflammation

Subjects n (sex) Age (years) Association with low-grade inflammation Reference

Community based 2833 (M/F) Adult U CRP (lowest for 5–7 drinks/week) 418
Alcohol abusers and moderate drinkers 530 (M) Adult " CRP with higher intake 419
Population based 3697 (M/F) 18–90 U CRP 420
Healthy 340 (F) ¼ CRP

# IL-6 with higher intake
421

Population based (type 2 diabetics) 600 (F) Mean 64 # CRP, leucocyte count with higher intake
" Adiponectin (.9·2 g/d)

422

Population based 460 Adult ¼ IL-6 423
Blood donors 478 (M/F) 40–68 ¼ IL-6, sICAM-1, albumin

U CRP, SAA (1–40 g/d)
424

Population based 1776 (M/F) 18–88 U CRP, leucocyte count
iU Albumin, transferring

425

Population based 6739 (M/F) 25–74 U CRP, fibrinogen, leucocyte count (lowest for 1–40 g/d)
iU Albumin (highest for 20–40 g/d)

426

Population based 5865 (M/F) .65 ¼ CRP
# Leucocyte count, fibrinogen with higher intake
" Albumin with higher intake

427

Healthy health professionals 1432 (M/F) " sTNFR1, sTNFR2 (1–2 drinks/d v. 0 drinks/d)
# CRP, IL-6 (1–2 drinks/d v. 0 drinks/d)

428

Type 2 diabetic health professionals 726 (M) 47–82 ¼ CRP, sICAM-1
# sTNFR2, fibrinogen, sVCAM-1
" Adiponectin (12·5 g/d)

429

Population based 11 572 (M/F) .17 # CRP with higher intake 430
Healthy 2574 (M/F) 70–79 ¼ TNF-a, PAI-1

U CRP, IL-6 (lowest for 1–7 drinks/week)
431

Patients from general practices 3158 (M) 60–79 ¼ CRP ( # for higher intake of wine)
# Fibrinogen with higher intake

432

M, male; F, female; U, U-shaped relationship; CRP, C-reactive protein; " , increased; ¼ , no effect on; # , decreased; sICAM-1, soluble intercellular adhesion molecule-1;
SAA, serum amyloid A; iU, inverse U-shaped relationship; sTNFR, soluble TNF receptor; sVCAM-1, soluble vascular cell adhesion molecule-1; PAI-1, plasminogen activator
inhibitor 1.
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Table 11. Intervention studies investigating the effect of alcohol intake on markers of low-grade inflammation

Subjects n (sex) Age (years) Alcohol source and alcohol intake Study design and duration Effect on low-grade inflammation Reference

Healthy 16 (M/F) 22–33 Red wine (two doses: 12 or 20 g/m2

in men and 7·2 or 12 g/m2 in women)
or vodka (equivalent to high-dose red wine)

Acute; up to 9 h # NFkB activation after a
fat-enriched meal (only
red wine – both doses)

438

Healthy 29 Adult Red wine, white wine Acute; 4 h ¼ sP-selectin, von Willebrand
factor, thrombomodulin

" b-Thromboglobulin

439

Healthy 16 Adult Vodka (1255·2 joules ,42 g) Acute; 3 h ¼ NFkB activation 440
Postmenopausal women 20 (F) Alcohol (15 g) Acute; up to 6 h # CRP (after a high-carbohydrate,

high-fat meal)
442

Patients with coronary
artery disease

13 (M) White and red wine (2–3 glasses) Randomised, controlled,
cross-over, acute; 6 h

¼ sICAM-1, sVCAM-1
" IL-6

448

Healthy 6 (M) Red wine (60 g) Acute; 24 h ¼ TNF-a, IL-2, IL-4 435
Chronic pancreatitis

patients and healthy
controls

23 (M) Adult Alcohol (40 g) Acute; 24 h ¼ TGF-b
" IL-6 in patients
# MCP-1 in patients

443

Healthy 5 (M) 30–37 Red wine (60 g) Acute; 36 h ¼ IL-6, IL-10, IL-12
" IL-8

441

Lean and overweight 20 (M) 18–25 Beer (40 g/d) 3 weeks ¼ Resistin, leptin
" Adiponectin, grehlin

433

Lean and overweight 20 (M) Beer (40 g/d) Randomised, controlled,
cross-over; 3 weeks

¼ CRP 434

Subjects with increased
waist circumference

34 (M) 35–70 Red wine (40 g/d) Randomised, controlled,
cross-over; 4 weeks

¼ Resistin
" Adiponectin

437

Healthy 87 (M/F) Adult Red wine (15 g/d) Randomised, controlled,
cross-over; 3 weeks

¼ CRP
# Fibrinogen

444

Healthy 35 (F) Adult White or red wine (20 g/d) Randomised, cross-over; 4 weeks # CRP, sICAM-1, sCD40L, IL-6,
monocyte adhesion capacity
(both), sVCAM-1 (only red wine)

445

Healthy 20 (M/F) 45–64 Beer (40 g/d for male, 30 g/d for female) Randomised, diet-controlled,
cross-over; 3 weeks

# CRP, fibrinogen 446

Healthy 20 (M) Adult Sparkling wine or gin (30 g/d) Randomised, cross-over; 4 weeks # CRP, sICAM-1, IL-6, MCP-1
(only sparkling wine), sVCAM-1,
sE-selectin, P-selectin (both)

447

Healthy 24 (M) Adult Red wine (60 g/d) 2 weeks ¼ TNF-a, IL-2, IL-4, TGF-b 436

M, male; F, female; # , decreased; ¼ , no effect on; sP-selectin, soluble P-selectin; " , increased; CRP, C-reactive protein; sICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1;
TGF, transforming growth factor; MCP-1, monocyte chemoattractant protein-1; sCD40L, sCD40 ligand.
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Significance of dietary advanced glycation end products/
advanced lipoxidation end products

The nutritional properties of heated food were initially ques-

tioned because of the reduced availability of lysine due to

the formation of Amadori-modified lysine(505). However,

cooking was also shown to increase the bioavailability of

some nutrients, especially proteins derived from some plant

sources(451). Subsequently, the concern was raised that AGE

(and ALE) formed during the Maillard reaction might exert

adverse health effects in cells, tissues and organs. As a poten-

tial mechanism, a role of AGE/ALE binding to RAGE followed

by triggering of RAGE-dependent downstream signalling

events leading to transcription of pro-inflammatory genes

has been postulated(460,506). This view is supported by a

number of studies conducted in both experimental animal

models and human subjects, showing that ingestion of diets

containing high AGE levels results in increased levels of

circulating AGE (see below). In addition, these high-AGE

diets, generated by more severe thermal treatment than the

control diets, also resulted in a series of metabolic and

micro/macrovascular abnormalities related to diabetes and

its long-term complications (see below). However, despite

this body of experimental data, a cause–effect relationship

between dietary AGE and development and progression of

disease conditions related to Western-type lifestyle and dietary

habits has not yet been conclusively demonstrated, and a

number of issues remain to be solved.

Evidence supporting a potential harmful effect of dietary
advanced glycation end products/advanced lipoxidation
end products

Animal studies. In spontaneously diabetic db/db mice(507)

and in normal mice fed high-fat diets(508), feeding of a

low-AGE diet reduced serum AGE levels and improved insulin

sensitivity, compared with a high-AGE diet. In addition, in

non-obese diabetic mice, a fetal or neonatal low-AGE environ-

ment prevented autoimmune diabetes, possibly by reducing

antigenic stimulus for T-cell-mediated injury or by attenuating

b-cell damage(509). In both type 1 and 2 diabetes models (i.e.

non-obese diabetic and db/db mice, respectively) low dietary

AGE content provided sustained protection towards the devel-

opment of diabetic nephropathy(510). Likewise, in genetically

hypercholesterolaemic apoE2/2 mice, low AGE content in

the diet attenuated the development of atherosclerosis after

induction of diabetes with streptozotocin(511) and neointimal

formation after arterial injury(512). Finally, in db/db mice,

wound healing was accelerated by a low-AGE diet, with

predominant wound contraction, compared with animals on

a high-AGE diet, which favoured the epithelialisation mode

of wound closure(513).

Human studies. In healthy younger (aged ,45 years) and

older (aged .60 years) human subjects, dietary AGE, but not

energy intake, correlated with serum AGE levels and markers

of oxidative stress (8-isoprostanes), which in turn correlated

with serum CRP concentration and insulin resistance(514–521)

(Table 12). It is noteworthy that in this study, some healthy

individuals showed AGE levels of similar magnitude as

found in diabetic patients.

AGE-rich diets used for intervention studies in human sub-

jects are usually generated by more severe thermal treatment

of food, particularly by frying, broiling and baking, whereas

AGE-poor food is prepared by steaming or simply without

heating at all. Therefore, unless specified, these are the

methods that were used for the preparation of test and control

diets in the studies reviewed below. Taken together, these

studies show that dietary AGE content correlates with circulat-

ing levels of AGE and with markers of inflammation, oxidative

stress, endothelial dysfunction and renal function. One caveat

that needs attention for future human studies is the significant

contribution of smoking to the endogenous AGE load(462,522).

Diabetic subjects with and without nephropathy were given

a single meal of egg-white, cooked with or without fructose,

with the AGE-rich food containing about three times more

AGE than a single meal of a regular diet(456). There was a sig-

nificant correlation between dietary AGE content and serum

AGE levels. Moreover, the serum AGE levels were directly

related to the degree of renal dysfunction, as estimated by

the increase in albuminuria and the decrease in creatinine

clearance, and renal AGE excretion was inversely correlated

with the degree of renal dysfunction. The relationship

between dietary AGE intake, serum AGE levels and renal

AGE clearance was confirmed in a cross-sectional study per-

formed in long-term haemodialysis and peritoneal dialysis

patients with or without diabetes. This study showed that cir-

culating AGE correlated significantly with the AGE content of

a regular diet, as estimated by means of 3 d dietary records

and food questionnaires, as well as with blood urea N

level(459). Likewise, in non-diabetic patients on maintenance

peritoneal dialysis randomly assigned to two groups consum-

ing either a high- or low-AGE diet for 4 weeks, serum AGE

levels correlated with AGE consumption as well as with

blood urea N, serum creatinine, total protein, albumin and

P, with AGE restriction profoundly reducing circulating

AGE(523). Finally, cross-sectional studies of healthy subjects

and of patients undergoing haemodialysis showed a positive

relationship between dietary AGE intake and plasma inflam-

matory markers(515,520).

A number of acute studies examining the effect of a single

high-AGE meal on inflammatory markers have been con-

ducted (see Table 12). Although these have been conducted

in a variety of subject/patient groups, they show rather similar

effects: typically, there is an elevation of various inflammatory

markers (CRP, cytokines and soluble adhesion molecules) in

the hours after consumption of a high-AGE meal, and this

increase does not occur with a low-AGE meal (see Table 12).

Furthermore, healthy and diabetic volunteers receiving a

single dose of a high-AGE (caffeine-free) cola drink showed

an increase in serum PAI-1(519).

In patients on haemodialysis or peritoneal dialysis randomly

assigned to a 4-week high- or low-AGE diet, circulating levels

of AGE as well as markers of inflammation and endothelial

dysfunction (which were markedly elevated at baseline,

although not correlated with AGE) decreased significantly

in response to AGE restriction, i.e. the low-AGE diet(515).
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The findings of this latter study are in accordance with earlier

data in diabetic subjects with normal renal function who

showed a decrease in several inflammatory markers following

2 or 6 weeks of a low-AGE diet(521).

Arguments against potentially harmful effects of dietary
advanced glycation end products/advanced lipoxidation
end products

In contrast to the aforementioned reports, circulating AGE

levels could not be identified as an independent risk factor

for cardiovascular or renal outcomes in diabetic subjects

with diabetic nephropathy(524), and circulating AGE levels

were even inversely correlated with mortality in haemodialysis

patients, the latter most probably due to a better nutritional

status(525). In addition, a recent study in obese children

found lower circulating AGE levels compared with lean con-

trols while inflammatory markers were significantly elevated

in obese children(517). Several issues concerning the method-

ology and interpretation of published data have been raised

that may question the alleged adverse health effects of dietary

AGE/ALE(451,526,527).

A first issue is the large heterogeneity of AGE/ALE and their

precursors, which would require examination of the effect

of each of these compounds separately. In particular, the

bioavailability and metabolic fate of individual AGE/ALE struc-

tures should be evaluated to assess whether and to what

extent they are digested, absorbed and cleared by the body,

and accumulate in tissues to produce any significant adverse

health effect(451,527). AGE, which are absorbed as free or

short peptide-bound AGE, may be cleared more rapidly and

efficiently by the kidney, except when renal function is signifi-

cantly impaired, than those formed endogenously, which are

usually protein-bound. Studies in experimental animals fed

or injected with radiolabelled protein-bound AGE and

human volunteers receiving diets enriched with MRP or

specific AGE have shown that absorption of ingested MRP is

variable and dependent on the MRP(464,465,527–529). Highly

cross-linked AGE and melanoidins were predominantly

excreted in the faeces while absorbed MRP were in general

rapidly excreted by the kidney, with limited accumulation in

tissues and organs(465,528–531). Both pyrraline and pentosidine,

the latter only in free form, were readily absorbed and

excreted in the urine(532,533). There are also reports that

some MRP may be degraded by the colonic microflora(534).

Concerning the structural requirements for AGE to interact

with their receptor, there is evidence that RAGE does not

bind small molecules and simple protein modifications(478).

Penfold et al.(535) recently showed that only serum fractions

isolated from diabetic patients with nephropathy containing

high-molecular-weight proteins (.50 kD) were able to stimu-

late RAGE but not medium- or low-molecular-weight serum

fractions, in line with mechanistic studies that showed

no binding of carboxymethyllysine-modified proteins to

RAGE(536–538), and that supramolecular complexes are a pre-

requisite for RAGE binding(539–542). Together this suggests

that dietary AGE, even if they are absorbed from the gut,

would have little effect on inflammatory processes via RAGE

activation in target tissues, since it appears highly unlikely

that free AGE-modified amino acids would be incorporated

into nascent proteins. In addition, a few reports show that

binding of AGE to RAGE is not sufficient to stimulate

inflammatory signalling(538,542,543), suggesting that endotoxin

contaminations of AGE preparations used in the in vitro

cellular test systems may be responsible for the observed

pro-inflammatory effects.

A further issue, which could complicate the interpretation of

results, is the suitability of experimental design/models used

in animal studies(451). In fact, the amount of AGE/ALE adminis-

tered, and particularly the extent of their modification, might

not correspond to that of AGE/ALE ingested with usual

diets, due to the higher extent of modification introduced by

the heating procedure used for preparing test diets in pub-

lished studies(527). In addition, the true AGE content of many

test diets has either not been determined or has been ques-

tioned by others, as in the case of the ten times concentrated

caffeine-free diet cola beverage described above. In fact,

others have found low to undetectable AGE levels in unconcen-

trated normal or diet cola(466,544). Similarly, the food AGE con-

tent published by Goldberg et al.(461) and recently updated(545)

using a non-validated ELISA method to determine AGE content

is difficult to bring in line with the Maillard reaction in general

and with other data on food AGE content(451,527,546).

To attribute adverse health effects to any food ingredient, it

is essential that this food ingredient be tested independently,

e.g. in pure form and possibly out of the food context.

Unfortunately, for most published intervention studies of

AGE and/or ALE, this has not been the case. The adverse

health effects observed with differentially processed/heated

food that result in different AGE/ALE contents have been

ascribed to these protein modifications, regardless of the

altered food context generated by the differential proces-

sing/heating. It may also be possible that AGE/ALE formed

under these conditions might be markers of other process/

heating-related alterations of food and not themselves the

cause for adverse health effects. This is highlighted by the

beneficial effects of melanoidins formed during heat proces-

sing of food(547). One of the very few studies that investigated

the direct effect of pure AGE by adding an AGE-modified

protein v. a non-modified protein to a basal animal diet and

fed to rats for 11 weeks was in fact unable to demonstrate

any adverse health effects of the AGE-supplemented diet(548).

A major issue is the difficulty to attribute the adverse

health effects observed with thermally modified diets to their

AGE/ALE content, since the possibility cannot be ruled out

that other products formed such as heterocyclic amines or

acrylamide(453) or ingredients destroyed/consumed such as

natural antioxidants contained in fruits and vegetables(526)

during cooking and food processing may be responsible for

these effects. The notion that AGE may not be the agent

causing postprandial inflammation is supported by a report

showing that volunteers taking a single dose of either a

glucose-modified, AGE-rich or a sorbitol-treated, AGE-poor

casein preparation showed an identical postprandial increase

in NF-kB activation in peripheral blood mononuclear

cells(516). There is a significant body of evidence linking
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Table 12. Studies on the association between advanced glycation end products (AGE) intake and markers of low-grade inflammation

Subjects n (sex) Age (years) Intake
Study design and
duration Effects on low-grade inflammation Reference

Diabetic and non-diabetic
haemodialysis patients

189 (M/F) Mean 61(SD 14)
Mean 50(SD 14)

Dietary AGE Cross-sectional " CRP, sVCAM-1, TNF-a
¼ PAI-1

515

Healthy stratified by age groups 172 (M/F) 18–45
60–80

Dietary AGE Cross-sectional Correlation of AGE intake with CRP 520

Obese type 2 diabetics,
smokers and non-smokers

13 Mean 57(SD 10) High-AGE meal Acute; up to 4 h " CRP, sICAM-1, sVCAM-1, sE-selectin
¼ TNF-a, IL-6, IL-8, fibrinogen

518

Healthy and type 2 diabetics 10 Healthy þ44
type 2 diabetics (M/F)

Mean 43(SD 13) (Healthy)
Mean 51(SD 13) (Diabetics)

High-AGE cola drink Acute; 90 min " PAI-1
¼ sICAM-1

519

Healthy, non-smokers 9 Mean 32(SD 8) High- and low-AGE meal Acute; 2 h " NF-kB activation in both groups
(effect of meal not of AGE?)

516

Overweight type 2 diabetics,
smokers and non-smokers

20 (M/F) Mean 55(SD 10) High- and low-AGE meal Cross-over,
acute; up to 6 h

High-AGE meal:
" IL-6, sICAM-1, sVCAM-1, sE-selectin
¼ CRP, TNF-a, fibrinogen
Low-AGE meal:
# IL-6, sICAM-1, sVCAM-1
¼ CRP, TNF-a, sE-selectin, fibrinogen

514

Non-smoking overweight
diabetics

11 (M/F) Mean 52(SD 17) High- and low-AGE diet Cross-over; 2 weeks # TNF-a mRNA, sVCAM-1
with low-AGE diet

¼ CRP

521

Non-smoking overweight
diabetics

13 (M/F) ,62 High- and low-AGE diet Randomised,
parallel; 6 weeks

" CRP with high-AGE diet
and # low-AGE diet

" TNF-a with high-AGE diet
# sVCAM-1 with low-AGE diet

521

Renal failure patients on
dialysis

18 (M/F) High- and low-AGE diet Randomised,
parallel; 4 weeks

# CRP, TNF-a, sVCAM-1 and PAI-1
with low-AGE diet

515

Healthy obese children
v. lean controls

18 (11 M/7 F)
18 (8 M/10 F)

5–18
4–17

– Cross-sectional Obese had lower plasma AGE and
higher CRP and IL-6

517

M, male; F, female; " , increased; CRP, C-reactive protein; sVCAM-1, soluble vascular cell adhesion molecule-1; ¼ , no effect on; PAI-1, plasminogen activator inhibitor-1; sICAM-1, soluble intercellular adhesion molecule-1; # ,
decreased.
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food intake with postprandial inflammatory signalling.

In fact, postprandial hyperglycaemia has been shown to be

associated with increased NF-kB activation in patients with

type 2 diabetes(549). Moreover, an oral glucose load, or

better the mean glucose excursions following an oral glucose

load, were associated with urinary excretion of 8-iso PGF2a

as a marker of oxidative stress within 2–3 h after the

challenge(550), and oral glucose and/or high fat additively

increased inflammatory markers (CRP and IL-6) and oxidative

stress (nitrotyrosine), while reducing flow-mediated dilata-

tion(167,551) in diabetic subjects(552). This activation during

postprandial hyperglycaemia or hyperlipidaemia may be

due to acute changes in markers of glycoxidative and

lipoxidative stress and may partly underlie the association of

postprandial derangements and cardiovascular risk(553).

These observations have prompted the hypothesis that it is

the sugar and lipid content of meals which is related to

postprandial inflammation, oxidative stress and vascular

dysfunction(157,167,551,554). In addition, AGE precursors and

AGE/ALE might simply be markers of oxidative processes

and inflammation, which would be the true injurious mechan-

ism(455,555,556). The reported beneficial effect of agents such

as aminoguanidine(557) in preventing MRP accumulation

following ingestion of high-AGE diets could be attributed

to the metal-chelating and antioxidant properties of this

drug(455). The increased circulating and tissue AGE levels

induced by AGE-enriched meals might result from oxidant

stress-dependent endogenous AGE formation. The reported

attenuation of inflammatory changes induced by fatty meals

by treatment with antioxidants is in keeping with this

view(456,514). Likewise, the preventive effect of benfotiamine,

a transketolase activator that directs glucose substrates to

the pentose phosphate pathway, might depend on the

consequent blockade of endogenous dicarbonyls and AGE

formation as well as of other hyperglycaemia-induced

pathways(536). In addition, benfotiamine administration restores

normal thiamin levels, which have been reported to be reduced

in diabetic patients(538), and compensate for decreased thiamin

ingestion with food subjected to severe thermal treatment,

which is known to degrade this heat-labile vitamin(537,558,559).

Acute v. chronic exposure to AGE-enriched food could

produce different effects, and, under both experimental con-

ditions, post-meal values should be considered separately

from basal fasting values. Also, the use of animals such as

rodents, which are not accustomed to the intake of heated

food, might result in outcomes that cannot be directly applied

to humans. In addition, the effects of AGE/ALE-rich diets may

be different in healthy subjects and patients with diabetes,

other age-related disorders or renal insufficiency. The large

variation in serum AGE levels detected in younger and older

healthy subjects(520), with some individuals showing values

similar to those found in diabetic patients, would suggest

that AGE might not be harmful unless a concomitant disease

condition is present.

The argument that highly cooked or processed food may

be responsible for adverse health effects because of their

elevated AGE content may be countered by the findings that

vegetarians consistently present with higher circulating AGE

levels than individuals eating a Western diet(560). Also, the

recent report that obesity in children, while correlating with

increased oxidative stress and inflammatory markers,

showed an inverse correlation with circulating AGE levels is

in disagreement with this argument(517).

Another important issue is the reliability of methods

for AGE/ALE quantification that are used by different

groups(452,527,561). In fact, the use of antisera for quantitative

immunoassays of protein-bound AGE is questionable because

the specificity of the antibodies is often difficult to ascertain

and monospecific antibodies are not commercially available.

Furthermore, proteins used to block non-specific binding in

immunoassays may also contain AGE epitopes, and thus

interact with the detection system. Finally, because of steric

constraints, not all AGE epitopes on the protein may be

available for interaction with the antibody, and factors com-

peting for the reaction between the anti-AGE antibody and

its antigen, including anti-AGE auto-antibodies and, possibly,

complement, have been demonstrated in plasma(562,563).

Thus, AGE measurements with immunoassays yield only

semi-quantitative results and results obtained with immuno-

assays in both serum samples and food should be interpreted

with care. The indirect immunoassay used by Vlassara and

co-workers only allows results to be expressed in units,

thus making comparison with other analytical data impossible.

A much better approach for the quantitative determination

of specific AGE epitopes in proteins is the use of specific

analytical techniques, such as liquid chromatography-MS–MS,

for the analysis of specific AGE in protein hydrolysates(544).

Application of this kind of analytical technique could lead to a

more comprehensive understanding of the putative effects of

AGE formed by the Maillard reaction in food as well as in the

body of healthy and diabetic human subjects. In fact, conflicting

carboxymethyllysine levels in different foodstuffs have been

reported using either an indirect ELISA method(461) or an ultra

performance liquid chromatography-MS–MS method(546).

A relevant objection to the hypothesis that dietary AGE/ALE

have adverse health effects is the fact that the human organism

is equipped with very effective and redundant defence mech-

anisms limiting the digestion and intestinal absorption of these

compounds, which are also trapped in the gastrointestinal

tract and detoxified in intestinal epithelia or, for those that

are absorbed into the blood or lymph, in liver and other

tissues. Based on the pivotal role of the gastrointestinal tract

in the protection against ingested MRP, it would be important

to assess whether AGE/ALE that are not absorbed have

any adverse effects on the intestinal mucosa and/or colonic

microflora. Preliminary studies have shown that a high-AGE

diet did not affect the number or class of bifidobacteria and

sulphate-reducing bacteria, which have beneficial and detri-

mental effects, respectively(451,564). In addition, Morales

et al.(547) recently summarised the beneficial health effects of

melanoidins generated during heat processing of food.

Despite all these arguments, it might be prudent to advise

renal failure patients to decrease their intake of highly

heated food. This may not necessarily be due to the presence

of AGE/ALE in thermally treated food but rather to other

factors present/absent in thermally treated food.
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Finally, there may even be a ‘chemoprotective’ role of

individual dietary AGE/ALE due to antioxidant(565,566) and

anti-cancer(567) properties, the former in part attributable to

pronyllysine modification of lysine residues of proteins

detected in certain foods including bread crust and malt(568).

Research gaps

Although there appears to be suggestive evidence for a

potential role of dietary AGE in inducing low-grade chronic

inflammation, insulin resistance and vascular dysfunction,

the supporting proof so far has been weak, inconclusive and

even contradictory. What the available studies have been

able to consistently show is the relationship between dietary

AGE/ALE exposure and postprandial circulating AGE

levels(520). Whether the uptake of AGE/ALE from the diet is

responsible for adverse biological consequences such as

chronic low-grade inflammation, vascular dysfunction or

insulin resistance will require further investigations.

The following research gaps have been identified:

(1) There is a need for reliable analytical methods for food

AGE with inter-laboratory cross-validations.

(2) There is a need for a food AGE database based on

reliable analytical methods.

(3) There is a need for preclinical and clinical studies with

pure and well-characterised AGE independent of food

in both healthy individuals and diabetic patients.

(4) There is a need to discriminate the biological effects

induced by protein-bound v. free well-characterised AGE.

(5) There is a need for toxicological evaluation of well-

characterised AGE in animal studies.

(6) There is a need to expand investigation of the

(patho)physiological role of food-derived ALE and lipid

peroxidation products.

(7) There is a need to evaluate the (patho)physiological con-

sequences of highly heated food beyond their AGE/ALE

content.

(8) There is a need to balance potentially adverse health

effects of AGE with the potentially beneficial health

effects of melanoidins, both of which are generated by

thermal treatment of food.

Macronutrients and low-grade inflammation

Fatty acids

Dietary fatty acids may affect inflammatory processes

through modulation of eicosanoid metabolism, and by

eicosanoid-independent mechanisms such as regulation of

membrane and cytosolic signalling processes that influence

the activity of transcription factors involved in inflam-

mation(569,570). These latter transcription factors include

NF-kB and PPAR-g, both of which are sensitive to fatty

acids. There is an intriguing interaction between these latter

two transcription factors because PPAR-g inhibits NF-kB

activation(571). A number of different fatty acids including

saturated, monounsaturated, trans, conjugated linoleic and

polyunsaturated of both n-6 and n-3 families have been

investigated in the context of inflammation. They have been

examined in many model systems, typically with isolated

cells in culture and in animal models of inflammatory

conditions, as well as in studies in human volunteers and in

various patient groups. In addition, associations between

intake or status of various fatty acids and inflammatory

markers have been examined in human studies.

SFA. In vitro studies have suggested that SFA may promote

inflammatory processes. Exposure of myotubes or adipocytes

to the SFA palmitic acid (16 : 0) increased IL-6 mRNA

expression and subsequent protein production, possibly via

activation of NF-kB(572,573). Monocytes are activated directly

by SFA, especially lauric acid (12 : 0), via TLR-4 and through

this mechanism induce NF-kB activity(574,575). A limited

number of observational studies have investigated the

relationship between SFA exposure and circulating markers

of inflammation (Table 13)(373,374,576–585). Fernandez-Real

et al.(577) did not see any relationship between serum SFA

and CRP or IL-6 in lean individuals, while in overweight

individuals, serum SFA were positively associated with IL-6

concentration, and the ratio of SFA:n-6 or n-3 PUFA was

positively associated with IL-6 and CRP concentrations,

respectively. A study in overweight adolescents showed posi-

tive relationships between total SFA in plasma phospholipids

or cholesteryl esters and IL-6, but not CRP, concentration(579).

Thus, there is general agreement between two studies in

overweight subjects that SFA exposure is associated with

higher IL-6 concentration. A study in lean individuals does

not show this. An intervention study feeding diets rich in

stearic acid (18 : 0) or in lauric, myristic (14 : 0) and palmitic

acids to men aged 25–60 years for 5 weeks showed higher

concentrations of CRP, fibrinogen, IL-6 and sE-selectin com-

pared with a diet enriched in oleic acid (18 : 1n-9)(586). There

are few other intervention studies chronically increasing SFA

intake in human subjects and reporting inflammatory markers.

Trans-fatty acids. Using a subgroup of the Nurses’ Health

Study, Lopez-Garcia et al.(580) identified significant positive

associations between the intake of trans-fatty acids in the

diet and the concentrations of all six inflammatory markers

assessed, including CRP, IL-6 and three soluble adhesion

molecules. In a 5-week intervention in healthy men, a trans-

fatty acid-enriched diet resulted in higher CRP and IL-6

concentrations than diets rich in oleic acid, stearic acid or

the combination of lauric, myristic and palmitic acids(586).

Furthermore, the concentration of sE-selectin was higher

than in all other dietary groups including the stearic acid

and lauric þ myristic þ palmitic groups. Thus, an association

study and an intervention study both demonstrate that dietary

trans-fatty acids elevate the concentrations of a range of

inflammatory markers including CRP, IL-6 and adhesion

molecules.

Conjugated linoleic acids. In vitro and animal feeding

studies have suggested marked effects of conjugated linoleic

acids (CLA) on inflammation(587–589). However, results from

human intervention studies using CLA-rich capsules are equiv-

ocal (Table 14)(590–596). For example, two studies demonstrate

that CLA, especially the trans-10, cis-12 isomer, increases CRP
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concentration, but not the concentrations of cytokines or sol-

uble adhesion molecules(593,594). However, at least four other

studies have failed to show an effect of CLA on CRP concen-

tration (see Table 14). Duration of intervention is not likely to

be an explanatory factor for differences in the findings, but,

since most studies have used mixtures of CLA isomers in

different proportions, the precise dose of the more potent

isomer (perhaps the trans-10, cis-12 isomer) may be an

explanation. The two studies showing increased CRP with

CLA provided 2·1(594) and 2·7(593) g/d of trans-10, cis-12 CLA.

The four studies showing no effect of CLA on CRP used

between 0·4 and 2·5 g/d of this isomer (see Table 14). The

question of whether CLA per se, or whether specific CLA iso-

mers, increase low-grade inflammation requires further study.

Linoleic and a-linolenic acids. Linoleic (18 : 2n-6) and

a-linolenic (18 : 3n-3) acids constitute the majority (.95 %)

of PUFA in most Western diets, with the former usually

being present in an excess of approximately 10-fold over the

latter. These two fatty acids are the parent n-6 and n-3

PUFA, respectively. Because of the role of linoleic acid as

the precursor of arachidonic acid (20 : 4n-6), which is, in

turn, the substrate for the synthesis of pro-inflammatory eico-

sanoids such as PGE2 and 4-series leukotrienes, it is widely

considered that elevated n-6 and low n-3 fatty acids (i.e. a

high n-6:n-3 PUFA ratio) in the diet will promote inflam-

mation. However, available evidence does not support this

contention.

Dietary intakes of linoleic acid were not associated with

CRP, IL-6, sTNFR1 or sTNFR2 concentrations in subgroups

of the Physicians’ Health Study and the Nurses’ Health

Study(583). The concentration of linoleic acid in blood

lipids(578,579) or granulocytes(374) was not associated with

CRP or IL-6 concentration, although a large Swedish study

reported an inverse association between linoleic acid in cho-

lesteryl esters and CRP concentration(582). Linoleic acid

makes a major contribution to the fatty acids within blood

lipids, especially cholesteryl esters, where it is the pre-

dominant n-6 PUFA. Total n-6 PUFA in serum fatty acids in

overweight, but not in lean, subjects were inversely associated

with IL-6 but not CRP concentration(577). The ratio of SFA:n-6

PUFA in serum lipids or in plasma phospholipids was

positively associated with IL-6 but not CRP concentration in

overweight subjects(577,579). This suggests that decreasing

SFA status while increasing n-6 PUFA status might reduce

low-grade inflammation. An intervention study in thirty-eight

healthy male and female volunteers (mean age 27 years) com-

pared diets with 18 % energy from oleic acid and 4 % from

linoleic acid or 4 % energy from oleic acid and 12 % from lino-

leic acid; plasma sICAM-1 concentrations were not different

between these two groups(597), suggesting that exchange of

oleic acid for linoleic acid, while keeping SFA intake constant,

does not affect this marker of inflammation.

Dietary a-linolenic acid intakes were not associated with

CRP, IL-6, sTNFR1 or sTNFR2 concentrations in one study on

subgroups of the Physicians’ Health Study and the Nurses’

Health Study(583). In a second study on another subgroup of

the Nurses’ Health Study, a-linolenic acid intakes were

not associated with CRP, sICAM-1, sE-selectin or sTNFR2

concentrations but were associated with lower IL-6 and

sVCAM-1 concentrations(373). The concentration of a-linolenic

acid in blood lipids(578,579,582) or granulocytes(374) was not

associated with CRP or IL-6 concentration. Data from an Italian

study showed no association between a-linolenic acid in

plasma fatty acids and several cytokines including IL-6 and

TNF-a, but there was an inverse association with CRP(578).

These association studies suggest a modest anti-inflammatory

effect of a-linolenic acid.

Several intervention studies have involved high a-linolenic

acid intakes usually by providing flaxseed oil in capsules or

in liquid form or foodstuffs made using flaxseed oil(598).

Frequently, these studies have used a control group with a

high intake of linoleic acid, with the comparison essentially

being replacement of linoleic acid with a-linolenic acid.

Thus, the focus of these studies is essentially to explore the

importance of the n-6:n-3 PUFA ratio of the diet. If linoleic

and a-linolenic acids have similar effects on low-grade inflam-

mation, then studies exchanging one of these fatty acids with

the other would be likely to see little effect. Table 15 summar-

ises intervention studies with a-linolenic acid that have

measured markers of low-grade inflammation as an outcome.

Findings are inconsistent with a number of studies identifying

the effects of a-linolenic acid on some markers and not others,

and some studies finding no effects (Table 15)(599–606). Many

studies have used very high intakes of a-linolenic acid,

relative to typical habitual intakes. The study of Paschos

et al.(601) is enlightening because it showed that a-linolenic

acid (8·1 g/d for 12 weeks) was less effective (i.e. induced

fewer and smaller effects) against a more healthy, than against

a less healthy, background diet. Thus, dose, duration, sample

size and the nature of the background diet are possible contri-

butors to the varied findings of studies with a-linolenic acid.

However, what is apparent from these observations is that a

substantial increase in the intake of a-linolenic acid can

decrease low-grade inflammation as indicated by circulating

CRP, IL-6 or soluble adhesion molecules (see Table 15). The

study of Zhao et al.(606) provides further insight: the change

in CRP and sVCAM-1 concentrations was correlated with the

change in the concentrations of different serum n-3 PUFA

(a-linolenic acid, EPA, docosapentaenoic acid (22 : 5n-6) and

DHA) that had occurred. The only significant relationships

were inverse and between the change in EPA status and the

changes in CRP and sVCAM-1 concentrations. This suggests

that the anti-inflammatory effect seen with the very high

intake of a-linolenic acid in this study is due to the conversion

of a-linolenic acid to EPA. A suitable conclusion may be that

high intakes of a-linolenic are anti-inflammatory acting via

the a-linolenic acid derivative, EPA.

Several of the intervention studies with a-linolenic acid

have involved a group consuming a high intake of linoleic

acid, frequently as the control for the high a-linolenic acid

intake. These groups provide some information about the

impact of linoleic acid on low-grade inflammation. The

study of Rallidis et al.(603,604) involved a control group con-

suming about 11 g/d of linoleic acid in addition to the dietary

intake; this approximately doubled linoleic acid intake. The

increase in linoleic acid intake did not alter the concentrations
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Table 13. Observational studies on the association between fatty acid intake or status and markers of low-grade inflammation

Subjects n (sex) Age (years) Exposure Association with low-grade inflammation Reference

Referrals for
coronary angiography

269 (M/F) Mean ,60 Granulocyte fatty acids Linoleic acid, aLNA, arachidonic acid,
docosapentaenoic acid: ¼ CRP

EPA: # CRP (trend)
DHA: # CRP

374

At risk of CHD 152 (M) Mean 70(SD 3) Serum non-esterified
arachidonic acid,
EPA and DHA

Serum non-esterified arachidonic acid:
¼ sICAM-1, sE-selectin, thrombomodulin, tissue

plasminogen activator antigen
# sVCAM-1, von Willibrand factor
Serum non-esterified EPA:
¼ thrombomodulin, tissue plasminogen

activator antigen
# sVCAM-1, sICAM-1, sE-selectin,

von Willibrand factor
Serum non-esterified DHA:
¼ sE-selectin, thrombomodulin, tissue

plasminogen activator antigen, von Willibrand factor
# sVCAM-1, sICAM-1

585

Healthy and
overweight

109 Healthy (M/F)
and 123
overweight (M/F)

Mean 38 (healthy)
and mean
44 (overweight)

Serum fatty acids Healthy subjects:
Total SFA, n-6 PUFA, n-3 PUFA: ¼ CRP, IL-6
Overweight subjects:
Total SFA: " IL-6, ¼ CRP
Total n-6 PUFA: ¼ CRP, # IL-6
Total n-3 PUFA: ¼ IL-6, # CRP
Saturated:n-6 PUFA: " IL-6, ¼ CRP
Saturated:n-3 PUFA: " CRP, ¼ IL-6

577

Healthy 405 (M) and 454 (F) Mean ,60
(men) and

,42 (women)

Dietary intakes of linoleic
acid, aLNA, EPA þ DHA
as percentage of energy
determined from FFQ

Linoleic acid: ¼ CRP, IL-6, sTNFR1, sTNFR2
aLNA: ¼ CRP, IL-6, sTNFR1, sTNFR2
EPA þ DHA: ¼ IL-6; # CRP, sTNFR1, sTNFR2

583

Healthy 727 (F) Mean ,56 Dietary intakes of aLNA,
EPA þ DHA, total n-3 PUFA
as g/d determined from FFQ

aLNA: ¼ CRP, sTNFR2, sICAM-1,
sE-selectin; # IL-6, sVCAM-1

EPA þ DHA: ¼ IL-6, sTNFR2; # CRP,
sICAM-1, sVCAM-1, sE-selectin

Total n-3 PUFA: ¼ sTNFR2; # CRP, IL-6,
sICAM-1, sVCAM-1, sE-selectin

373

Healthy 730 (F) Mean ,56 Dietary intake of trans-fatty
acids as g/d determined from FFQ

" CRP, IL-6, sTNFR2, sICAM-1,
sVCAM-1, sE-selectin

580

Patients with angina 291 (M/F) Mean ,60 Granulocyte EPA and DHA
Subcutaneous adipose tissue

EPA and DHA

Granulocyte EPA: ¼ sICAM-1,
sVCAM-1, sP-selectin

Granulocyte DHA: ¼ sICAM-1,
sVCAM-1, sP-selectin

Granulocyte total n-3 PUFA: ¼ sICAM-1,
sVCAM-1, sP-selectin

Adipose EPA: ¼ sICAM-1,
sVCAM-1, sP-selectin

Adipose DHA: " sVCAM-1;
¼ sICAM-1, sP-selectin

Adipose total n-3 PUFA: " sVCAM-1;
¼ sICAM-1, sP-selectin
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Table 13. Continued

Subjects n (sex) Age (years) Exposure Association with low-grade inflammation Reference

Overweight 60 (M/F) Mean ,12 Plasma phospholipid and
cholesteryl ester fatty acids

Plasma phospholipids:
Total SFA: " IL-6; ¼ CRP
Ratio of PUFA to SFA: ¼ CRP; # IL-6
Linoleic acid, aLNA, EPA, DHA: ¼ CRP, IL-6
Plasma cholesteryl esters:
Total SFA: " IL-6; ¼ CRP
Ratio of PUFA to SFA: ¼ CRP; # IL-6
Linoleic acid, DHA: ¼ CRP, IL-6
aLNA, EPA: ¼ IL-6; # CRP

579

Japanese general
population
aged .70 years

971 (M/F) Mean 76(SD 4) Dietary intake of n-3 fatty
acids as g/d determined
from FFQ

EPA þ DHA: # CRP
aLNA: ¼ CRP

581

General
population
aged .65 years

1123 (M/F) Mean ,68 Plasma fatty acids Linoleic acid: " IL-6R; ¼ CRP, IL-6, TNF-a,
IL-1b, IL-1ra, IL-10, TGF-b

aLNA: ¼ IL-6, TNF-a, IL-1b, IL-10, IL-6R,
TGF-b; # CRP, IL-1ra

Arachidonic acid: " TGF-b ¼ CRP, TNF-a,
IL-1b, IL-10, IL-6R; # IL-6, IL-1ra

EPA: " IL-10, TGF-b; ¼ CRP, TNF-a,
IL-1b, IL-1ra, IL-6R; # IL-6

DHA: " IL-10, TGF-b; ¼ CRP, IL-1b,
IL-6R; # IL-6, TNF-a, IL-1ra

Radio of arachidonic acid to EPA : ¼ CRP, IL-6,
TNF-a, IL-1b, IL-1ra, IL-6R, IL-10, TGF-b

Total n-6 PUFA: " TGF-b ¼ CRP, IL-6,
TNF-a, IL-1b, IL-6R; # IL-10, IL-1ra

Total n-3 PUFA: " IL-6R, IL-10, TGF-b
¼ CRP, IL-1b; # IL-6, TNF-a, IL-1ra
n-6:n-3: " IL-6, TNF-a, IL-1ra; ¼ CRP,

IL-1b, IL-6R; # IL-10, TGF-b

578

Healthy 767 (M) 50 (fatty acids)
and 70 (CRP)

Plasma cholesteryl
ester fatty acids
at age 50 years
v. CRP at age
70 years

Plasma cholesteryl ester 16 : 1n-7,
18 : 1n-9, 18 : 3n-6 " CRP

Plasma cholesteryl ester 18 : 2n-6 # CRP

582

Healthy 511 (M/F) 21–67 Dietary intake of
linoleic acid,
aLNA, EPA and DHA

Linoleic acid: # CRP (men only)
aLNA: # CRP (men only)
EPA, DHA, EPA þ DHA: # CRP (weak)
Total n-6 PUFA: # CRP (men only)
Total n-3 PUFA: # CRP (men only)

584

M, male; F, female; aLNA, a-linolenic acid; ¼ , no effect on; CRP, C-reactive protein; # , decreased; sICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1; " , increased;
sTNFR, soluble TNF receptor; sP-selectin, soluble P-selectin; IL-1ra, IL-1 receptor antagonist; TGF, transforming growth factor.
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of CRP, IL-6, SAA, sICAM-1 or sE-selectin, but the concen-

tration of sVCAM-1 was decreased(603,604). In the study of

Paschos et al.(602), the control group consumed 11·2 g/d of

linoleic acid on top of their normal intake, which was approxi-

mately 11 g/d. This doubling of linoleic acid intake did not

affect TNF-a or adiponectin concentrations. These studies

did not alter any aspect of diet but required subjects to con-

sume oil providing linoleic or a-linolenic acids on top of the

normal diet. Thus, these studies show that markedly increas-

ing linoleic acid intake in those consuming on average

about 10 g/d does not increase low-grade inflammation.

The study of Zhao et al.(606) included a high linoleic acid

intervention group (13 % energy) and the control group con-

sumed what is described as an ‘average American diet’. This

provided 12·7 % of energy from SFA, 7·7 % from linoleic acid

and 0·8 % from a-linolenic acid. The corresponding values

for the linoleic and a-linolenic acid rich diets were 8·5, 12·6

and 3·6 and 8·2, 10·5 and 6·5, respectively. Thus, the linoleic

acid-rich diet contained more a-linolenic acid than the control

diet, while the a-linolenic acid diet contained more linoleic

acid than the control diet and almost as much linoleic acid

as the linoleic acid diet. Essentially, what this means is that

the linoleic acid diet is examining the effect of replacing

some SFA with the combination of linoleic and a-linolenic

acids and that the a-linolenic acid diet is examining the

effect of replacing some linoleic acid with a-linolenic acid.

In the linoleic acid group, the concentrations of CRP and

sICAM-1 decreased by 45 and 25 %, respectively; sVCAM-1

and sE-selectin also fell (by 15 and 7 %) but these changes

were not significant. Thus, replacing about one-third of SFA

with linoleic acid plus a-linolenic acid decreases low-grade

inflammation. This is consistent with the associations

described above and confirms that relative to SFA, the combi-

nation of linoleic and a-linolenic acids is anti-inflammatory.

The changes in inflammatory markers seen with the a-linole-

nic acid diet were greater than with the linoleic acid diet (75,

80, 37·5 and 12 % decreases in CRP, sVCAM-1, sICAM-1 and

sE-selectin concentrations, respectively). Since this diet is

effectively replacing some linoleic acid with a-linolenic acid,

relative to the amounts in the linoleic acid diet, these results

suggest that a-linolenic acid is more potent than linoleic

acid with regard to reducing inflammation.

The studies just described have focused on increasing

intake of linoleic and a-linolenic acids to study their effects.

The study of Liou et al.(607) used a different approach. They

kept the amount of a-linolenic acid in the diet of men aged

20–45 years constant over the study period at about 1 % of

energy. Linoleic acid intake was either 10·5 or 3·8 % of

energy. Saturated fat was also constant across the two diets

at about 8 % of energy. The manipulation of linoleic acid

was at the expense of oleic acid (17 or 10 % of energy). The

intervention duration was 4 weeks and a random order,

cross-over design was used. CRP and IL-6 concentrations

were not different after 4 weeks on either diet. This finding

is in accordance with that of Turpeinen et al.(597).

Arachidonic acid. Arachidonic acid intake in the diet is

low relative to that of its metabolic precursor linoleic acid

(approximately 500mg/d v. approximately 11g/d, respectively).

Nevertheless, arachidonic acid is the most prevalent n-6

PUFA and PUFA in the membranes of inflammatory cells

and other cells that might be involved in low-grade inflam-

mation such as endothelial cells and platelets. This reflects

the important functional role of arachidonic acid as a precur-

sor of the eicosanoid family of lipid mediators; this family

includes the 2-series PG and the 4-series leukotrienes. Since

these eicosanoids are classically associated with inflammatory

processes and are targeted by common anti-inflammatory

therapies, it is generally considered that arachidonic acid

will enhance inflammation. However, observations that classi-

cal pro-inflammatory mediators such as PGE2 can also exert

anti-inflammatory effects and that arachidonic acid gives rise

to anti-inflammatory mediators such as lipoxin A4 have started

to challenge the earlier view(608). Several studies have exam-

ined the association between arachidonic acid status and mar-

kers of low-grade inflammation. There was no association

between arachidonic acid in granulocytes and CRP concen-

tration(374). Serum free arachidonic acid was not associated

with sICAM-1 or sE-selectin concentrations and was actually

inversely associated with sVCAM-1 concentration(585). Ferrucci

et al.(578) reported no association between arachidonic acid in

plasma and CRP, TNF-a, IL-1b, IL-10 and sIL-6R concen-

trations, while there was an inverse association with IL-6

and IL-1ra concentrations and a positive association with

TGF-b concentration. These observations suggest either that

plasma arachidonic acid has little impact on low-grade

inflammation (does not affect CRP or TNF-a) or that it is

anti-inflammatory (lowers IL-6; increases TGF-b).

There are very few intervention studies with arachidonic

acid reporting on low-grade inflammation. In an uncon-

trolled study, Kelley et al.(609) reported higher granulocyte

numbers in the blood of a group of ten healthy men (aged

20–38 years) taking a supplement of 1·5 g/d of arachidonic

acid for 100 d compared with numbers after a run-in diet

providing 200 mg/d of arachidonic acid. In another small,

but controlled, study, eight subjects aged 55–75 years con-

sumed capsules providing 700 mg/d of arachidonic acid for

12 weeks(605); there was no effect on plasma sVCAM-1,

sICAM-1 or sE-selectin concentrations.

Marine-derived long-chain n-3 PUFA. The long-chain

n-3 PUFA EPA and DHA are found in seafood, especially

oily fish. They are also present in fish oils and in certain algal

oils; in some preparations, the fatty acids are in a more con-

centrated form than in natural fish oils. In fish oils, the fatty

acids are in the TAG form, but other forms of long-chain n-3

PUFA are also available, for example, as phospholipids or

ethyl esters. Increased intake of long-chain n-3 PUFA results

in increased proportions of those fatty acids in inflammatory

cell phospholipids(610–614). The incorporation of EPA and

DHA into human inflammatory cells is partly at the expense of

arachidonic acid, resulting in less substrate available for the syn-

thesis of the classic inflammatory eicosanoids such as PGE2.

Through altered eicosanoid production, n-3 PUFA could affect

inflammation and inflammatory processes, although they also

exert non-eicosanoid-mediated actions on cell signalling and

gene expression. The effects of long-chain n-3 PUFA have

been examined in many model systems and findings from
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cell-culture systems and from animal models are generally con-

sistent in identifying anti-inflammatory actions(569). Further-

more, clinical trials have demonstrated anti-inflammatory

effects and clinical benefit from fish oil administration in dis-

eases with a frank inflammatory basis including rheumatoid

arthritis(615), inflammatory bowel diseases(616) and childhood

asthma(617).

Data from subgroups of the Physicians’ Health Study and

the Nurses’ Health Study showed inverse associations between

the dietary intake of EPA þ DHA and concentrations of CRP,

sTNFR1 and sTNFR2(583), and CRP, sICAM-1, sVCAM-1 and

sE-selectin(373). The concentration of either EPA or DHA in

granulocyte membranes was inversely associated with CRP

concentration in one study(374); the effect of DHA was stronger

than that of EPA. Serum non-esterified EPA and DHA were

both inversely associated with concentrations of sVCAM-1

and sICAM-1 in patients at risk of CHD(585); EPA was also

inversely associated with sE-selectin concentration. Plasma

cholesteryl ester EPA was inversely associated with CRP con-

centration in overweight subjects(579). In an elderly Italian

population, plasma EPA was inversely associated with IL-6

concentration and positively associated with the concen-

trations of the anti-inflammatory cytokines IL-10 and TGF-

b(578). Furthermore, plasma DHA was inversely associated

with IL-6 and TNF-a concentrations and was also positively

associated with the concentrations of IL-10 and TGF-b(578).

Thus, observational studies suggest that both EPA and DHA

are anti-inflammatory.

The ready availability of fish oil capsules has facili-

tated numerous supplementation studies of long-chain n-3

PUFA in various subject groups; these are summarised

in Table 16(164,605,618–646). Studies have shown that long-

chain n-3 PUFA lower the concentrations of CRP(621,624,639),

IL-6(621,624,639), TNF-a(639), IL-18(643), sICAM-1(625,628,645,646),

sVCAM-1(605,645) and sE-selectin(618) in various subject/patient

groups (see Table 16). For example, one study showed an

increase in adiponectin concentration when a weight-loss

programme and 4·2 g/d EPA þ DHA were combined in over-

weight, insulin-resistant women(632). Thus, there is quite a

lot of evidence for anti-inflammatory effects of supplemental

long-chain n-3 PUFA. In a group of overweight women with

type 2 diabetes, 8 weeks of a moderate dose of long-chain

n-3 PUFA (1·8 g/d of EPA þ DHA) decreased adiposity and

reduced expression of a number of inflammation-related

genes in the subcutaneous adipose tissue(630). The parallelism

between the down-regulation of these genes and the

reduction in adiposity and adipocyte diameter by n-3 PUFA

treatment suggests a positive relationship between adipose

cell size and adipose tissue inflammation, agreeing with

other observations(31,66). Also these findings in type 2 diabetic

women are paralleled by those from rodent studies: 6 weeks

of n-3 PUFA supplementation prevented adipose tissue

inflammation induced by a high-fat diet(647), and the presence

of n-3 PUFA in the diet of long-term insulin-resistant, sucrose-

fed rats decreased adipocyte diameter(648) and significantly

reduced several inflammation-related genes (unpublished

results, Guerre-Millo M, Naour N, Lombardo Y, Clement K,

Rizkalla S). These studies suggest that reducing adiposity

with n-3 PUFA could decrease adipose tissue inflammation

and macrophage infiltration. The beneficial effects of n-3

PUFA may be linked to local blunting of adipose tissue

inflammation.

Despite the large number of positive studies with long-chain

n-3 PUFA, there are a number of studies that have failed

to replicate these findings (see Table 16). Furthermore, two

early studies showed an enhancement of selected inflam-

matory markers following long-chain n-3 PUFA adminis-

tration(629,642). Seljeflot et al. provided 4·8 g/d of EPA þ DHA

in ethyl ester form to hyperlipidaemic male smokers for 6

weeks, while Johansen et al. provided 5·1 g/d of EPA þ DHA

in ethyl ester form to patients with CHD for 24 weeks.

Both studies identified an increase in sVCAM-1 (,10 %) and

sE-selectin (20 %) concentrations, with no effect on sP-selectin

and a decrease in von Willibrand factor and thrombomodulin

concentrations. In both cases, the authors ascribed the

effect of EPA þ DHA on sVCAM-1 and sE-selectin to increased

oxidant stress in these subjects.

Thus, although the overwhelming view is that EPA þ DHA

given at sufficient doses are anti-inflammatory, the evidence

from measurements of markers of low-grade inflammation is

not entirely consistent. The lack of consistency may be related

to differences in: duration of treatment; sample size; character-

istics of the populations studied (e.g. age, healthy v. diseased,

type of disease, smokers v. non-smokers); background diet;

dose of EPA þ DHA used; relative contribution of EPA and

DHA, since they may have different anti-inflammatory poten-

cies; chemical formulation (e.g. TAG v. ethyl ester); degree of

oxidative stress present. One other factor that has been

recently identified is genetic differences among individuals,

which may have an impact on the ability of n-3 PUFA to

exert an anti-inflammatory effect. This was first identified by

Grimble et al.(649) who showed that the ability of fish oil to

lower the LPS-stimulated production of TNF-a by blood

mononuclear cells was determined in part by polymorphisms

within the TNF-a and TNF-b genes. Another example of such

an interaction was identified by Shen et al.(650). They first

identified that the IL-1b 6054 G . A SNP was significantly

associated with CRP and adiponectin concentrations and

with the prevalence of the metabolic syndrome among a

group of 1120 men and women with a mean age of 49

years. There was also a significant interaction between this

polymorphism and erythrocyte membrane n-3 PUFA content.

Among subjects with low erythrocyte n-3 PUFA content

(below the median), the 6054 G allele was associated with

increased risk of the metabolic syndrome (OR 3·29, 95 % CI

1·49, 7·26 for GG and OR 1·95, 95 % CI 0·85, 4·46 for GA) com-

pared with the AA genotype, but there were no significant

genotype associations among subjects with high erythrocyte

n-3 PUFA content (above the median). The results suggest

that IL-1b genetic variants are associated with measures of

chronic low-grade inflammation and the risk of the metabolic

syndrome, and that genetic influences were more evident

among subjects with low erythrocyte n-3 PUFA status and

so, most probably low n-3 PUFA intake.
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Carbohydrates

Acute postprandial effects of hyperglycaemia. Hyper-

glycaemia, elevated TAG/NEFA and hyperinsulinaemia are

events that are mutually inherent to the initial development

of a diabetic state. The effects of the individual events are

difficult to study since they always present together. However,

some observations have suggested that hyperglycaemia and

hypertriacylglycerolaemia/elevated NEFA levels induce inde-

pendent effects and, when present together, act synergistically

to generate oxidative stress, inflammation, impaired endo-

thelial function and vascular disease(651–653). Oxidative stress

is known to induce damage to cell membranes, internal cell

structures and DNA as well as to induce inflammatory

responses (Fig. 8) (654). Ceriello et al.(652) observed that after

meals LDL oxidation increases and that this phenomenon is

correlated with the degree of hyperglycaemia. This clearly

points to hyperglycaemia-induced free radical production

that has an impact on a broad range of metabolic events.

NO, a potent vasodilator, is assumed to play a key role in

this respect. It has been suggested that hyperglycaemia

leads to an increased oxidation of NO, thereby reducing

NO levels which leads to impairment in vasodilatation(655).

Indeed, alloxan diabetic rats are observed to have reduced

NO levels in blood(656), and in human subjects, acute

hyperglycaemia attenuated endothelium-dependent vasodila-

tion(657). Postprandial hyperglycaemia is also correlated with

impaired myocardial perfusion in diabetic patients(658). The

fact that such a decrease can be prevented by supplying

various antioxidants such as vitamin C, vitamin E and

a-lipoic acid(659–662) or L-arginine(656,663), the precursor of

NO, suggests that increased NO oxidation and the related

NO drain have an impact on cells of the vasculature. This is

supported by other evidence. Restoration of NO availability

results in normalisation of endothelial function as well as

insulin sensitivity(659,660). During an oral glucose tolerance

test, plasma antioxidant status, measured as total plasma

radical trapping capacity, significantly decreased in normal

as well as in diabetic individuals. The consumption of a

glycaemic meal increases oxidative stress and reduces anti-

oxidant defences, with the increase being significantly greater

with higher levels of hyperglycaemia(169,664,665). Acute post-

meal hyperglycaemia was observed to induce the formation

of nitrotyrosine, a marker of oxidative stress, in healthy,

non-overweight individuals(666). It has been hypothesised

that acute hyperglycaemia may induce a drain of vitamin C

from cells because vitamin C and glucose share a common

transport system(667) and oxidative stress leads to a use of

intracellular vitamin C. Accordingly, Chen et al.(668) provided

evidence in vitro that acute hyperglycaemia leads to a signifi-

cant decrease in leucocyte vitamin C content. Evans et al.(662)

developed a unique oxidative stress hypothesis suggesting

that chronic elevation of hyperglycaemia (and NEFA) induces

an activation of the NF-kB, p38 MAPK and NH2-terminal

Jun kinase/stress-activated protein kinase pathways. This

happens along with the activation of the RAGE, protein

kinase C and sorbitol stress pathways. The authors suggest

that these events play a key role in causing late complicationsT
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in type 1 and type 2 diabetes, going along with insulin

resistance and impaired insulin secretion in type 2 diabetes.

Evans et al.(662) provided evidence that elevated glucose

causes oxidative stress due to increased production of

mitochondrial ROS, non-enzymatic glycation of proteins and

glucose auto-oxidation. They also pointed out that elevated

NEFA can cause oxidative stress due to increased mitochondrial

uncoupling and b-oxidation, the latter leading to an increased

production of ROS and to an activation of stress-sensitive

signalling pathways, which in turn impair insulin secretion

and action. Thus, oxidative stress induced by acute and chronic

elevations in glucose and NEFA plays a key role in causing insu-

lin resistance and b-cell dysfunction. A range of studies has

shown that acute and lasting hyperglycaemia leads to an

elevation in dicarbonyls and protein glycation (measured as

fructosamine or HbA1c). Glycosylated proteins, as well as

their metabolites, AGE, which bind to the AGE receptor

RAGE, induce a cascade of signals that initiate an inflammatory

response(669). Accordingly, pro-inflammatory transcription

factors, inflammatory markers including CRP, IL-6, IL-8,

TNF-a and matrix metalloproteinase and markers of endo-

thelial dysfunction VCAM-1, ICAM-1 and E-selectin have been

observed to be elevated in response to acute and persistent

hyperglycaemia(474,475,514,521,653,662,670,671).

Glycaemic index, glycaemic load and inflammation.

Dietary glycaemic index (GI) and glycaemic load (GL) were

both positively associated with plasma CRP concentration in

18 137 healthy women aged .45 years without diagnosed

diabetes(672). In another study in 974 subjects aged 42–87

years, dietary GI was positively associated with CRP concen-

tration(673). Qi et al.(315) examined the associations of dietary

GI and GL with plasma adiponectin among 780 diabetic

men from the Health Professionals’ Follow-Up Study. After

adjustment for other factors, dietary GI and GL were both

significantly inversely associated with plasma adiponectin

concentration in a dose-dependent fashion. Adiponectin

levels were 13 % lower in the highest quintile of dietary GI

than in the lowest quintile. For dietary GL, adiponectin

levels were 18 % lower in the highest quintile than in the

lowest. Several intervention studies have examined the

impact of dietary GI or GL on markers of chronic low-grade

inflammation. In one study, thirty-four healthy overweight

adults aged 24–42 years received energy-restricted diets with

high or low GL for 6 months(674); more subjects in the low

GL group showed a decline in serum CRP concentration

than in the high GL group. In another study, Shikany

et al.(675) found no differences in CRP, TNF-a, IL-6, fibrinogen,

sTNFR2 or PAI-1 concentrations when overweight or obese

men consumed diets with high or low GI for 4 weeks.

Likewise, 11-week interventions of high- or low-GL diets in

fifteen overweight subjects had no differential effects on

CRP, TNF-a, IL-6 or MCP-1 concentrations(676). Thus, evidence

from large observational studies is highly suggestive that there

is a positive association between GI/GL and low-grade

inflammation, but intervention trials do not support this

convincingly, perhaps because of the small size of most of

the latter trials.T
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Table 16. Intervention studies investigating the effect of marine n-3 PUFA intake on markers of low-grade inflammation

Subjects n (sex) Age (years) Intake (source; duration) Effect on low-grade inflammation Reference

Healthy 58 (M) in four groups 21–87 (mean 56) 0, 1·06, 2·13, 3·19 g/d EPA þ DHA

(FO capsules; up to 52 weeks)

¼ TNF-a, IL-1b, IL-1ra 620

Healthy and hyperlipidaemic 20 Healthy (M/F) and 39

hyperlipidaemic (M/F)

Mean ,51 0, 3·6 g/d EPA þ DHA (EE capsules; up to 6 weeks) ¼ sICAM-1, sVCAM-1

# sE-selectin

618

Hyperlipaemic smokers 41 (M) in four groups (two

received n-3 PUFA)

41–57 (mean ,48) 0, 4·8 g/d EPA þ DHA (EE capsules; 6 weeks) " sVCAM-1, sE-selectin

¼ sP-selectin, tissue plasminogen

activator antigen

# von Willibrand factor, thrombomodulin

642

Patients with CHD 54 (M/F) in two groups 43–73 (mean 57) 0, 5·1 g/d EPA þ DHA (EE capsules; 24 weeks) " sVCAM-1, Se-selectin

¼ sP-selectin, tissue plasminogen

activator antigen

# von Willibrand factor, thrombomodulin

629

Healthy and type 2 diabetics 21 Healthy (M) and

29 diabetics (M)

Mean ,55 2·0 g/d EPA þ DHA (FO capsules; 3 weeks) ¼ sICAM-1, sVCAM-1, sE-selectin,

PAI-1 activity, PAI-1 antigen

640

Healthy 24 (M/F) in three groups 55–75 0, 0·7 g/d DHA (DHA-rich algal oil capsules; 12 weeks),

1 g/d EPA þ DHA (FO capsules; 12 weeks)

EPA þ DHA:

¼ sICAM-1, sE-selectin

# sVCAM-1

DHA: ¼ sICAM-1, sVCAM-1, sE-selectin

605

Obese 48 (M) in four groups (two

received n-3 PUFA)

Mean 53(SD 7) 0, 3·5 g/d EPA þ DHA (EE capsules; 6 weeks) ¼ CRP, IL-6, TNF-a 623

Elderly at risk of CHD 171 (M) in four groups

(two received n-3 PUFA)

Mean 70(SD 3) 0, 2·4 g/d EPA þ DHA (FO capsules; 18 months) ¼ sICAM-1, sVCAM-1, sE-selectin,

tissue plasminogen activator antigen

# von Willibrand factor, thrombomodulin

619

Healthy on hormone

replacement therapy

30 (F) in three groups Mean 60 0, 1·09, 2·18 g/d EPA þ DHA

(FO capsules; 5 weeks)

# CRP, IL-6 624

Healthy 60 (M/F) in three groups 21–57 (mean 38) 0, 2·0, 6·6 g/d EPA þ DHA

(FO capsules; 12 weeks)

¼ CRP 633

Myocardial infarction survivors 300 (M/F) in two groups 28–87 (mean 65) 0, 3·5 g/d EPA þ DHA (EE capsules; 12 months) ¼ sICAM-1, sVCAM-1, sE-selectin 627

Type 2 diabetics 59 (M/F) in three groups 40–65 (mean 61) 0, 4 g/d EPA, 4 g/d DHA

(EPA EE or DHA EE capsules; 6 weeks)

¼ CRP, IL-6, TNF-a, von Willibrand

factor, tissue plasminogen activator

antigen, PAI-1 antigen, sP-selectin

636, 644

Healthy 60 (M/F) in three groups Mean ,38 0, 1·6, 5·8 g/d EPA þ DHA

(concentrated FO capsules; 3 years)

Low dose:

¼ sVCAM-1, sP-selectin

# sICAM-1 (especially in women)

High dose:

¼ sICAM-1, sVCAM-1

# sP-selectin

625

Obese 11 (M) Not given 1·1 g/d EPA þ DHA (FO capsules; 6 weeks) ¼ CRP, IL-6, sTNFR1, sTNFR2, PAI-1 164

Hyperlipidaemia 563 (M) in four groups

(two received n-3 PUFA)

64–76 (mean 70) 0, 2·4 g/d EPA þ DHA (FO capsules; 3 years) ¼ sVCAM-1, sE-selectin,

von Willibrand factor, tissue plasminogen

activator antigen

# sICAM-1, thrombomodulin

628

Healthy 93 young (M) and 62 older

(M) in four groups

Mean 24(SD 10)

Mean 61(SD 8)

0, 1·35, 2·7, 4·05 g/d EPA þ DHA (EPA-rich oil; 12 weeks) ¼ sICAM-1, sVCAM-1

" sE-selectin (young only)

622

Healthy 141 (M/F) in two groups Mean ,47 0, 0·96 g/d EPA þ DHA (FO in soya milk; 12 weeks) ¼ CRP, sTNFR1, sTNFR2 626

Overweight and insulin resistant 116 (F) in three groups 21–69 (mean 45) 0, 0 þ weight-loss programme, 4·2 g/d EPA þ DHA þ

weight-loss programme (concentrated FO

capsules; 24 weeks)

" Adiponectin

¼ CRP, TNF-a, IL-6

632

Healthy 80 (M/F) in two groups Mean ,30 0, 1·5 g/d DHA (DHA-rich algal oil; 4 weeks) ¼ CRP, fibrinogen, PAI-1 activity,

von Willibrand factor

641

Overweight type 2 diabetics 27 (F) in two groups Mean 55 0, 1·8 g/d EPA þ DHA (FO capsules; 8 weeks) ¼ IL-6, TNF-a, SAA, adiponectin

# PAI-1 activity, inflammatory gene

expression in adipose tissue

630

Overweight and obese 30 (F) in two groups Not given 0, 4·2 g/d EPA þ DHA (DHA-rich TAG capsules;

12 weeks; cross-over)

¼ Sialic acid, fibrinogen, PAI-1 activity

# CRP, IL-6

621
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Dietary fibre. In NHANES 1999–2000 in the USA, dietary

fibre intake was inversely associated with serum CRP

concentrations (OR 0·49 for 32 g/d v. 5·1 g/d) in diabetic

women (n 3920)(677), as well as in subjects with diabetes,

hypertension and obesity (n 7891)(678). Similar findings were

reported in a cross-sectional study with healthy subjects

(n 205) and in subjects with metabolic disorders (n 1653) in

Italy(679). In the Seasonal Variation of Blood Cholesterol

Levels Study involving 524 subjects, who had multiple

measurements of CRP and dietary intake, dietary total fibre

and soluble and insoluble fibre were all inversely related

to CRP concentration in the regression models adjusted for sev-

eral traditional cardiovascular risk factors, current infection

status and season of year(680). In contrast, the same authors

observed no correlation between dietary fibre intake and

blood CRP concentrations with a single measurement at base-

line in the Women’s Health Initiative Observational Study(681).

However, there was an inverse association between fibre

intake and IL-6 and sTNFR2 concentrations in this female

population. In a study with diabetic males (n 780, Health

Professionals’ Follow-Up Study), cereal fibre was positively

associated with adiponectin levels after controlling for a

number of confounding factors(315). King et al.(682) conducted

an intervention study with thirty-five lean normotensive

and seventeen obese hypertensive adults that involved a

randomised cross-over design. The two intervention diets

constituted either the Dietary Approaches to Stop

Hypertension (DASH) diet (naturally high in fibre i.e. 30 g

fibre/d) or a fibre-supplemented usual diet (30 g psyllium

fibre/d) each for a 3-week period. Both diets caused a

reduction in CRP concentration (14 and 18 %, respectively),

although this was significant only in lean normotensive

subjects in either intervention arm. The data generally support

that dietary fibre intake is associated with reduced low-grade

inflammation.

Milk peptides

Increased consumption of dairy products has been shown

to have beneficial effects on plasma CRP and adiponectin

concentrations in obese subjects(683). This effect has been

suggested to be partly explained by the intake of dairy

protein-derived peptides. Indeed, the casein-derived peptides

Ile-Pro-Pro and Val-Pro-Pro slightly, though not significantly,

lowered CRP concentration in hypertensive subjects after

10 weeks(684). Whey protein-derived peptides lowered CRP

concentration (after 6 weeks) in one study in hypertensive

subjects(685), but not in another(686). Minor dairy proteins and

peptides, especially lactoferrin, also show anti-inflammatory

effects in different models(687–689), and hence there is poten-

tial for a variety of milk peptides to have anti-inflammatory

effects, but there are no or insufficient human studies to

allow evaluation of their efficacy.

Micronutrients and phytochemicals

Iron

The topic of Fe in relation to low-grade chronic inflammation

is complex. Part of the complexity is related to the factT
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that Fe status assessment is confounded in the presence of

inflammation(690–692). Fe status assessment relies on a battery

of laboratory tests spanning various stages of Fe deficiency.

These tests include: serum ferritin, which generally indicates

body Fe stores; soluble receptor of transferrin in serum

(transferrin receptor) reflecting tissue Fe; serum transferrin,

total Fe-binding capacity and transferrin saturation, which

indicate Fe-deficient erythropoiesis; finally, red cell indices

namely mean cell volume, Hb and haematocrit, which are

considered functional Fe indices. Others have suggested the

ratio of transferrin receptor:serum ferritin as an index of

total body Fe stores(693). Most tests of Fe status, however,

are affected in response to subclinical inflammation and

infections(690–692). Thus, it becomes difficult to study the

relationship of Fe with any outcome of interest when inflam-

mation is present. Recent studies have suggested that serum

transferrin receptor remains unaffected in the presence of

inflammation or infectious disease (reviewed in Ahluwalia(690)

and Northrop-Clewes(694)), thus allowing the examination of

the role of Fe in conditions with an underlying inflammatory

component.

Deficiency v. excess. Fe has been called a double-edged

sword, as both Fe deficiency and excess can have delete-

rious effects(695). Fe is important in immune/inflammatory

responses including neutrophil activation, macrophage

effector functions, and T-helper cell type-1 and -2 (Th1/Th2)

patterns (reviewed in Weiss(695)). Fe deficiency is associated

with alterations in the immune response and increased risk

of infections(695–697). On the other hand, because Fe is a

redox-active transition metal, it may contribute to the pro-

duction of ROS, oxidative stress and inflammation(698,699),

and thus Fe excess can augment the risk for diabetes and

CVD. It is important to indicate that ROS are produced by

free, and not bound, Fe(700) and the body has evolved a

metabolic system that minimises the availability of free

Fe(698). Most Fe in the body is not free, and is bound to pro-

teins such as ferritin, transferrin and Hb; thus, serum ferritin,

transferrin, transferrin saturation and Hb measurements do

not reflect the availability of ‘free’ or ‘labile’ Fe that is impli-

cated in the production of ROS. In recent years, the measure-

ment of non-transferring-bound labile Fe(701) has been

introduced; however, few studies have utilised this measure-

ment to date due to technical, cost and standardisation issues.

Iron status and low-grade inflammation. There is some

epidemiological evidence that higher Fe intake, particularly

that of haem Fe, and higher Fe status are associated with

increased risk of type 2 diabetes, atherosclerosis and

CHD(702–714), although not all of the literature is consistent.

It is not clear whether the association of Fe intake and

status with diabetes or CVD is mediated through the effects

of Fe on inflammatory pathways. In a small study with

thirty-one carbohydrate-intolerant patients, quantitative phle-

botomy was used to induce Fe depletion to near-deficiency

levels(715). The induced Fe deficiency was associated with

reductions in several CVD risk factors as well as in the

inflammatory marker fibrinogen. While uncertainty exists as

to whether Fe plays a causative role in the aetiology of

low-grade inflammation and its associated pathologies, past

and emerging evidence indicates that chronic low-grade

inflammation is associated with poor Fe status in obese

persons(716–721). A concomitant improvement in Fe status

(as measured by transferrin saturation) and decrease in

inflammation (CRP and orosomucoid concentrations) has

been observed after bariatric surgery intervention in morbidly

obese women(722). In total, emerging evidence indicates that

the low-grade inflammation of obesity may be associated

with low Fe status; however, further investigation of this

relationship is warranted.

A small number of studies have investigated the

effects of increasing total Fe or haem Fe intake on markers

of inflammation(723–725). In a small study involving three

healthy volunteers who received 120 mg Fe/d for a week,

there were no changes in circulating CRP concentration or

leucocyte counts, or in urinary neopterin concentration(725).

Furthermore, postpartum Fe supplementation (80 mg/d)

for 12 weeks in non-anaemic Fe-deficient women did not

significantly alter CRP concentration or leucocyte counts(726).

In a small study in 8–11-year-old Guatemalan children who

received twice the recommended daily amounts of Fe for

8 weeks (n 20) or placebo (n 20), no differences in CRP

or orosomucoid concentrations were noted, although a-1

antichymotrypsin levels were increased with the Fe sup-

plement(724). In another study examining the effect of

increasing lean red meat intake, participants were either

Hyperglycemia

• Fasting

• Postprandial

+

+

++

+

• Glycation

• Polyol-hexosamine
  pathway

• Glucose autoxidation

Free radicals
superoxide

PKC Peroxynitrite

Inflammatory responses

NF-κB

Fig. 8. Schematic representation of the general mechanisms by which hyper-

glycaemia can affect inflammation. PKC, protein kinase C. Reproduced with

permission from Giugliano et al.(654).
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assigned to a control group (maintain their usual diet) or to

partially replace energy from carbohydrate-rich foods with

200 g/d of lean red meat for 8 weeks(723). In this short

intervention, increased red meat intake was not associated

with increased oxidative stress or inflammation. Taken

together, the evidence from these limited studies examining

the effect of Fe supplementation or increased red meat

intake on inflammatory markers suggests no major effect on

inflammation; however, there is a need for further larger

well-designed studies to clarify this effect.

Vitamin D

Various immune cells including monocytes/macrophages,

dendritic cells, T-cells and B-cells can convert inactive vitamin

D3 to its active form (1,25(OH)2D3), and these cells can also

respond to the active vitamin D via its receptor which they

express(727). It seems likely that vitamin D plays a paracrine

modulatory role in the immune/inflammatory system(728).

Although a pro-inflammatory role of vitamin D has also

been suggested(729), epidemiological data show an association

between vitamin D deficiency and increased risk of several

inflammatory diseases including type 1 diabetes and athero-

sclerosis(730). Vitamin D has several anti-inflammatory actions.

It blunts the pro-inflammatory effects of AGE on endothelial

cells, suggesting that it acts as an endogenous vascular protec-

tor counteracting the possible deleterious effects of AGE(731).

Vitamin D inhibits the proliferation of lymphocytes and

induces their apoptosis(732). In addition, vitamin D affects

the expression of ICAM-1 on mononuclear cells and on endo-

thelial cells, suggesting that it suppresses the recruitment of

leucocytes to sites of inflammation(732). In vitro, vitamin D

modulates the pro-inflammatory profile of monocytes/macro-

phages from type 2 diabetic patients(733). Vitamin D also

suppresses TNF-a expression in monocytes/macrophages(734)

and down-regulates the expression of TLR2 and TLR4

in human monocytes(735–737). Indeed, vitamin D primes

monocytes to respond less effectively to bacterial cell wall

components, most probably due to the aforementioned

suppression of TLR(735). Vitamin D analogues selectively

inhibit the inducible cyclo-oxygenase-2(738), which could be

viewed as an anti-inflammatory action. Exposure to vitamin

D increases the rate of the de-phosphorylation of activated

extracellular signal-regulated kinases(739), a subset of the

mammalian MAPK family involved in inflammatory processes.

Serum vitamin D concentration was associated with leucocyte

telomere length in 2160 women aged 18–79 years (mean age

49 years) and was inversely associated with CRP concen-

tration(740). Within any tertile of vitamin D status, telomere

length was longer in those with lower CRP concentrations,

suggesting that inflammation plays a role in those processes

associated with telomere shortening.

There are several studies looking at the association between

vitamin D status (typically assessed as serum or plasma

25(OH)D3) and various markers of low-grade inflammation

in different population subgroups. Shea et al.(741) reported

no significant association between plasma vitamin D concen-

tration and concentrations of CRP, fibrinogen, TNF-a, IL-6,

sTNFR2, sICAM-1, MCP-1, sP-selectin and sCD40 ligand in

almost 1400 American adults with a mean age of 59 years.

Likewise, there was no association of vitamin D status with

serum CRP concentration in 650 Amish(742) or with CRP,

sICAM-1, MCP-1, IFN-g, IL-2, IL-4, IL-5, IL-10, IL-12, IL-13

or IL-17 concentrations in 437 overweight adults(743). Using

data from over 6500 British adults aged 45 years, Hypponen

et al.(744) reported that the significant inverse associations

between serum 25(OH)D3 concentration and serum CRP and

fibrinogen were lost after adjustment for confounding factors.

Among 261 healthy men and women, plasma 25(OH)D3 was

not correlated with resistin, adiponectin or IL-18 concen-

trations but was inversely correlated with leptin concen-

tration(745). Among forty-four morbidly obese subjects,

25(OH)D3 did not correlate with leptin, resistin, adiponectin

or IL-18. Jablonski et al.(746) examined the inflammatory phe-

notype of endothelial cells collected from the antecubital vein

of middle-aged and older subjects: endothelial cell expression

of NF-kB and of IL-6 were both higher in vitamin D-deficient

subjects, and IL-6 expression was inversely related to

25(OH)D3 concentration. Using data pooled from thirty-six

healthy subjects, twenty-four type 1 diabetics and twenty-six

type 1 diabetics with microvascular complications, Devaraj

et al.(747) found significant inverse relationships between

serum 25(OH)D3 and CRP concentration, monocyte NF-kB

activation and TLR4 expression. Most recently, NHANES data

for 5867 adolescents aged 12–19 years showed no relation-

ship between serum 25(OH)D3 and CRP concentrations(748).

Thus, association studies have consistently found little,

if any, association between vitamin D status and circulating

markers of inflammation. However, two studies that investi-

gated cellular markers of inflammation both reported an

anti-inflammatory effect of vitamin D(747,748).

Most intervention studies with vitamin D have failed to

identify a reduction in markers of low-grade inflam-

mation(744,749,750). These studies each had a different design.

Pittas et al.(749) provided 700 IU (17·5mg) vitamin D3 plus

500 mg calcium citrate daily to adult non-diabetics for 3

years in a double-blind, randomised, controlled trial and

found no effect on plasma CRP or IL-6. Witham et al.(751) pro-

vided 100 000 IU (2500mg) vitamin D2 or placebo to elderly

patients with systolic heart failure at study entry (week 0)

and after 10 weeks and found no effect on plasma TNF-a at

10 or 20 weeks. Jorde et al.(743) provided 40 000 or 20 000 IU

(1000 or 500mg) vitamin D3 per week or placebo to over-

weight subjects for 1 year; there was no difference between

groups in the changes in concentrations of CRP, sICAM-1,

MCP-1, IFN-g, IL-2, IL-4, IL-5, IL-10, IL-12, IL-13 or IL-17

over the course of the study. Thus, these intervention studies

suggest little anti-inflammatory action of vitamin D in the sorts

of subjects studied. However, compared with placebo, vitamin

D (3300 IU (82.5mg)/d for 12 months) resulted in a decrease

(by 10 %) in TNF-a concentration in overweight subjects on

a weight-reduction programme(752). This finding suggests

that vitamin D dose, the nature of the supplementation regi-

men and the health status of the individuals under study,

as well as starting vitamin D status, may all be important

factors in determining the effect of supplemental vitamin D.
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Antioxidant vitamins (vitamin C, vitamin E and
carotenoids)

Vitamin C is a potent water-soluble antioxidant. Ascorbate is

the active form of vitamin C and exerts antioxidant function.

Upon its action as an antioxidant, ascorbate is oxidised to

dehydroascorbate which can be reduced back to ascorbate

by the oxidation of reduced glutathione to glutathione disul-

fide. Ascorbate is present at high concentrations in leucocytes,

suggesting a significant role in inflammation and in protection

against oxidative damage. Patients with the metabolic syn-

drome or diabetes showed decreased vitamin C status and

increased lipid peroxidation(753–756). These findings could be

explained by increased oxidative stress as a result of diabetes

leading to consumption of ascorbate or a role of low vitamin C

status as a risk factor for the development of diabetes. Obese

subjects have lower plasma vitamin C concentrations than

non-obese, and obesity was associated with moderately elev-

ated CRP concentrations(757). In another study, low plasma

vitamin C concentrations were related to central fat distri-

bution, independent of BMI(758).

Vitamin E is an umbrella term for a number of tocopherols

and tocotrienols, although dietary vitamin E mainly consists of

a- and g-tocopherols. Vitamin E is a potent chain-breaking

antioxidant that acts mainly in the lipid phase and interrupts

the chain reaction of lipid peroxidation and, consequently,

prevents the propagation of free radical-initiated reactions.

There are differences in the antioxidant activity between

a- and g-tocopherols. In vitro, vitamin E exerts a range of

anti-inflammatory actions with regard to the production of

pro-inflammatory cytokines and eicosanoids and adhesive

interactions of monocytes with endothelial cells(750,759–761).

There is growing evidence that g-tocopherol, in contrast

to a-tocopherol, exerts anti-inflammatory properties which

can be explained by an unsubstituted position on the chro-

manol ring providing g-tocopherol with the ability to trap

reactive N species and subsequent formation of 5-nitro-g-toco-

pherol(762,763). Supplementation with a-tocopherol decreases

g-tocopherol concentrations(764,765) due to a preference of

the a-tocopherol transfer protein in the liver for a-tocopherol.

This results in increased metabolism to carboxyethyl-hydroxy-

chroman derivatives and excretion of the metabolites

in the urine(766). g-Tocopherol and g-carboxyethyl-hydroxy-

chroman exert actions that are not shared by a-tocopherol

and a-carboxyethyl-hydroxychroman(767).

Carotenoids include, among others, a-carotene, b-carotene,

lycopene, b-cryptoxanthin, lutein and zeaxanthin. They

are highly prevalent in red, yellow and green vegetables

and fruits. Carotenoids exert antioxidant properties and

some of them serve as provitamin A. Among 3258 healthy

men (age 68 (SD 5) years; BMI 26·7 (SD 3·6) kg/m2), dietary

vitamin C intake and plasma vitamin C concentrations were

both inversely associated with CRP concentrations(329).

Among 5181 subjects from the MESA aged 45–84 years,

intakes of vitamin C, vitamin E or b-carotene were not associ-

ated with CRP, IL-6 or fibrinogen concentrations after adjusting

for a number of factors(768). Recent data from the Womens’

Health Study reported that higher plasma concentrations of

a- and b-carotene were associated with lower plasma CRP

concentrations(769). Similar results were reported from

NHANES III for carotenoids and CRP(770,771). However, the

use of latex-enhanced nephelometry instead of a high-sensi-

tivity ELISA, and the fact that 74 % of the population had

levels below the assay’s detection limit, limits the interpret-

ation of their results. In another study, dietary intakes of vita-

min C, vitamin E and b-carotene did not predict the

concentrations of CRP, IL-6 or TNF-a in normal-weight, over-

weight and obese Swiss children aged 6–14 years, but they

were significant predictors of leptin concentrations(772).

Using data from a small number of middle-aged (mean age

44 years) vegetarians and omnivores (n 30 per group),

plasma vitamin C concentrations were found to be inversely

associated with CRP concentrations(295). In 379 Dutch adults,

serum lutein and lycopene concentrations were inversely

associated with sICAM-1 concentrations, serum b-carotene

with total blood leucocyte numbers and CRP concentrations,

serum vitamin C with CRP concentrations, while plasma a-

tocopherol concentrations were positively associated with

CRP concentrations(773). Among 437 Japanese subjects,

serum b-carotene concentrations were positively associated

with adiponectin concentrations(774). Other associations

among a- and b-carotene and CRP and IL-6 concentrations

were lost after adjustment for confounding factors. A larger

Japanese study (n 778 men and 1404 women) reported an

inverse association between serum vitamin C and CRP concen-

trations after adjustment for confounders(775). The association

was strongest in non-smokers, in non-overweight women and

in postmenopausal women. Recently, plasma vitamin C con-

centrations have been reported to be inversely associated

with plasma CRP concentrations in a small number of lean

and obese men (n 8 per group) with a mean age of 21

years(776). In patients with coronary artery disease, plasma

concentrations of b-carotene, but not lycopene, were inver-

sely correlated with plasma CRP concentrations(777). In one

prospective study with young normal-weight adults, a high

intake of carotenoids (a-carotene, b-carotene, zeaxanthin/

lutein and b-cryptoxanthin) was inversely related to plasma

CRP and ICAM concentrations after 7 and 15 years of

follow-up(778). In a second prospective study, a high intake

of carotenoids in elderly subjects (BMI 28·8 (SD 6·8) kg/m2)

was associated with lower plasma IL-6 concentrations, while

a-tocopherol did not correlate significantly(779). Among 704

70-year-old Swedish men, dietary intakes of vitamin C and

a-tocopherol, but not of b-carotene, were inversely associated

with CRP and IL-6 concentrations measured 7 years after

the dietary information was collected(780). Thus, overall, cross-

sectional andprospective studies fairly consistently demonstrate

that a higher intake and status of vitamin C, vitamin E and

carotenoids is associated with lower levels of low-grade

inflammation.

Taking 1 g of vitamin C or 533 mg of a-tocopherol before

consuming a high-fat test meal blunted the acute CRP

response to the meal(781). Plasma 8-iso PGF2a and MCP-1

concentrations decreased after consumption of 72 mg/d of

vitamin C from a vegetable soup(634); concentrations of

TNF-a, IL-1b and IL-6 did not change. Vitamin C (1 g/d for
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14 d) did not alter sICAM-1 concentrations or markers of

monocyte and neutrophil activation (neopterin and elastase,

respectively) in smokers or non-smokers (n 20 of each)(782).

Likewise, vitamin C supplements (250 mg three times per

week for 2 months) did not alter plasma CRP concentrations

in thirty-three chronic haemodialysis patients(783). Tomato

juice (delivering 20·6 mg lycopene/d) was compared with

tomato juice fortified with vitamin C (delivering 435 mg

vitamin C/d) over a 2-week intervention period: the vitamin

C-enriched juice did not affect plasma CRP, TNF-a or IL-1b

concentrations in healthy volunteers(784). Vitamin C (1 g/d

for 6 months) lowered sP-selectin, but not sVCAM-1,

sICAM-1 or sE-selectin concentrations in patients with chronic

degenerative aortic stenosis(785); combining vitamin C with

a-tocopherol (267 mg/d) lowered sICAM-1 concentrations.

Smokers given 515 mg vitamin C/d for 2 months had a 24 %

reduction in plasma CRP concentrations(786). A mixture of

vitamin C with a-tocopherol (371 mg/d), g-tocopherol

(171 mg/d), mixed tocotrienols (252 mg/d) and a-lipoic acid

(95 mg/d) resulted in a smaller effect (4·7 % reduction that

was not significant), suggesting that tocopherols, tocotrienols

or a-lipoic acid, or the combination, prevents the anti-inflam-

matory effect of vitamin C. Vitamin C (2 g/d for 4 weeks) did

not affect serum IL-6, IL-1b, sVCAM-1 or sICAM-1 concen-

trations in smokers, but combining 533 mg/d a-tocopherol

with the vitamin C decreased the concentrations of all four

inflammatory mediators; the combination of vitamin C and

267 mg/d a-tocopherol was without effect(787).

a-Tocopherol (800 mg/d for 3 months) decreased plasma

CRP concentrations in type 2 diabetics(788). Dalgard et al.(789)

examined the effect of a 28 d intervention with orange

and blackcurrant juice (500 ml/d), vitamin E (15 mg RRR-a-

tocopherol/d) or the combination of the two in patients

with peripheral vascular disease. The juice but not vitamin E

decreased CRP (by 11 %) and fibrinogen, but there was no

effect on IL-6 or PAI-1. In a randomised, placebo-controlled,

double-blind trial, subjects with the metabolic syndrome

received 800 mg/d a-tocopherol, 800 mg/d g-tocopherol,

a combination of both (800 mg/d each) or placebo; there

was a decrease in CRP concentrations only in the combined

a- and g-tocopherol supplementation group, while TNF-a

decreased with a-tocopherol alone or in combination with

g-tocopherol(790). Biomarkers of oxidative stress decreased

with a-tocopherol, g-tocopherol or the combination, while

nitrotyrosine, a biomarker of nitrative stress, decreased

with g-tocopherol alone or in combination with a-toco-

pherol(646–648). In another randomised, placebo-controlled,

double-blind trial, overweight and obese and normal-weight

young adults completed a standardised 30 min cycle exercise

bout before and after 8 weeks of supplementation with 800

IU/d of vitamin E (form not stated), 500 mg/d of vitamin C

and 10 mg/d of b-carotene(791). Adiponectin concentrations

were increased by 22 % in the overweight and by 3 % in the

normal-weight group receiving the supplement, but was

reduced in the placebo group. Changes in circulating IL-6

concentrations during exercise were lower in the sup-

plemented groups, as were the changes in lipid hydroperox-

ides(791). In contrast, a double-blind, placebo-controlled trial,

in which type 2 diabetics received 500 mg/d a-tocopherol or

mixed tocopherols containing 315 mg/d g-tocopherol,

reported no effect on CRP, IL-6, TNF-a or MCP-1 concen-

trations, although there was a decrease in plasma F2-isopros-

tane concentrations, a biomarker of lipid peroxidation, in

the mixed tocopherol group(792). A small study conducted in

healthy subjects (n 12) and patients with CHD (n 12) investi-

gated the effect of increasing intake of a-tocopherol (100, 200

and 400 mg/d each for 3 weeks sequentially)(793). At 200 mg/d,

plasma CRP, IL-6 and fibrinogen concentrations were

decreased in the CHD patients. A long-term (3 years) interven-

tion with the combination of vitamin C (500 mg/d) and a-

tocopherol (182 mg/d) in 45–69-year-old men did not alter

CRP, TNF-a or IL-6 concentrations(794). In one study, fifteen

children with familial hyperlipidaemia given vitamins C plus

E (500 mg/d and 400 IU/d, respectively) for 6 weeks showed

no changes in CRP concentration(795). In another study, six

weeks’ supplementation with vitamin C (1 g/d) plus vitamin

E (300 mg/d RRR-a-tocopherol) did not alter the magnitude

of the increase in circulating CRP, TNF-a and IL-6 concen-

trations seen after running a marathon(796). Older men given

1 g/d of vitamin C plus 1000 mg/d vitamin E for 4 weeks

showed a decrease in plasma TNF-a concentrations(797).

Recently, a mixture of fruit-derived antioxidants has been

found not to alter CRP or IL-6 concentrations over 12 weeks

in type 2 diabetics(798). In an intervention study with caroten-

oid-rich vegetables and fruits, plasma concentrations of a- and

b-carotene, but not other carotenoids, were inversely associ-

ated with plasma CRP concentrations in healthy normal-

weight men(345). Lycopene (80 mg/d for 1 week) did not

affect plasma CRP, sVCAM-1 or sICAM-1 concentrations in

men and women with a mean age of 23 years(799).

Thus, in contrast to observational studies that provide a

fairly consistent picture of an anti-inflammatory effect of

vitamin C, vitamin E and carotenoids, intervention studies

using supplements of these antioxidant vitamins either alone

or in various combinations provide a less consistent set of

observations. A number of studies do demonstrate a reduction

in the concentrations of circulating inflammatory markers in a

variety of subgroups of individuals, including the overweight

persons and diabetics, but quite a number of studies did not

find an effect. The lack of consistency may be related to differ-

ences in: dose of antioxidant used (however, typically the

doses used are much greater than those that can be readily

achieved in the diet and are therefore much greater than

would have been present in the diets of subjects investigated

in the observational studies); duration of treatment (typically a

few weeks to a few months); sample size which has

often been small; characteristics of the populations studied

(e.g. age, healthy v. diseased, type of disease, smokers

v. non-smokers); background diet; interactions among the

different antioxidant vitamins used, since they may have

different anti-inflammatory potencies and some may even

act in a pro-inflammatory way under certain conditions;

degree of oxidative stress present. One other factor that has

recently been identified is genetic differences among individ-

uals, which may have an impact on the ability of antioxidants

to exert an anti-inflammatory effect. Such an effect has been
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identified by Belisle et al.(800) who showed that the ability of

a-tocopherol to lower the LPS-stimulated production of

TNF-a by whole blood was determined in part by polymorph-

isms within the TNF-a gene. Thus, it is possible that a greater

or lesser anti-inflammatory effect of antioxidant vitamins will

be observed in people with different genotypes related to

inflammatory processes. Clearly, this needs greater explora-

tion in properly designed studies.

Flavonoids

Polyphenols are secondary metabolites of plants involved in

pigmentation, reproduction and protection against pathogens.

There are more than 8000 known polyphenolic substances

sharing a common chemical structure (hydroxyl group on

an aromatic ring) with different constituents. Flavonoids are

the most abundant polyphenols present in the human diet,

and they can be divided into several classes according to

different constituents such as flavanones, flavones, flavanols

and flavonols. They can be found in almost all plant foods

and, among the flavonols, myricetin, kaempferol and querce-

tin are the most representative, while catechins are the most

abundant flavanols contained in tea leaves. Flavanones are

mainly represented in the diet by taxifolin, naringinin and

hesperitin. The main sources of flavanones are citrus fruits.

Flavones are less common. In addition to these, other classes

of flavonoids are present in the diet such as proanthocyanidins

and their oligomers.

The intake of flavonols and flavones was not correlated

with plasma concentrations of CRP or IL-6 in healthy

women (BMI 25·8–26·2 kg/m2)(801). While this study used

a rather limited flavonoid database, a more recent cross-

sectional study applying a comprehensive flavonoid database

reported anti-inflammatory effects associated with a high

flavonoid intake: total flavonoid, flavonol and anthocyanidin

intakes were inversely associated with plasma CRP con-

centrations(323). Data from the Nurses’ Health study were

used to assess the relationship between flavonoid intake and

biomarkers of inflammation(802): intake of six flavonoid

subclasses (flavonols, flavones, flavanones, flavan-3-ols, antho-

cyanidins and polymeric flavonoids) was assessed using a FFQ

administered in 1990 and blood samples collected in 1989–90

were used to measure concentrations of CRP, IL-6, IL-18,

sTNFR2, sVCAM-1 and sE-selectin. Multivariate-adjusted

mean plasma IL-18 concentrations were lower (by 9, 11 and

8 %, respectively) for women in the highest intake quintile

of flavones, flavanones and total flavonoids compared with

those in the lowest quintiles. Multivariate-adjusted geometric

plasma sVCAM-1 concentrations were lower by 4 % in

women in the highest intake quintile of flavonol compared

with those in the lowest quintile. Thus, the study suggests

that higher intakes of selected flavonoid subclasses are associ-

ated with modestly lower concentrations of some inflamma-

tory biomarkers.

In a randomised human intervention trial with healthy

normal-weight adults, supplementation with a bilberry

extract providing 300 mg anthocyanins/d (equal to 100 g of

fresh bilberries) reduced plasma concentrations of several

NF-kB-induced pro-inflammatory cytokines (IL-8, RANTES and

IFN-a)(337). In addition, NF-kB-inducing cytokines (IL-4 and

IL-13) tended to differ from controls, while plasma CRP

concentrations did not change(337). In subjects who had

survived myocardial infarction and had received statin

therapy for at least 6 months, supplementation with a choke-

berry flavonoid extract for 6 weeks significantly decreased

CRP and MCP-1 concentrations, while adiponectin was signifi-

cantly increased(803). In contrast, although the consumption

of black tea resulted in increased plasma catechin con-

centrations, these were not associated with changes in

plasma CRP concentrations in healthy overweight and obese

adults(389). A similar negative effect on CRP was observed

in a double-blind, placebo-controlled, cross-over study with

healthy adults (mean BMI 25·8 kg/m2) who were sup-

plemented with a sea buckthorn flavonol extract during 4

weeks(804). Quercetin (50, 100 or 150 mg/d for 2 weeks) did

not affect serum concentrations of TNF-a in healthy

adults(805). Overweight or obese subjects aged 25–65 years

with metabolic syndrome traits received 150 mg quercetin/d

in a double-blind, placebo-controlled, cross-over trial with

6-week treatment periods separated by a 5-week washout

period: quercetin did not affect CRP or TNF-a concentrations

compared with placebo(806). Quercetin (1 g/d for 21 d) failed

to attenuate muscle inflammation in ultramarathon run-

ners(807) and in trained cyclists(808,809). However, leucocyte

IL-8 and IL-10 mRNA were significantly reduced, indicating

that a high dose of quercetin may target blood cells but not

the muscle tissue.

Phyto-oestrogens

Genistein is an isoflavone and a phyto-oestrogen which

primarily occurs in soyabeans. Native phyto-oestrogens exist

as glycosides, while in experimental studies, mostly the

aglycones have been used. In two intervention studies with

healthy postmenopausal women, the intake of genistein (54

or 40 mg/d) for 6 months did not significantly affect plasma

CRP concentrations(810,811). The intake of soya either high or

low in isoflavones for 1, 2 or 4 months had also no effect

on CRP, SAA or TNF-a concentrations in hypercholesterolae-

mic men or in postmenopausal women(356,359,362). In obese

postmenopausal women, the combination of exercise with a

soya isoflavone supplement (duration 6 months) did not

decrease plasma CRP concentration compared with exercise þ

placebo(812). Consumption of a soya isoflavone-enriched

cereal bar (50 mg/d) for 8 weeks by postmenopausal

women had no effect on CRP or other plasma markers of

inflammation(813). A higher intake of soya isoflavones

(114 mg/d) for 3 months also did not reduce serum CRP or

sE-selectin concentrations in postmenopausal women(814). In

another study, isoflavone-rich soya (107 mg/d as aglycone;

50 % as genestein) for 6 weeks did not affect sVCAM-1,

sICAM-1 or sE-selectin concentrations in healthy postmeno-

pausal women compared with isoflavone-poor soya(815). In

contrast, a randomised, controlled study providing pasta

naturally enriched with isoflavone aglycones (33 mg/d) to

overweight hypercholesterolaemic subjects reported significantly
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reduced plasma CRP concentrations, which returned to

baseline when subjects were switched to conventional

pasta(816). Overall, the majority of the studies with soya-

derived isoflavones did not observe a significant effect on

inflammatory processes in human subjects. In contrast, a

lignan complex (500 mg/d) isolated from flax given to healthy

postmenopausal women significantly reduced plasma CRP

concentration during the 6-week placebo-controlled interven-

tion. No significant differences were found for IL-6, TNF-a,

sICAM-1, sVCAM-1 or MCP-1 concentrations(817). In a recent

study, flaxseed-derived lignans (360 mg/d) lowered CRP

concentrations in type 2 diabetic women but not in men

over 12 weeks compared with placebo, with no effect on

IL-6 concentrations(818). A cross-sectional study in 242 men

and postmenopausal women in Northern Italy revealed

inverse associations between dietary intake of the lignans

matairesinol and secoisolariciresinol and plasma concen-

trations of sICAM-1(819).

Other factors

Gut microbiota and probiotics

Probiotics are ‘live micro-organisms which, when consumed

in adequate quantities, confer a health benefit on the

host’(820,821). One differential characteristic of probiotics com-

pared with other micro-organisms is their ability to survive

during gastrointestinal transit(822). This allows them to interact

with commensal microbiota and/or intestinal epithelial cells

and also with gut-associated lymphoid cells, which results in

the induction or modulation of a number of biological activi-

ties that can provide beneficial effects for health. The capacity

of probiotics to modulate the mucosal immune system is

regarded as one of the most obvious beneficial properties.

The microbiota composition and the related local intestinal

metabolism undergoes significant changes in various disease

states that are characterised by chronic inflammation, such

as inflammatory bowel disease(823), colorectal cancer and

obesity(824,825). Mice raised under germ-free conditions fail to

develop experimental colitis, suggesting an important modu-

lating role of intestinal microbiota on local inflammatory pro-

cesses(826). Thus, there seems to be a strong association

between the nature of the gut microbiota and inflammation.

A number of studies have investigated the effects of various

probiotics on aspects of inflammation in a variety of subject

and patient groups, as reviewed elsewhere(827). However,

relatively few studies have focused on circulating markers of

inflammation in persons without an established inflammatory

disease. In a small study in institutionalised elderly subjects

(mean age 76 years), there was no effect of the combination

of Bifidobacterium longum and Lactobacillus acidophilus

(8 £ 109 colony forming units (CFU) of each/d for 28 d) on

serum TNF-a concentration(828). L. salivarius UCC118 (1010

CFU/d for 21 d) did not affect serum IL-1a, IL-1b, IL-4, sIL-2R,

sIL-6R, TNF-a or IFN-g concentrations in healthy adults

aged 20–65 years(829). Likewise, the combination of L. gasseri

CECT5714 and L. coryniformis CECT5711 (2 £ 109 CFU of

each/d) with Staphylococcus thermophilus (108 CFU/d) for 2

or 4 weeks had no effect on serum TNF-a or IL-12 concen-

trations in healthy adults aged 23–43 years(830,831). Kekkonen

et al.(832) compared L. rhamnosus GG ATCC53103 (1·6 £ 1010

CFU/d) with Bifidobacterium animalis ssp. lactis Bb12

(3·5 £ 1010 CFU/d) and Propionibacterium freudenreichii

ssp. Shermani JS (3·3 £ 1010 CFU/d) for 3 weeks in healthy

subjects with a mean age of 44 years (range 23–58 years).

There was no effect of serum TNF-a, IL-6, IL-10 or IFN-g

concentrations, but serum CRP concentration decreased in

the L. rhamnosus group. Ouwehand et al.(833) conducted a

6-month placebo-controlled trial with B. animalis ssp. lactis

Bb12 (109 CFU/d) or the combination of B. longum 2C

and B. longum 46 (109 CFU of each/d) in institutionalised

elderly subjects (mean age 84 years). Although there were

some changes over time, the groups did not differ in serum

TNF-a, IL-10 or TGF-b concentrations. Thus, although there

is the potential for probiotics to lower markers of chronic

low-grade inflammation, intervention studies performed to

date in human volunteers rarely demonstrate this effect.

Prebiotics

There are two recent definitions of prebiotics: ‘a selectively

fermented ingredient that allows specific changes, both

in the composition and/or activity in the gastrointestinal

microflora that confers benefits upon host well-being and

health’(834), and ‘a non-viable food component that confers

a health benefit on the host associated with modulation

of the microbiota’(835). Typically, though not exclusively,

prebiotics are carbohydrates including inulin-type fructans

(including oligofructose, fructo-oligosaccharides), lactulose,

galacto-oligosaccharides, xylo-oligosaccharides, D-tagatose,

resistant starch, soyabean oligosaccharides, pectin, guar,

carrageenan, konjac glucomannans, alginates and b-glucans

from oat, barley and mushroom. Prebiotics escape digestion

in the upper gastrointestinal tract and reach the large intestine

virtually intact, where they are fermented by the microbiota

and express their prebiotic activity(834). The latter is most

probably mediated through a quantitative increase in com-

mensal bacteria (e.g. bifidobacteria and lactobacilli), which

interact with other members of the gut microbiota. Further,

changes in the microbiota enzyme activities, leading to a

reduction of unfavourable substances that have an impact

on disease risk, such as secondary bile acids, and the pro-

duction of metabolites such as SCFA and vitamins also contrib-

ute to their impact on health and disease(834). In high-fat-fed

mice, oligofructose restored gut bifidobacteria, and normal-

ised systemic endotoxin levels and the inflammatory

state(836). Institutionalised elderly individuals (mean age 85

years) supplemented with oligofructose (8 g/d for 3 weeks)

showed increased faecal bifidobacteria counts and decreased

expression of IL-6 mRNA in blood monocytes(837). In another

study, in poorly nourished elderly subjects (age .70 years),

oligofructose (1·95–3·9 g/d for 12 weeks as part of a nutri-

tional supplement) had no effect on plasma TNF-a or sIL-6R

concentrations(838). Prebiotics have been studied in the con-

text of inflammatory conditions, especially those involving

the gastrointestinal tract, as reviewed elsewhere(839). There is
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some evidence of beneficial effects but results are inconsist-

ent. There are few studies of prebiotics and circulating inflam-

matory markers in the context of chronic low-grade

inflammation. Thus, it is premature to draw conclusions

about this relationship.

Hydration

When fluids are consumed, water distributes between intra-

and extracellular compartments according to osmotic load.

When water enters the cells, they swell and when water is

lost from the cells, for example, during dehydration, the

cells will shrink. The maintenance of adequate cell volume

can have a profound effect on protein function and cellular

performance. Cells employ an array of mechanisms to main-

tain cell volume constancy, including altered transport across

the cell membrane and metabolism. Hormones and mediators

may modify the activity of these cell volume regulatory mech-

anisms and thus influence cell volume-sensitive functions. Cell

volume regulatory mechanisms, therefore, participate in the

signalling of those hormones and mediators(840). Many meta-

bolic pathways are sensitive to cell volume(841), as a result

of activation, inhibition or altered expression of enzymes.

Cellular volume has the potential to have an impact directly

or indirectly on inflammation, but the effect of hydration

status on low-grade inflammation is not well documented.

Summary, conclusions and research gaps

Inflammation is part of the normal host defence mechanism

against infections. However, inflammatory mediators and the

inflammatory response can be damaging to the host if not

regulated appropriately and numerous diseases and con-

ditions have an overt chronic inflammatory basis. It is now

recognised that a lower level of inflammation, here termed

chronic low-grade inflammation, can also persist and may

be a cause of, or result from, the obese state. Adipose tissue

releases many of the characteristic mediators of inflammation

including some of the classic pro-inflammatory cytokines and

chemokines, as well as adiponectin which is considered to be

anti-inflammatory. The source of these mediators within adi-

pose tissue is not clear, but infiltrating macrophages seem to

be especially important in this regard, although adipocytes

themselves express some of the inflammatory mediators.

Obese people have higher circulating concentrations of

many inflammatory markers (measured in the ‘resting’ state,

i.e. in fasted blood), and these are believed to play a role in

causing insulin resistance and in other metabolic disturbances

of the metabolic syndrome and type 2 diabetes. Blood con-

centrations of inflammatory markers are lowered following

weight loss, whether this is induced by diet or surgery,

which most probably reflects the decrease in adipose tissue

mass. In the hours following the consumption of a meal,

there is an elevation in the concentrations of several inflamma-

tory mediators in the bloodstream. This postprandial inflam-

matory response is greater in obese subjects and type 2

diabetics. Both high-glucose and high-fat meals induce post-

prandial inflammation, and it is exaggerated by a high meal

content of AGE and partly ablated by the inclusion of certain

antioxidants or antioxidant-containing foods within the meal.

These latter observations link postprandial inflammation to

oxidative stress. Physical activity decreases low-grade inflam-

mation. Exercise itself is associated with transient and local

inflammation (e.g. in muscle) that may, in fact, be important

in inducing a protective and ultimately healthy anti-inflamma-

tory response. In addition to the direct effect of foods and

their constituents on postprandial inflammation, diet has an

impact on chronic low-grade inflammation, manifested as

the basal (i.e. fasting state) concentrations of inflammatory

markers in the bloodstream, including cytokines, chemokines,

acute-phase proteins, soluble adhesion molecules and cyto-

kine receptors, etc. Effects of diet and dietary components

on low-grade inflammation have been identified through

cross-sectional, prospective and intervention studies. The

former two study designs frequently involve large numbers

of subjects, while the intervention studies often have a small

sample size and a limited duration which might limit their

ability to identify effects; compliance may also be a limitation

of intervention studies. Healthy eating patterns such as the

Mediterranean diet, vegetarian diets and adherence to the

Food Guide Pyramid are associated with lower concentrations

of inflammatory markers; this is observed mainly from cross-

sectional and prospective studies, although intervention

studies with the Mediterranean diet have been positive.

Among the components of healthy diets, whole grains, veg-

etables and fruits, and fish are all seen to be associated with

lower inflammation. Strong evidence in favour of an anti-

inflammatory effect of tea (black or green), coffee (caffeinated

or decaffeinated) and cocoa is lacking, despite positive

effects on oxidative stress and the anti-inflammatory effects,

mainly demonstrated in model systems (e.g. cell cultures), of

components of these foods. Alcohol appears to have a

‘U-shaped’ effect on low-grade inflammation, with the most

protective action (i.e. the lowest inflammatory marker concen-

trations) corresponding to one or two alcoholic drinks per d.

Heated meals high in AGE and ALE enhance oxidative stress

and inflammation; intervention studies with low- and high-

AGE meals either acutely or chronically have associated AGE

with increased inflammatory marker concentrations and

show that these are decreased by meals low in AGE. However,

AGE and ALE are also generated in vivo and also as a result of

other, non-food-related, environmental exposures (e.g. smok-

ing), and so the overall impact of foods on the burden of AGE

and ALE is not currently clear; this is compounded by tech-

nical difficulties in measuring these complex chemical entities

in foods and in body fluids. Dietary fatty acids also influence

low-grade inflammation; best studied are PUFA. Available data

indicate that SFA and trans-MUFA are pro-inflammatory, and

that one isomer of conjugated linoleic acid may also be. Rela-

tive to SFA, PUFA are anti-inflammatory. Marine n-3 PUFA

have the greatest anti-inflammatory potential. Hyperglycaemia

induces both postprandial and chronic low-grade inflam-

mation, acting in part through oxidative stress. Dietary fibre

decreases low-grade inflammation. There may also be a role

for milk peptides, but these have not been sufficiently

evaluated. Vitamin D has the potential to reduce low-grade
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inflammation, with plausible mechanistic actions demonstrated

in model systems. There is good evidence from both model

systems and from human observational and intervention

studies that vitamin C, vitamin E and carotenoids decrease

the concentrations of inflammatory markers. a- and g-Toco-

pherols and the different carotenoids may have different

anti-inflammatory properties and potencies. The majority of

available evidence indicates that soya phyto-oestrogens and

soya protein do not affect low-grade inflammation. There

are likely to be many plant-derived substances that influence

low-grade inflammation and which may have a role as part

of a healthy ‘anti-inflammatory diet’. Several studies of various

probiotic bacteria have failed to demonstrate any consistent

effects on markers of chronic low-grade inflammation, despite

their apparent effectiveness in higher-grade inflammatory

states. The effect of prebiotics on chronic low-grade inflam-

mation is not clear and is underexplored.

The key conclusions are as follows:

(1) A state of chronic low-grade inflammation exists and this

is exaggerated in obese and type 2 diabetic individuals.

(2) Adipose tissue plays a role in establishing the chronic

low-grade inflammatory state because cells within that

tissue can produce and release the mediators involved.

(3) Chronic low-grade inflammation is believed to increase

the risk of insulin resistance, type 2 diabetes and CVD.

(4) Following consumption of a meal, there is a transient

state of inflammation that is linked with oxidative stress.

(5) Hyperglycaemia or a high-fat meal promote postprandial

inflammation.

(6) A healthy diet is associated with decreased low-grade

inflammation.

(7) Important protective factors in the diet are whole grains,

fibre, vegetables, fruits, fish, PUFA, especially marine n-3

PUFA, vitamin C, vitamin E and carotenoids.

(8) Plant-derived flavonoids are likely to be protective.

(9) Moderate alcohol consumption decreases low-grade

inflammation.

(10) Dietary factors that promote inflammation are oxidised

lipids, SFA and trans-fatty acids.

(11) Underexplored dietary factors include milk peptides,

vitamin D, probiotics and prebiotics.

A number of important research gaps were identified.

Perhaps the most important is that there is no consensus

regarding the inflammatory mediators which best represent

chronic low-grade inflammation. Most studies have measured

CRP, perhaps because it is long established, is linked to the

risk of CVD and is routinely measured in clinical laboratories.

However, it is not clear whether CRP is a ‘better’ marker of

low-grade inflammation than any of the other mediators

measured, which include a variety of cytokines, soluble

cytokine receptors, chemokines, soluble adhesion molecules

and so on. Furthermore, there has been little emphasis on

anti-inflammatory mediators. An expert review of the area of

inflammatory markers addressing the most valid and robust

markers and including a consideration of anti-inflammatory

factors is warranted. Identification of dietary components

that promote or prevent postprandial inflammation and

the underlying mechanisms involved is a further gap. The

impact of many dietary components on chronic low-grade

inflammation is underexplored in human intervention studies;

such components include flavonoids and other phytochem-

icals, milk peptides, vitamin D, probiotics and prebiotics.

Further, even where dietary components have been fairly

well explored through intervention studies, many of the

studies have been small in size and they have reported on

different inflammatory outcomes at different time points. For

these components (whole grains, fibre, vegetables, fruits,

fish, PUFA, especially marine n-3 PUFA, vitamin C, vitamin E

and carotenoids), a better knowledge of the dose–response

effect, the threshold dose (if any) and the time required for

an effect to occur would all be valuable information. Such

variations in study design may also explain the discordant

findings of studies with tea, coffee and cocoa, and these diet-

ary components require further investigation in the context of

robust markers of inflammation, appropriate sample size and

duration of exposure, and exploration of dose–response

relationships. Oxidative stress and inflammation are strongly

interlinked and effects of dietary components appear to

frequently involve increased or decreased oxidative stress.

In this regard, modified food components such as AGE and

ALE may be very potent markers of oxidative and inflam-

matory stress, although their causal impact remains elusive.

However, further exploration and greater understanding of

this area is impeded by lack of agreed analytical methods

for quantifying AGE in foods and in biological fluids, with

inter-laboratory cross-validation, and by lack of discrimination

between protein-bound and free AGE. Finally, the emerging

area of the role of gene polymorphisms in influencing or

even determining the effect of nutrients on markers of

low-grade inflammation requires much greater exploration.

Until these gaps are filled, our understanding of the interaction

between diet and postprandial and chronic low-grade inflam-

mation will remain incomplete.
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