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RATE OF CONVERGENCE FOR THE ‘SQUARE
ROOT FORMULA’ IN THE INTERNET
TRANSMISSION CONTROL PROTOCOL

TEUNIS J. OTT ∗

Abstract

The ‘square root formula’ in the Internet transmission control protocol (TCP) states that if
the probability p of packet loss becomes small and there is independence between packets,
then the stationary distribution of the congestion window W is such that the distribution
of W

√
p is almost independent of p and is completely characterizable. This paper gives

an elementary proof of the convergence of the stationary distributions for a much wider
class of processes that includes classical TCP as well as T. Kelly’s ‘scalable TCP’. This
paper also gives stochastic dominance results that translate to a rate of convergence.
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1. Introduction

The paper [11] proposed a class of Internet transport protocols similar to the Internet
transmission control protocol (TCP) and used a class of stochastic processes to analyse the
performance of these protocols. This class of stochastic processes is defined as follows. Let
(Un)

∞
n=0 be independent, identically distributed random variables each distributed uniformly

in [0, 1]. Let p, 0 < p < 1, be a probability. Define the independent, identically distributed
random variables χp,n by

χp,n =
{

success if Un ≥ p,

failure if Un < p.
(1)

Furthermore, let the discrete-time, continuous-state-space process W ∗
p,C,n, with n = 0, 1,

2, . . . , 0 < W ∗
p,C,n < ∞, and 0 < p < 1, be defined by

W ∗
p,C,n+1 =

{
W ∗

p,C,n + c1(W
∗
p,C,n)

α if χp,n = success,

max(W ∗
p,C,n − c2(W

∗
p,C,n)

β, C) if χp,n = failure,
(2)

where α < β ≤ 1, c1 > 0, c2 > 0, and C > 0. The special case with β = 1, α = −1,
c1 = 1, c2 = 1

2 , and (for example) C = 1 models ‘classical TCP’. The special case with β = 1
and α = 0 models Kelly’s ‘scalable TCP’; see [7] and [8]. The paper [11] showed that the
more general case, even that in which 0 < α < β ≤ 1, is of interest in the study of transport
protocols.
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The ‘square root formula’ in TCP 1133

In [13] it was proven that, for all values α < β ≤ 1, c1 > 0, c2 > 0, C > 0, 0 < p < 1 (and
0 < c2 < 1 if β = 1), the process W ∗

p,C,n has a unique stationary distribution. The uniqueness
of this stationary distribution is derived from the fact that eventually W ∗

p,C,n = C for some
(possibly large) n.

In this paper we will study the case in which α < β = 1, c1 > 0, and 0 < c2 < 1, and
we will write 1 − c2 = b. In this case we will see that we can drop the ‘max(·, C)’ in (2) (or
choose C = 0). We will be mostly interested in the case C = 0, but after this case has been
studied we will observe consequences for the process with C > 0.

A process of further interest in this paper is therefore defined by

Wp,n+1 =
{

Wp,n + c1(Wp,n)
α if χp,n = success,

Wp,n − (1 − b)Wp,n = bWp,n if χp,n = failure,
(3)

but we will also draw some conclusions for the process (W ∗
p,C,n)

∞
n=0 defined by

W ∗
p,n+1 =

{
W ∗

p,n + c1(W
∗
p,n)

α if χp,n = success,

max(bW ∗
p,C,n, C) if χp,n = failure.

Not surprisingly, as p ↓ 0 the two processes Wp,n and W ∗
p,n become very similar, in a way that

will be explained in Section 13.
We always choose 0 < Wp,0 < ∞, and therefore have

0 < bnWp,0 ≤ Wp,n < ∞ for all n ≥ 0.

If α = −1, c1 = 1, and b = 1
2 , (3) models the feedback process for the congestion window in

TCP; see, e.g. [15] and [16]. In the TCP environment, ‘success’ stands for the arrival of a ‘good’
acknowledgement (one which positively acknowledges safe arrival of new and contiguous data),
whereas ‘failure’ stands for the loss of a data packet. For certain values of α, c1, and b, the
process in (3) is a candidate for other, similar, control mechanisms. Of the papers just cited, [15]
has existed on the Internet since 1996 and is frequently cited, but has never been published in
the open literature. Reference [16] is a rewrite (draft) of [15]. The papers [5] and [6] give more
references to literature on this topic.

This paper, and the ones just mentioned, use ‘packet time’, whereby the progress of time
is (essentially) measured by the number of good acknowledgements that have been received.
Many other papers studying TCP performance use ‘clock time’, whereby (apart from during
slow start and fast recovery) time is measured in round trip times, or periods of time during
which W good acknowledgements are received, usually under the assumption that, during that
time, at most one packet gets lost or marked in the sense of [17]. If α = −1 then the window
increases by almost exactly c1 maximum segment sizes during such a period. The assumption
that at most one reduction of the congestion window occurs during one round trip time is
reasonable if α < 0 but questionable if 0 ≤ α; see [11]. The paper [15] contains a translation
between ‘packet time-stationary’ and ‘clock time-stationary’ distributions.

The somewhat overly complicated construction in (1) and (3) to define the process Wp,n was
chosen because later in this paper there will be a number of stochastic processes ‘coupled’ to
the stochastic process Wp,n by being generated by the same sequence of successes and failures.

Writing
ζp(t) = p1/(1−α)Wp,�t/p�, (4)
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where �·� denotes the floor of x, i.e. the largest integer ν with ν ≤ x, we see that as long as
there is ‘success’ we have

ζp(t + p) − ζp(t)

p
= c1ζp(t)α.

Hence, as p ↓ 0 we approach the situation where there is a Poisson process of intensity 1 with
‘events’ . . . , τ−1, τ0, τ1, . . . , with a process ζ(t) defined by

d

dt
ζ(t) = c1ζ(t)α

‘between’ the events of the Poisson process and by

ζ(τ+) = bζ(τ−)

‘at’ the points of the Poisson process.
If we now define

Z(t) = ζ(t)1−α

(1 − α)c1
,

then
d

dt
Z(t) = 1

between the events of the Poisson process and

Z(τ+) = b1−αZ(τ−)

at the events of the Poisson process. Henceforth, we write c for b1−α .
As in [15] or [16], we see that the process Z(·) has as stationary distribution the distribution

of

Z =
∞∑

k=0

ckEk, (5)

where (Ek)
∞
k=0 are independent, identically distributed random variables each exponentially

distributed with parameter 1. The distribution of Z in (5) is completely described in [15]
and [16]. For example, for all (even complex) ν we have

E[Zν] = �(ν + 1)

∞∏
k=0

1 − cν+k

1 − ck
. (6)

If ν is integer then this reduces to

E[Zk] = k!
(1 − c)(1 − c2) · · · (1 − ck)

,

E[Z−k] = (1 − c)(1 − c2) · · · (1 − ck−1)

(k − 1)! c(k−1)k/2
log

(
1

c

)
,

where k is a positive integer.
In analogy with (4), for C > 0 we define

ζ ∗
p,C(t) = p1/(1−α)W ∗

p,C,�t/p�.
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In this paper we will study the stationary distribution of the process (Vp,n)
∞
n=0 defined by

Vp,n = p

(1 − α)c1
(Wp,n)

1−α = ζp(pn)1−α

c1(1 − α)
, (7)

as p ↓ 0. Results for (Vp,n)
∞
n=0 can be translated into results for the process (V ∗

p,C,n)
∞
n=0

defined by

V ∗
p,C,n = p

(1 − α)c1
(W ∗

p,C,n)
1−α = ζ ∗

p,C(pn)1−α

c1(1 − α)
.

These processes evolve as follows:

Vp,n+1 =

⎧⎪⎨
⎪⎩

Vp,n

(
1 + p

(1 − α)Vp,n

)1−α

if χp,n = success,

cVp,n if χp,n = failure,
(8)

and

V ∗
p,C,n+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V ∗
p,C,n

(
1 + p

(1 − α)V ∗
p,C,n

)1−α

if χp,n = success,

max

(
cV ∗

p,C,n,
pC1−α

(1 − α)c1

)
if χp,n = failure.

(9)

We will first study the stationary distributions of the process Vp,n, and then find a simple way
of translating these results into results on stationary distributions of V ∗

p,C,n. When possible,
final results are formulated for the two cases C = 0 and C > 0 together, i.e. for the processes
ζ ∗
p,C(t) and V ∗

p,C,n with C ≥ 0. In [13] it was proven that if C > 0 then the stationary
distribution of V ∗

p,C,n exists and is unique. In [14] it was proven that a stationary distribution
for Vp,n (i.e. C = 0) exists, but the approach in that paper does not prove uniqueness. More
will be said on this topic later. In [13] it was proven that, for all (constant) C ≥ 0, if p ↓ 0 then
the process

ζ ∗
p,C(t)1−α

(1 − α)c1

converges weakly to the process Z(·). While the result is obvious, the proof is not.
If 0 ≤ α < 1 then the stationary distribution of Vp,n (C = 0) is unique; see the final

paragraph of this section. A technical problem is that, in the case α < 0, we have not (yet)
proven the uniqueness of the stationary distribution of Vp,n. Thus, when we say that the
stationary distribution of Vp,n converges to the distribution in (5), we really mean that, no
matter how we choose the stationary distributions of Vp,n, as p ↓ 0 they converge to the
distribution in (5). In the remainder of the paper we will prove that this is indeed the case,
and obtain stochastic dominance results and rate-of-convergence results for the converging
stationary distributions. Section 9 contains more discussion of stationary distributions.

Processes of the sort studied in this note have also been studied in, e.g. [5] and [6], where,
among other results, the weak convergence of stationary distributions was proved for the clock
time process in the case α = −1 (the TCP situation). References [5] and [6] involve a
different proof technique and do not contain stochastic dominance results or rate-of-convergence
results. Reference [11] studied issues pertaining to the stability of feedback protocols (through
consideration of relaxation times), both for β = 1 (the case considered here) and for β < 1.
Among the many other papers on the mathematical analysis of the performance of TCP, we
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mention only [1], [2], and, in particular, [3], where the case of scalable TCP (α = 0) was
studied (in clock time). The six papers just cited contain an extensive review of the literature.

Among the results obtained in this paper are the following three theorems.

Theorem 1. Let Vp have the stationary distribution of the process (Vp,n), and for some C >

0 let V ∗
p,C have the stationary distribution of the process (V ∗

p,C,n). Then, as p ↓ 0, the
distributions of Vp and V ∗

p,C converge weakly to the distribution of Z.

The main focus of this paper is on the process Vp,n(C = 0). Once results for that case are
available there will follow corollaries for the case C > 0, i.e. for the process V ∗

p,C,n.
More detailed results describe the rate of convergence in Theorem 1, and indicate that the

‘error’ in Theorem 1 is O(p). For more detailed results, we must differentiate between the
cases α ≤ 0 and 0 ≤ α < 1.

Theorem 2. Let α ≤ 0. For some C ≥ 0, let V ∗
p,C have the stationary distribution of (V ∗

p,C,n).
Then

lim
p↓0

E[(V ∗
p,C)ν] = E[Zν]

for every ν, −∞ < ν < ∞, and the joint distributions of (V ∗
p,C, Z) can be chosen such that

lim sup
p↓0

E

[∣∣∣∣Z − V ∗
p,C

p

∣∣∣∣
ν]

< ∞

for every ν ≥ 0. In other words, every sequence of positive probabilities p converging to 0 has
a subsequence of probabilities pk for which Errpk

:= (Z − V ∗
pk,C

)/ppk
converges weakly to

a random variable Err. All moments E[|Err|ν], ν ≥ 0, of Err are then finite, and E[|Errpk
|ν]

converges to E[|Err|ν] for all ν ≥ 0.

Theorem 3. Let 0 ≤ α < 1. For some C ≥ 0, let V ∗
p,C have the stationary distribution of

(V ∗
p,C,n). Then

lim
p↓0

E[(V ∗
p,C)ν] = E[Zν]

for every ν, 0 ≤ ν < ∞, and the joint distribution of (Vp, V ∗
p,C, Z) can be chosen such that

lim sup
p↓0

E

[ |Z − V ∗
p,C |k

p

]
< ∞

for every integer k ≥ 1. In other words, if 0 < α < 1 then the limiting random variable Err
has a finite first moment, but is not claimed to have any higher moments. In the case C = 0,
the joint distribution can be chosen such that also

P

{
Vp ≤ Z

(1/p)|log(1 − p)| < Z

}
= 1.

The theorems above will first be proven for the process Vp,n, i.e. the case C = 0. Section 13
contains mechanisms to translate results for the process Vp,n into results for the process V ∗

p,C,n,
i.e. the case C > 0. To prove the results for the process Vp,n, we introduce a number of
auxiliary stochastic processes that will provide the desired stochastic bounds and, thus, provide
results stronger than the theorems above. Sections 3 and 7 introduce these auxiliary stochastic
processes and formulate the stronger results of which the theorems above are corollaries.
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In the results above we let p ↓ 0 while C is constant (possibly 0). We can also consider
the problem of what happens if p > 0 is constant and C ↓ 0. Clearly, in that case (with
Vp,0 = V ∗

p,C,0),

lim
C↓0

V ∗
p,C,n = Vp,n.

However, the convergence of processes does not always guarantee the convergence of
stationary distributions. If 0 ≤ α < 1 then we do have uniqueness of the stationary distribution
of Vp,n (see the final paragraph of this section), and weak convergence of the stationary
distributions of V ∗

p,C,n to the stationary distribution of Vp,n; see Section 2.
In Sections 3–12, part of Section 13, and Section 14 we derive and use ‘stochastic dominance

results’ in which various processes defined on the basis of the same sequence (χp,n)
∞
n=0 (all with

the same value of p) are compared. Only in Section 2 do we compare processes for different
values of p.

The uniqueness of the stationary distributions for 0 ≤ α < β = 1 follows from the obser-
vation that, in this case, if there are two positive starting positions, Wp,0,1 and Wp,0,2, which
give rise to the processes (Wp,n,1)

∞
n=0 and (Wp,n,2)

∞
n=0 (with, of course, the same sequences of

successes and failures) and satisfy 0 < Wp,0,1 < Wp,0,2, then 0 < Wp,n,1 < Wp,n,2 for all n

and Wp,n,1/Wp,n,2 is nondecreasing, i.e. it remains the same at failures, increases at successes,
and converges to 1 as n → ∞.

2. Stochastic dominance and different values of p and C

For decreasing values of p, there are more successes and fewer failures, so a natural question
to ask is whether W ∗

p,C,n increases as p decreases (and, say, W ∗
p,C,0 is constant). This is not

always true. It is true if 0 ≤ α < β = 1, and for α < 0 it is still true as long as C > 0
is sufficiently large; see [12] for details. Similarly, with p and W ∗

p,C,0 constant, W ∗
p,C,n is

increasing in C as long as 0 ≤ α < β = 1. This proves, under these conditions, the convergence
of the stationary distributions of V ∗

p,C,n to the stationary distribution of Vp,n. For α < 0, it
can only be proven that W ∗

p,C,n increases with C for C sufficiently large; see [12] and [14] for
details. In this case we cannot conclude that the stationary distributions of V ∗

p,C,n converge to
the stationary distribution of Vp,n.

3. Method of attack and intermediate results

We define the process (Xp,n)
∞
n=0 by

Xp,n+1 =
{

Xp,n + p if χp,n = success,

cXp,n if χp,n = failure,
(10)

and we give Xp,0 and Vp,0 some joint distribution.
Since the processes (Vp,n)

∞
n=0 and (Xp,n)

∞
n=0 are driven by the same sequence of successes

and failures, the processes are dependent and (Xp,n)
∞
n=0 and (Vp,n)

∞
n=0 have a joint distribution.

For this joint distribution we will prove the following result.

Lemma 1. If α ≤ 0 and Vp,k ≥ Xp,k for some k ≥ 0, then Vp,n ≥ Xp,n for all n ≥ k. If
0 ≤ α < 1 and Vp,k ≤ Xp,k for some k ≥ 0, then Vp,n ≤ Xp,n for all n ≥ k. If α = 0 and
Vp,k = Xp,k for some k ≥ 0, then Vp,n = Xp,n for all n ≥ k.

This lemma will be proven in Section 6. We also have the following lemma.
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Lemma 2. The process (Xp,n)
∞
n=0 has a unique stationary distribution. If Xp has this station-

ary distribution then Xp is of the form

Xp = p

∞∑
k=0

ckGp,k, (11)

where (Gp,k)
∞
k=0 are independent, identically distributed random variables each geometrically

distributed with parameter 1 − p:

P{Gp,k = n} = p(1 − p)n.

Hence, Xp has the Laplace–Stieltjes transform

φXp(s) = E[exp{−sXp}] =
∞∏

k=0

p

1 − (1 − p) exp{−pcks} , (12)

and

E[Xp] = 1 − p

1 − c
, var(Xp) = 1 − p

1 − c2 .

Proof. There are at least two obvious ways to prove Lemma 2. The most intuitive proof
duplicates the proof given in [15] of the similar result (5) for the process Z(t). This proof works
by ‘looking back in time’. A less intuitive proof uses the fact that

E[exp{−sXp,n}] = (1 − p) E[exp{−s(Xp,n−1 + p)}] + p E[exp{−scXp,n−1}].
Assuming that Xp,n−1 and Xp,n have the same distribution leads to a recursion that proves (12)
and, thus, Lemma 2.

Equation (10) trivially shows that

E[Xp,n] = 1 − p

1 − c
+ (1 − p(1 − c))n

(
E[Xp,0] − 1 − p

1 − c

)
,

which, if E[Xp,0] is finite, proves tightness of the family of random variables (Xp,n)
∞
n=0. It is

easy to extend this to the case in which E[Xp,0] is not finite. In addition, if we have two different
initial values, Xp,0,1 and Xp,0,2, then with identical sequences of successes and failures we
have

Xp,n,1 − Xp,n,2 = cN(n)(Xp,0,1 − Xp,0,2) (13)

for all n ≥ 0, where N(n) is the number of failures among χ0, . . . , χn−1. This proves that the
distribution of Xp,n becomes independent of Xp,0 and n. The details are left to the reader.

Lemmas 1 and 2 provide initial stochastic bounds for stationary distributions of the process
(Vp,n)

∞
n=0. For α < 0, they provide a stochastic lower bound, proving that V = 0 is not a

critical point. For 0 < α < 1, they provide a stochastic upper bound, proving that V = ∞ is
not a critical point. It will be proven that these bounds are asymptotically tight as p ↓ 0.

Before providing the lacking bounds, we show that the stationary distribution of Xp,n is very
close to the distribution of the random variable Z in (5). It is clear that that random variable Z

has Laplace–Stieltjes transform

φZ(s) = E[exp{−sZ}] =
∞∏

k=0

1

1 + cks
, (14)
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and that

E[Z] = 1

1 − c
, var(Z) = 1

1 − c2 .

It is immediately obvious that, as p ↓ 0, the Laplace–Stieltjes transform (12) converges
to the Laplace–Stieltjes transform (14). Thus, the distribution of Xp converges weakly to the
distribution of Z. However, more can be said, as follows.

Lemma 3. The random variables Xp, in (11), and Z, in (5), can be given a joint distribution
for which, with probability 1,

max

(
0,

Z

(1/p) log(1/[1 − p]) − p

1 − c

)
< Xp ≤ Z

(1/p) log(1/[1 − p]) < Z. (15)

Hence, for this joint distribution,

E

[∣∣∣∣ Z

(1/p) log(1/[1 − p]) − Xp

∣∣∣∣
ν]

= E

[(
Z

(1/p) log(1/[1 − p]) − Xp

)ν]
≤

(
p

1 − c

)ν

for ν ≥ 0.

We remind the reader (see, e.g. [9]) that the random variable S is stochastically smaller than
the random variable T if P{S ≤ x} ≥ P{T ≤ x} for all x. This is the case if and only if there
is a joint distribution of S and T for which P{S ≤ T } = 1. Thus, we have proven that Xp is
stochastically smaller than Z/[(1/p) log(1/[1 − p])] and that the distributions are almost the
same. This type of argument will be used several times in what follows.

Proof of Lemma 3. If E is an exponentially distributed random variable with parameter 1
(and, therefore, expected value 1), then the random variable Hp defined by

Hp = np for n log

(
1

1 − p

)
≤ E < (n + 1) log

(
1

1 − p

)
(16)

has the property that

P{Hp = np} = p(1 − p)n.

Thus, if (Ek)
∞
k=0 are independent, identically distributed random variables each exponen-

tially distributed with parameter 1, we define (Hp,k)
∞
k=0 to be functions of (Ek)

∞
k=0 as in (16),

and we define

Z =
∞∑

k=0

ckEk, Xp =
∞∑

k=0

ckHp,k,

then Z and Xp have the required marginal distributions and (15) holds with probability 1.

The method of attack is now clear. We have proven that, for small p, Xp and Z have almost
the same distribution (including a rate-of-convergence result). In fact, the distribution of Xp

is even closer to the distribution of Z/[(1/p) log(1/[1 − p])]. Remaining to be proven is that
the (or any) stationary distribution of Vp,n must, for small p, be very close to the distribution
of Xp. To prove this result we need different approaches in the respective cases α < 0 and
0 < α < 1.
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In the case 0 < α < 1, we will use the methods of linear programming and duality; see
Sections 11 and 12. In the case α < 0, the approach will be as follows. We define

c(α) = 1

(1 + |α|)2 sup
0<z≤1

(
(1 + z)1+|α| − 1 − (1 + |α|)z

z2

)
,

d(α) = 1

(1 + |α|)1+|α| sup
0<x≤1

((1 + x)1+|α| − x1+|α| − x|α|(1 + |α|)),

and then define the function fp,α(·) : (0, ∞) → (0, ∞) by

fp,α(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c(α)p2

v
if

p

1 + |α| ≤ v < ∞,

d(α)p1+|α|

v|α| if 0 < v <
p

1 + |α| .
(17)

Next, we define the stochastic process (Yp,n)
∞
n=0 by

Yp,n+1 =
{

Yp,n + p + fp,α(Xp,n) if χp,n = success,

cYp,n if χp,n = failure,
(18)

where Xp,0, Vp,0, and Yp,0 are given some joint distribution. Since the processes Xp,n, Vp,n,
and Yp,n are all defined on the basis of the same sequence of successes and failures, their joint
distribution is well defined.

As in (13), we observe that if we have two starting values, Yp,0,1 and Yp,0,2, for the process
Yp,n, but identical sequences of successes and failures, identical values for Xp,0 and, therefore,
identical sequences (Xp,n)

∞
n=0, then

Yp,n,1 − Yp,n,2 = cN(n)(Yp,0,1 − Yp,0,2).

Therefore, if the process (Xp,n, Yp,n) has a stationary distribution, that stationary distribution
is unique.

Lemma 4. If α ≤ 0 (and c(α) and d(α) are chosen as above) and, for some k, Xp,k ≤ Vp,k ≤
Yp,k , then

Xp,n ≤ Vp,n ≤ Yp,n for all n ≥ k. (19)

Lemma 4 will be proven in Section 7.
Equations (18) and (19) trivially show that if (Xp, Vp, Yp) has the joint stationary distribution

of the process (Xp,n, Vp,n, Yp,n) and E[Yp] < ∞, then

P{0 < Xp < Vp < Yp < ∞} = 1, E[Yp − Xp] = (1 − p)

(1 − c)p
E[fp,α(Xp)]. (20)

This makes it necessary to compute E[fp,α(Xp)]. It should be noted that, while Xp,n is
guaranteed to have a stationary distribution (which is unique), there is no guarantee that Yp,n

has a stationary distribution. If (Xp,n, Yp,n) has a joint stationary distribution, then it is unique,
(Xp,n, Vp,n, Yp,n) has a joint stationary distribution, and (20) holds. A necessary and sufficient
condition for the existence of a stationary distribution with E[Yp] < ∞ is that E[fp,α(Xp)] <

∞; see [12] for details.
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Lemma 5. If α < 0 and Xp has the distribution in (12), then

E[f (Xp)] = p2
(

c(α) E

[
1

Xp

1
(

Xp ≥ p

1 + |α|
)]

+
(

p

c

)|α|
d(α) E

[
1

X
|α|
p

1
(

Xp <
p

c(1 + |α|)
)])

,

where 1(·) is the indicator function.

Lemma 5 makes it necessary to study E[(Xp)ν] for ν < 0, and will be proven in Section 8.
As simple corollary of Lemma 3 and (6) (and the Helly–Bray theorem; see, e.g. [10, pp. 180–

185]), we see that, for all ν ≥ 0, E[Xν
p] ≤ E[Zν] < ∞ and

lim
p↓0

E[Xν
p] = E[Zν]. (21)

We will see that (practically speaking) (21) also holds for ν < 0, with the restriction that p

must be sufficiently small to guarantee that E[Xν
p] < ∞.

Lemma 6. For every ν > 0, there exists a p(ν), 0 < p(ν) < 1, and a B(ν), 0 < B(ν) < ∞,
such that

E[X−ν
p ] ≤ B(ν) for all p, 0 < p ≤ p(ν).

Lemma 6 will be proven in Section 5.

Corollary 1. Equation (21) holds for all ν, −∞ < ν < ∞.

Corollary 2. For α < 0 and all p, 0 < p ≤ min(p(1), p(|α|)), (Xp,n, Yp,n) has a unique
stationary (joint) distribution and there exists a D(α), 0 < D(α) < ∞, such that if (Xp, Yp)

has this joint stationary distribution, then

P{0 < Xp ≤ Yp < ∞} = 1, E[Yp − Xp] ≤ pD(α). (22)

Remark 1. In [14] (extended version) it was proved, using an alternative method, that in fact
E[(Xp)−ν] < ∞ if and only if 0 < p < cν . That alternative method has not produced uniform
upper bounds B(ν).

4. The process (log((1 − α)Vp,n/p))∞n=0

We first derive two results (Lemmas 7 and 8) that neither depend on, nor are used in the
proofs of, the results of Section 3. We rewrite (8) as

log
(1 − α)Vp,n+1

p

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log
(1 − α)Vp,n

p
+ (1 − α) log

(
1 + p

(1 − α)Vp,n

)
if χp,n = success,

log
(1 − α)Vp,n

p
+ log c = log

(1 − α)Vp,n

p
− |log c| if χp,n = failure,

(23)

and study the consequences of doing so separately for α ≤ 0 and 0 ≤ α < 1.
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First we consider the case α ≤ 0. In this case, immediately after every success we have

log
(1 + |α|)Vp,n+1

p
≥ (1 + |α|) log (1 + |α|) − |α| log |α| ≥ 0.

Define the stochastic process Np,n by

Np,n+1 =
{

0 if χp,n = success,

Np,n − |log c| if χp,n = failure.

It is clear that, after the first success, Np,k ≤ log ((1 + |α|)Vp,k/p) always. It is also clear that
the process Np,n is stationary, with stationary distribution

P{Np = −k|log c|} = pk(1 − p), E[Np] = − p

1 − p
|log c|.

Lemma 7. If α ≤ 0 then, for any stationary distribution of Vp,n,

P

{
log

(1 + |α|)Vp

p
≤ −k|log c|

}
≤ pk

for every nonnegative integer k, and

E

[∣∣∣∣log
(1 + |α|)Vp

p

∣∣∣∣ 1
(

log
(1 + |α|)Vp

p
≤ 0

)]
< E[|Np|] = p

1 − p
|log c| < ∞,

where 1(·) is the indicator function.

Next we consider the case 0 ≤ α < 1, in which, immediately after every success, we have

log
(1 − α)Vp,n+1

p
> α log

(1 − α)Vp,n

p
.

Here we define the stochastic process Mp,n by

Mp,n+1 =
{

αMp,n if χp,n = success,

Mp,n − |log c| if χp,n = failure.

It is clear that if Mp,n ≤ log((1 − α)Vp,n/p) for some n, then this holds for all k ≥ n. Also,
the process Mp,n is stationary. It is easily seen (see the similar result for the process Xp,n in
the previous section) that the stationary distribution has the form

Mp = −|log c|
∞∑

k=0

αkQk,

where the Qk are independent, identically geometrically distributed random variables with

P{Qk = n} = pn(1 − p).

Thus,

E[exp{−sMp}] =
∞∏

k=0

1 − p

1 − p exp{s|log c|αk} ,
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and this holds for s < |log p|/|log c|. It follows that

E[Mp] = − p|log c|
(1 − p)(1 − α)

,

and we thus have the following result.

Lemma 8. If 0 ≤ α < 1 then, for the stationary distribution of Vp,n,

P

{
(1 − α)V

p
≤ x

}
≤ P{Mp ≤ log x}

and

E

[∣∣∣∣log
(1 − α)Vp

p

∣∣∣∣ 1
(

log
(1 − α)Vp

p
≤ 0

)]
< E[|Mp|] = p|log c|

(1 − p)(1 − α)
< ∞.

Next we combine the Lemmas 7 and 8 with the results of the previous section.

Lemma 9. If either 0 ≤ α < 1 or both α < 0 and 0 < p ≤ min(p(1), p(|α|)), where p(ν) is
as defined in Lemma 6, then, for every stationary distribution of the process Vp,n,

E

[∣∣∣∣log
(1 − α)Vp

p

∣∣∣∣
]

< ∞.

Proof. For log((1 − α)Vp/p) ≤ 0, the result has been proven in this section. For the
case log((1 − α)Vp/p) > 0, we use results from the previous section. For α < 0 and
0 < p ≤ min(p(1), p(|α|)), we have (log Vp) < Vp ≤ Yp, and Yp has a finite first moment.
For 0 ≤ α < 1, we have log Vp < Vp ≤ Xp, and Xp has a finite first moment.

Remark 2. A minimal modification of the proofs of the previous results also shows tightness
of the distributions of Xp,n, Vp,n, and Yp,n, at least in the case where either 0 ≤ α < 1 or both
α < 0 and 0 < p ≤ min(p(1), p(|α|)).

Lemma 9 and (23) together yield our next theorem, the proof of which we thus omit.

Theorem 4. If either 0 ≤ α < 1 or both α < 0 and 0 < p ≤ min(p(1), p(|α|)), where p(ν)

is as defined in Lemma 6, then, for every stationary distribution of the process Vp,n,

E

[
log

(
1 + p

(1 − α)Vp

)]
= p|log c|

(1 − p)(1 − α)
. (24)

Theorem 4 will be used in Sections 11 and 12, to treat the case 0 < α < 1.

5. The proof of Lemma 6

In order to prove Lemma 6, we observe that if Q is any nonnegative random variable with
Laplace transform φQ(s) = E[exp{−sQ}], then, for all ν > 0,∫ ∞

0
sν−1φQ(s) ds = �(ν) E

[
1

Qν

]
.

(No proof needed.)
We will also use the following lemma for the Laplace transform (12).
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Lemma 10. If 0 < p < 1
3 , 0 < rp < 1

3 , and 0 < r < s, then

φXp(s) < (1 + 1
2 r)−[log (s)−log (r)]/ log (1/c).

Once we have Lemma 10, Lemma 6 is proven as follows.

Proof of Lemma 6. Choose a ν > 0 and then choose an r > 0 such that

log

(
1 + r

2

)
> ν log

1

c
, i.e. 1 + r

2
>

(
1

c

)ν

.

Write ∫ ∞

0
sν−1φXp(s) ds =

∫ r

0
sν−1φXp(s) ds +

∫ ∞

r

sν−1φXp(s) ds. (25)

In the first integral on the right-hand side of (25), we use the fact that 0 < φXp(s) < 1.
In the second integral, s > r as long as 0 < p < 1

3 min(1, 1/r), Lemma 10 can be used, and
straightforward arithmetic gives∫ ∞

0
sν−1φXp(s) ds <

rν log (1 + r/2)

ν[log (1 + r/2) − ν log (1/c)] .
This proves Lemma 6.

The proof of Lemma 10 is next.

Proof of Lemma 10. We choose any s > 0 and any r , 0 < r < s. Next, we choose K0 to
be the smallest integer k for which cks < r . (K0 thus depends on r and s.) Since 0 < c < 1
and 0 < r < s, K0 > 0 and

cK0−1 ≥ r/s > cK0 .

We have

φXp(s) <

K0−1∏
k=0

p

1 − (1 − p) exp{−pcks} . (26)

We will derive an upper bound for the right-hand side of (26). For 0 ≤ k ≤ K0 − 1, we have

ckps ≥ rp

and, hence,

exp{−ckps} ≤ exp{−rp} < 1 − rp + (rp)2

2
.

Therefore,

1 − (1 − p) exp{−ckps} > 1 − (1 − p)

(
1 − rp + (rp)2

2

)
= p

(
1 + (1 − p)r

(
1 − rp

2

))
.

We check that, since 0 < rp < 1
3 and 0 < p ≤ 1

3 ,

1 − (1 − p) exp{−ckps} > p(1 + 5
6 (1 − p)r) > p(1 + 5

9 r) > p(1 + 1
2 r) > p > 0.

Hence,
φXp(s) < (1 + 1

2 r)−K0 .

Since cK0 < r/s, we have K0 > [log (s) − log (r)]/ log (1/c) and, thus,

φXp(s) < (1 + 1
2 r)−[log (s)−log (r)]/ log (1/c).

This completes the proof of Lemma 10.
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6. The proof of Lemma 1

We define the function Rp,α(v), v > 0, by

Rp,α(v) = v

(
1 + p

(1 − α)v

)1−α

− v − p. (27)

Whenever it does not lead to confusion, we write R(·) for Rp,α(·). With Vp,n as in (7), we
rewrite (8) as

Vp,n+1 =
{

Vp,n + p + R(Vp,n) if χp,n = success,

cVp,n if χp,n = failure.
(28)

With the substitution z = p/[(1 − α)v], R(v) can be rewritten as

p

(1 − α)z
((1 + z)1−α − 1 − (1 − α)z).

With the substitution x = (1 − α)v/p = 1/z, R(v) can be rewritten as

p

(1 − α)
(xα(1 + x)1−α − x − (1 − α)). (29)

For α < 0, this shows that

0 < Rp,α(v) ≤ fp,α(v) < ∞
for all 0 < v < ∞, where fp,α(·) is as in (17), that

R(v) ∼ |α|p2

2(1 + |α|)v for v ↑ ∞, R(v) ∼ p1+|α|

(1 + |α|)1+|α|v|α| for v ↓ 0,

and that R(·) is monotone (decreasing, from ∞ at 0 to 0 at ∞) and convex.
For 0 < α < 1, it shows that R(v) < 0 for all v, 0 < v < ∞, that

R(v) ∼ − αp2

2(1 − α)v
for v ↑ ∞, R(v) + p ∼ p1−αvα

(1 − α)1−α
for v ↓ 0,

and that R(·) is monotone (increasing, from −p at 0 to 0 at ∞) and concave.
For α = 0, of course R(v) ≡ 0.
To prove the monotonicity and convexity for α < 0, take the derivative with respect to x

in (29), write A = (1 + x)/x (hence, 1 < A < ∞), in terms of which the derivative equals
(1 + |α|)A|α| − |α|A1+|α| − 1, and prove that this expression equals 0 for A = 1, i.e. x = ∞,
and is decreasing in A for A > 1, i.e. increasing in x for x > 0. Proving the other items is
similar or easier.

An interesting special case is where α = −1 (the TCP case), where R(v) = p2/(4v). Here
(10), (28), and the results for the function R above prove Lemma 1, and (28) and (10) show
that, for the joint stationary distribution of Xp and Vp,

E[Vp − Xp] = 1 − p

p(1 − c)
E[R(Vp)].
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For α ≤ 0 this becomes

E[Vp − Xp] = E[|Vp − Xp|] = 1 − p

p(1 − c)
E[R(Vp)],

while for 0 < α < 1 it becomes

E[Xp − Vp] = E[|Xp − Vp|] = 1 − p

p(1 − c)
E[|R(Vp)|]. (30)

What we are going to do next amounts, conceptually, to finding an upper bound for
E[|R(Vp)|]. In the case 0 < α < 1, this is exactly what we will do. This case will be
treated in Section 11, using the material of Section 4. In the case α < 0, we will do something
more complicated, based on the fact that, for α < 0, Vp is stochastically larger (in fact larger
with probability 1) than Xp. To handle this case we will use, in Section 7, the process Yp,n

introduced in (18). First we introduce another auxiliary process.

7. The proof of Lemma 4

Throughout this section we have α ≤ 0. We define

	p,n+1 =
{

	p,n + p + R(Xp,n) if χp,n = success,

c	p,n if χp,n = failure.

Because the function R(·) is positive and decreasing, and because 0 < R(v) ≤ f (v), it follows
that if, for some n,

Xp,n ≤ Vp,n ≤ 	p,n ≤ Yp,n (31)

(where Yp,n is as in (18)), then this holds for all n + m ≥ n and, therefore, for the stationary
joint distribution, if any. This result is often used in the situation where all the processes in (31)
have the same initial value. Lemma 4 is a corollary to (31).

As part of the proof of the statement above, we noted that if (31) holds, then

R(Yp,n) ≤ R(	p,n) ≤ R(Vp,n) ≤ R(Xp,n) ≤ f (Xp,n), (32)

and this inequality holds for the joint stationary distribution and for the corresponding
moments. Lemma 5, which will be proven in the next section, has as a consequence the
fact that, for the stationary distribution there, E[f (Xp)] = O(p2) (as p ↓ 0), this result also
holds for the other expected values in (32).

A more refined analysis in [12] showed that if α < 0 then in fact

E[R(Xp)] = p2 |α| |log c|
2(1 + |α|) + O(p3), p ↓ 0.

Similar results can be derived for higher moments and moments of derivatives of R(·).

8. The proof of Lemma 5

Throughout this section we have α ≤ 0. For E[f (Xp)] we have

E[f (Xp)] = c(α)p2 E

[
1

Xp

1
(

Xp ≥ p

1 + |α|
)]

+ d(α)p1+|α| E

[
1

X
|α|
p

1
(

Xp <
p

1 + |α|
)]

.
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If α ≤ −1 then this is enough to prove the actual goal, (22). If −1 < α < 0 then one more
trick is needed to first prove Lemma 5.

Since Xp can be written as in (11) and 0 < c < 1, Xp < p implies that Gp,0 = 0. The
latter event has probability p. The conditional distribution of Xp given that Gp,0 = 0 is the
same as the unconditional distribution of cXp. Hence, if A > 1 and −∞ < ν < ∞, then

E

[
Xν

p 1
(

Xp <
p

A

)]
= pcν E

[
Xν

p 1
(

Xp <
p

cA

)]
. (33)

Thus,

E[f (Xp)] = p2
(

c(α) E

[
1

Xp

1
(

Xp ≥ p

1 + |α|
)]

+
(

p

c

)|α|
d(α) E

[
1

X
|α|
p

1
(

Xp <
p

c(1 + |α|)
)])

.

This proves Lemma 5 and, thus, (22).
This completes the proofs of the results of Sections 3 and 4.

9. Stationary distributions and the main results

Let FVp(·) be a stationary distribution function for the process Vp,n (with FVp(0) = 0) and
let Vp,0 have this distribution. Choose Xp,0 = Vp,0 and, if α ≤ 0, also choose Yp,0 = 	p,0 =
Vp,0. In the latter case, we now have

Xp,n ≤ Vp,n ≤ 	p,n ≤ Yp,n for all n.

By letting n → ∞ and using the results from the previous sections we now obtain, for α ≤ 0,
a result stronger than Theorem 1.

Theorem 5. If α ≤ 0 then, for all p ≤ min(p(1), p(|α|)), there exists a stationary distribution
of the process (Xp,n, Vp,n, 	p,n, Yp,n) as in Section 7, and if (Xp, Vp, 	p, Yp) has such a
joint stationary distribution then it has a joint distribution with the random variable Z (where
(Xp, Z) has a joint distribution as in Lemma 3), P{Xp ≤ Vp ≤ 	p ≤ Yp} = 1, and

E[|Vp − Xp|] = E[Vp − Xp] ≤ E[Yp − Xp] ≤ pD(α). (34)

To prove Theorem 2 (with C = 0) we need to strengthen (34). In the next section we will
prove that, in the situation of Theorem 5, for every k ∈ {1, 2, . . . } there exists a Dk(α) < ∞
such that

E[|Yp − Xp|k] = E[(Yp − Xp)k] ≤ pkDk(α) for 0 < p ≤ min(p(k), p(k|α|)). (35)

In the case 0 < α < 1 we have a similar result.

Theorem 6. If 0 ≤ α < 1 then

E[|Xp − Vp|] = E[Xp − Vp] ≤ pα|log c|
(1 − c)(1 − α)

,

and a similar result can easily be derived for E[|Z − Vp|] = E[Z − Vp].
The proof starts the same way as the proof of Theorem 5 (give Vp the stationary distribution)

but then uses a different approach; see Section 11. The result for higher moments that completes
the proof of Theorem 3 will be given in Section 12.
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10. Higher moments for α ≤ 0

In this section we prove the ‘higher moments’ version of Theorem 3. For every k ∈
{1, 2, . . . }, we choose a function ck(α) ≥ c(α) and define

fk,p,α(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ck(α)p2

x
if

ck−1p

1 + |α| ≤ x < ∞,

d(α)p1+|α|

x|α| if 0 < x <
ck−1p

1 + |α| .

(Note that d(α) need not change.) The only constraint on ck(α) is that

fk,p,α(x) ≥ fp,α(x) ≥ Rp,α(x) for all x > 0.

Clearly, it is easy to find such functions ck(α). As long as it does not lead to confusion, we
write fk(·) for fk,p,α(·).

Next we define the processes (Yk,p,n)
∞
n=0 by

Yk,p,n+1 =
{

Yk,p,n + p + fk(Xp,n) if χp,n = success,

cYk,p,n if χp,n = failure,

with Xp,0 ≤ Yp,0 ≤ Yk,p,0. Clearly, then Xp,n ≤ Yp,n ≤ Yk,p,n for all n ≥ 0. We will prove
that there exist functions Dk(α), 0 < Dk(α) < ∞ such that, for 0 < p ≤ min(p(k), p(k|α|)),
the stationary distributions satisfy

E[(Yp − Xp)k] ≤ E[(Yk,p − Xp)k] ≤ pkDk(α).

For E[fk(Xp)k] we have

E[fk(Xp)k] = ck(α)kp2k E

[
1

(Xp)k
1
(

Xp ≥ ck−1p

1 + |α|
)]

+ d(α)kpk(1+|α|) E

[
1

X
k|α|
p

1
(

Xp <
ck−1p

1 + |α|
)]

.

For α ≤ −1, this result is good enough for our purposes, and it is in fact unnecessary to introduce
the new processes (Yk,p,n)

∞
n=0. For −1 < α < 0, another step is needed. By repeated use of

(33), we have

E[fk(Xp)k] = p2k

(
ck(α)k E

[
1

(Xp)k
1
(

Xp ≥ ck−1p

1 + |α|
)]

+
(

p

ck

)k|α|
d(α)k E

[
1

X
k|α|
p

1
(

Xp <
p

c(1 + |α|)
)])

.

In other words, there is a function hk(α) < ∞ for which

E[fk(Xp)k] < p2khk(α)k (36)

if 0 < p ≤ min(p(k), p(k|α|)).
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Now, we have

Yk,p,n+1 − Xp,n+1 =
{

Yk,p,n − Xp,n + fk(Xp,n) if χp,n = success,

c(Yk,p,n − Xp,n) if χp,n = failure.
(37)

Therefore, for the stationary distributions, we have

(1 − pck) E[(Yk,p − Xp)k] = (1 − p) E[(Yk,p − Xp + fk(Xp))k].
Using (36) and the Minkowski inequality (see, e.g. [10, p. 156]), this gives

(1 − pck) E[(Yk,p − Xp)k] ≤ (1 − p)(E[(Yk,p − Xp)k]1/k + p2hk(α))k

if p > 0 is sufficiently close to 0. This implies that

((
1 − pck

1 − p

)1/k

− 1

)
E[(Yk,p − Xp)k]1/k ≤ p2hk(α)

for sufficiently small p. This immediately proves that

E[(Yk,p − Xp)k]1/k <
pk

1 − ck
hk(α)

if p > 0 is sufficiently close to 0. This completes the proof of (35).

11. The case 0 ≤ α < 1: linear programming and duality

Throughout this section we have 0 ≤ α < 1, so (30) holds:

E[Xp − Vp] = E[|Xp − Vp|] = 1 − p

p(1 − c)
E[|R(Vp)|].

We also have the constraint (24):

E

[
log

(
1 + p

(1 − α)Vp

)]
= p|log c|

(1 − p)(1 − α)
. (38)

Thus, we can obtain an upper bound for E[|Xp −Vp|] by solving the following linear program-
ming problem: find the supremum, Sup, of

E[|R(V )|] = E

[
V + p − V

(
1 + p

(1 − α)V

)1−α]
,

taken over all nonnegative random variables V for which (38) holds.
In order to use notation similar to that in, say, [4], we write

B = p|log c|
(1 − p)(1 − α)

.

The dual (see, e.g. [4, Chapter 6]) of the linear programming problem above is to find the
infimum, Inf , of

µ1 + µ2B,
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taken over all multipliers µ1 and µ2 for which, for all v, 0 < v < ∞,

µ1 + µ2 log

(
1 + p

(1 − α)v

)
≥ v + p − v

(
1 + p

(1 − α)v

)1−α

. (39)

The multipliers µ1 and µ2 are allowed to take on any value (negative, zero, or positive), and
µ1 is the multiplier for the constraint P{0 < V < ∞} = 1 and µ2 is the multiplier for the
constraint (38).

Readers who do not like linear programming problems with continuously many primal
variables and continuously many dual constraints can take the appropriate limit of a problem
with finitely many primal variables and finitely many dual constraints. (Allow the random
variable V to have support only in a finite number of points vk; πk = P{V = vk} then becomes
the primal variable.)

By setting x = p/[(1 −α)v], we rewrite the constraint (39) as follows: for all 0 < x < ∞,

µ1 + µ2 log (1 + x) ≥ p

(1 − α)x
+ p − p

(1 − α)x
(1 + x)1−α. (40)

We obtain a dual feasible solution by setting µ1 = 0 and µ2 = pα. To prove that, for these
values of µ1 and µ2, (40) indeed holds for all x, 0 < x < ∞, takes straightforward arithmetic.

Thus, we know that

E[|R(Vp)|] ≤ Sup = Inf ≤ µ2B = p2α|log c|
(1 − p)(1 − α)

or

E[|Xp − Vp|] ≤ pα|log c|
(1 − c)(1 − α)

.

12. The linear programming approach with higher moments

We would of course also like to use the linear programming approach of the previous section
for higher moments of Xp − Vp in the situation 0 ≤ α < 1. This attempt does lead to a result,
but one weaker than Theorem 2.

For the νth moment, ν > 1, we first want to find the supremum of

E

[(
V + p − V

(
1 + p

(1 − α)V

)1−α)ν]

subject to the constraint that V is a nonnegative random variable with

E

[
log

(
1 + p

(1 − α)V

)]
= p|log c|

(1 − p)(1 − α)
. (41)

As before, the right-hand side of (41) is denoted by B. The dual of this linear programming
problem is to find the infimum of

µ1 + µ2B

subject to the constraint

µ1 + µ2 log

(
1 + p

(1 − α)u

)
≥

(
u + p − u

(
1 + p

(1 − α)u

)1−α)ν

for all 0 < u < ∞.
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To construct a dual feasible solution, we choose µ1 = 0 and

µ2 = sup
0<u<∞

(u + p − u(1 + p/[(1 − α)u])1−α)ν

log (1 + p/[(1 − α)u]) . (42)

As u ↓ 0, the right-hand side of (42) goes to 0. To study other values of u, we make the
substitutions p/[(1 − α)u] = x and u = p/[(1 − α)x]. Equation (42) then becomes

µ2 = pν

(1 − α)ν
sup

0<x<∞
(1 + (1 − α)x − (1 + x)1−α)ν

xν log (1 + x)
.

We define

Mν = 1

(1 − α)ν+1 sup
0<x<∞

(1 + (1 − α)x − (1 + x)1−α)ν

xν log (1 + x)
. (43)

As x ↓ 0, the right-hand side of (43) behaves like some constant times xν−1. Hence, the
supremum in (43) is a maximum and is positive and finite. It depends on α and ν, but is
independent of p and c. We now have

E[|R(Vp)|ν] ≤ Sup = Inf ≤ pν+1

1 − p
|log c|Mν (44)

for all p, 0 < p < 1. Unfortunately, the right-hand side of (44) behaves like pν+1, not like
p2ν as in (36). (In (36), ν > 1 had to be an integer ν = k ≥ 2). Proceeding as in the argument
immediately following (37) (where ν = k ≥ 2 had to be an integer) we now only find that if
0 < α < 1 then, for every integer k ≥ 2 and every p, 0 < p < 1,

E

[
(Xp − Vp)k

p

]
= E

[ |Xp − Vp|k
p

]
<

kk|log c|Mk

(1 − p)(1 − ck)k
.

The C = 0 case of Theorem 3 now easily follows.

13. Results for C > 0

In most of the previous sections we studied processes Vp,n, i.e. where α < β = 1, 0 <

c2 < 1, and C = 0. In this section we deal with the case in which C > 0 and either p ↓ 0
while C > 0 remains constant or C ↓ 0 while p > 0 remains constant. We define the process
(X∗

p,C,n)
∞
n=0, similar to V ∗

p,C,n in (9), by

X∗
p,C,n+1 =

⎧⎪⎨
⎪⎩

X∗
p,C,n + p if χp,n = success,

max

(
cX∗

p,C,n,
pC1−α

(1 − α)c1

)
if χp,n = failure.

The key result that makes the case where C > 0 is constant easy to handle is our next lemma.

Lemma 11. If, for some n,

Xp,n ≤ max

(
Xp,n,

pC1−α

(1 − α)c1

)
≤ X∗

p,C,n ≤ Xp,n + pC1−α

(1 − α)c1
,

then this holds for all k ≥ n.
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The proof is straightforward and is left as an exercise for the reader.
Among other things, this proves that, while E[Xν

p] = ∞ for sufficiently large ν, if C > 0
then E[(X∗

p,C)] < ∞ for all values of ν.
We have the following result similar to Lemma 1.

Lemma 12. If α ≤ 0 and V ∗
p,C,k ≥ X∗

p,C,k for some k ≥ 0, then this holds for all n ≥ k. If
0 ≤ α < 1 and V ∗

p,C,k ≤ X∗
p,C,k for some k ≥ 0, then this holds for all n ≥ k. If α = 0 and

V ∗
p,C,k = X∗

p,C,k for some k ≥ 0, then this holds for all n ≥ k.

Proof. The proof makes use of rewriting (9) as

V ∗
p,C,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

V ∗
p,C,n + p + Rp,α(V ∗

p,C,n) if χp,n = success,

max

(
cV ∗

p,C,n,
pC1−α

(1 − α)c1

)
if χp,n = failure,

with Rp,α(·) as in (27). The remainder of the proof is left to the reader.

In the case 0 ≤ α < 1, we are now finished. In this case, R(·) is an increasing function, so
the joint distribution of Vp, V ∗

p,C, X∗
p,C , and Xp is such that

Vp ≤ V ∗
p,C ≤ X∗

p,C ≤ Xp + pC1−α

(1 − α)c1
, (45)

and we know that, while Vp ≤ Xp, they are close in the sense of Theorem 6, or in the sense of
the material in Section 12 if that approach is preferred.

If 0 ≤ α < 1 and C ↓ 0 while p > 0 is constant, we see that the distribution of V ∗
p,C

weakly converges (and stochastically decreases) to the distribution of Vp. This follows from
the stochastic monotonicity observations made in Section 2. We have been unable to prove a
similar weak convergence as C ↓ 0 while p > 0 is constant and α < 0.

In the case α < 0, we define the processes (	∗
p,C,n)

∞
n=0 and (	∗∗

p,C,n)
∞
n=0 by

	∗
p,C,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

	∗
p,C,n + p + Rp,α(X∗

p,C,n) if χp,n = success,

max

(
c	∗

p,C,n,
pC1−α

(1 − α)c1

)
if χp,n = failure,

	∗∗
p,C,n+1 =

{
	∗∗

p,C,n + p + Rp,α(X∗
p,C,n) if χp,n = success,

c	∗∗
p,C,n if χp,n = failure.

Henceforth, we choose the initial values Xp,0, Vp,0, X∗
p,C,0, V ∗

p,C,0, 	p,0, 	∗
p,C,0, and 	∗∗

p,C,0
such that the following inequalities hold for all n, instead of for values of n greater than or equal
to some k. Since X∗

p,n ≤ V ∗
p,n and R(·) is a positive, decreasing function,

X∗
p,C,n ≤ V ∗

p,C,n ≤ 	∗
p,C,n

for all n ≥ 0. Similarly, since X∗
p,C,n ≥ Xp,n, we also have

	∗∗
p,C,n ≤ 	p,n
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for all n ≥ 0. By the same argument as (45), we have

	∗∗
p,C,n ≤ 	∗

p,C,n ≤ 	∗∗
p,C,n + pC1−α

(1 − α)c1

for all n ≥ 0. For the joint stationary distribution we therefore have

Xp ≤ X∗
p,C ≤ V ∗

p,C ≤ 	∗
p,C ≤ 	∗∗

p,C + pC1−α

(1 − α)c1
≤ 	p + pC1−α

(1 − α)c1
.

Since we know that 	p−Xp is nonnegative and small in the sense of Theorem 5, we have proven
the desired result for first moments. For higher moments we do not need to call on functions
similar to fk,p,α(·), but can directly call on results for the higher moments of 	p − Xp.

The approach above shows that not only does X∗
p,C have all moments E[(X∗

p,C)µ] < ∞,
−∞ < ν < ∞, but so also do V ∗

p,C , 	∗
p,C , and 	∗∗

p,C :

Rp,α(X∗
p,C) ≤ Rp,α

(
pC1−α

(1 − α)c1

)
< ∞,

followed by the same argument as in the proof of Lemma 4. We see that if α < 0 and 0 < p ≤
min(p(k), p(k|α|)), then, as C ↓ 0 with p constant, the moments E[(V ∗

p,C)ν], 0 ≤ ν ≤ k,
remain bounded between E[Xν

p] and E[(	p + pC1−α/[(1 − α)c1])ν] < ∞. There is no
guarantee that these moments will converge as C ↓ 0. It is conceivable that the set of limit
points is some nontrivial subset of [E[Xν

p], E[	ν
p]].

14. The special case α = −1

The case α = −1 is special for several reasons. It is of particular interest because it represents
the ‘classical TCP’ situation. It also admits a significantly simplified proof of the material in
Sections 7 and 8, and thereby of Theorems 2 and 5 and, of course, Lemmas 4 and 5.

If α = −1 then R(v) = p2/(4v), which is already of the right form, so we choose f (v) =
R(v) so that Yp = 	p as in Section 7. Hence,

0 < E[	p − Xp] = p(1 − p)

4(1 − c)
E

[
1

Xp

]
,

where of course c = b1−α = b2. From Lemma 6 (which still is needed) and Corollary 1, we
know that

lim
p↓0

E

[
1

Xp

]
= E

[
1

Z

]
= log

(
1

c

)
= 2 log

(
1

b

)
.

In the case of TCP, b = 1
2 .
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