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On geometric duality for

state-constrained control problems

T.R. Jefferson and C.H. Scott

For convex optimal control problems without explicit pure state

constraints, the structure of dual problems is now well known.

However, when these constraints are present and active, the

theory of duality is not highly developed. The major

difficulty is that the dual variables are not absolutely

continuous functions as a result of singularities when the state

trajectory hits a state constraint. In this paper we recognize

this difficulty by formulating the dual probram in the space of

measurable functions. A strong duality theorem is derived. This

pairs a primal, state constrained convex optimal control problem

with a dual convex control problem that is unconstrained with

respect to state constraints. In this sense, the dual problem is

computationally more attractive than the primal.

1 . Introduction

Perhaps the most powerful concept associated with modern optimization

theory is that of duality by which one can replace an optimization problem

by an equivalent, but structurally different problem. This has proved

immensely profitable for mathematical programs both in the computational

and interpretational sense. Currently much of this work is being

generalised from finite dimensional spaces associated with mathematical

programming to various function spaces [2]. As such a mathematical setting

directly embraces the field of optimal control theory, it is natural that

there is now considerable interest in duality for optimal control problems.
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Previous developments have used both lagrangian [7], [3], and conjugate

function methods [4], [5], [6], [S], [//], to derive duals to control

problems. Generally speaking, conjugate function approaches are preferable

to lagrangian methods since they completely separate primal and dual

variables and result in an independent dual program. However, these

methods have not, as yet, handled pure state constraints explicitly.

Here we develop a dual formulation for an optimal control problem with

explicit constraints on the state variables. Specifically we use an

extension of generalised geometric programming [7] to function spaces.

Technical complications arise since explicit state constraints in the

primal induce singularities in the dual (costate) variables. Hence the

dual must be formulated in a very general function space; the space of

measurable functions. We obtain a dual which is unconstrained as far as

explicit constraints are concerned. This is of computational value in the

development of algorithms.

2. The control formulation

We consider an optimal control problem of the form

rrT •,

(1) (A) minimize I f±{t, x^t) , u^t^dt+l (xQ(0), xQ(T))\

subject to explicit state constraints,

(2) f-[t, x.(t)) 2 0 , almost everywhere on [0, T] , i € I ,

explicit control constraints,

(3) f-[t, u.{t)) 2 0 , almost everywhere on [0, T] , i € Io ,

explicit mixed constraints,

CO /,•(*. x.(t), u.(t)) 5 0 , almost everywhere on [0, T] , i € J_ ,

implicit constraints,

(5) xx € C± , ux € Ux ,

and a subspace condition,
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3
(6) x„ = x. , M. = M. , almost everywhere on [0, T] , £ € U J, ,

0 t u i fc=i

(7) ^Q(*) = A(t)«0(t) + "Q(t) » almost everywhere on [0, T] .

The minimization is taken over the states x. : [0, T] -*• FT ,

absolutely continuous functions for any i and controls u. : [0, T] •*• R ,

measurable for any i . x. is restricted to the set of functions C

which is closed and convex; u^ is restricted to the closed and convex set

of functions #. . The f-{t, •, •) and f-(t, •) are closed convex

functions, t is a closed convex function of the initial and terminal

states.

For program A to be well defined, we require that:

(i) /.(t, • ) , f.{t, •, •) are normal integrands in the sense

of Rockafellar [9];

(ii) A(t)xAt) is a normal integrand;

(iii) there exists a finite bounded solution to (A).

The system dynamics (7) may be solved and yield

(8) xQ(t) = $(*, 0)xQ(0)
f*

J •(*, T)KO

where $ is the transition matrix and satisfies

(9) * = A(t)Ht, T)

with « ( T , T ) = I .

With the program, as stated, we can commence the development of a

duality theory which is suitable for handling state constraints. In the

following section, we will develop duality in this context. The resulting

conjugacy theory will be applied to program A to develop program B, its

geometric dual, in Section 4.
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3 . C o n j u g a c y

In order to handle state constraints, we require the most general

pairing of dual spaces; that is, function spaces with measures. For our

purposes, we will decompose the measure into two parts: absolutely

continuous and singular. Thus the function x(t) is paired with y (t)

and y (dt) so that the inner product is
s

rT rT

(10) <x, y> = I x(t)yjt)dt + I x(t)ys(dt) .

It has been shown [70], that y is zero in the absence of state

s

constraints. However, as we propose to deal with state constraints, i t is

necessary to develop conjugacy in full generality.

DEFINITION 1. The conjugate transform of a functional

rT
fit, x, u)dt defined on x I C and u € U , fdt, C x u\] i s

; 0 Ku -i)
[G, D] and is defined by

rT rT
Giy, v) = j g[t, ya, vjdt + j s[t, yg(dt), vg{dt))

= sup \ (x, y)+<u, v) - fit, x, u)dt\ ,
xtc *• h >

where g and s are conjugate transforms of the integrand at time

t[[f, C{t) x £/(£)]) and are its absolutely continuous and singular parts

respectively. In particular

g[t, y , v) = s u p { < * ( * ) , yjt)) + <u{t), v (t))
a a x(t)ZC{t)

- / ( * , x U ) , u(*))} ,

s[t, yjdt), v (dt)) = s u p { < x ( t ) , yjdt)) + <u(t), v(dt))} ,
S s x ( t ) € C ( t ) S S

u(.t)ZU(t)

where < •, •> denotes the usual inner product,
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D = • (y, v) | sup Ux, y>+<u, v) - fit, x, u)dt\< oo

Further g and s are defined on D it) and D it) respectively,

where

a

u(t)W{t)

sup

, v At))
a

-f[t, x(t), M

s

Hence 0 = x [D (t) * D (t)) .
ti[O,T] a

In the case of constraints such as

fit, x, u) - 0 , almost everywhere on [0, T] ,

the conjugate transform of [o, f[t, x(t), u(t)) S o] is the positive

homogeneous extension of the conjugate transform

g[t, yAt), vAt))dt + s[t, yjdt), vJdt)) .

DEFINITION 2. The positive homogeneous extension of

g[t, «/a(t).
 u
a(*))

 is S+(*» J/a
(t)' u

a
( t ) ; Xa(t)^ a n d i s s i v e n b y

sup {<xU), y (t)> + <u(t), v (*)>}
*(*)€<?(*) a a

u(t)tUit)

g*{t, ya(t), va(t); \a(
if X U) = 0 ,

. ya(t)/\a(t), w

if X (t) > 0 .

DEFINITION 3. The positive homogeneous extension of

s[t, ygidt), vgidt)) is s [t, j/g(dt), Vgidt); Xgidt)) and is given by
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e+{t, yjdt), v (dt); X (dt)) =

s u p { < * ( * ) , y ( d t ) > + < u ( t ) , u ( d t ) ) }
) € ( ) s s

x(t)€C(t)

if XAdt) = 0 ,
S

X (dt)s[t, yAdt)IX (dt), vAdt)/XAdt))
o S S S S

if XAdt) > 0 .

Here <", •> represents the usual inner product; y (dt)/X (dt) and
s s

v (dt)/X (dt) are the Radon-Nikodym derivatives. Both s and s ares s
well defined from the original definition of s ; g and s are defined
on D+(t) and Z>+(i) where

d o

D+(t) = {(t/a(t), va(t); Xa(t)) | sup
X\ u ) ^C \ u )
u(t)iU(t)

, yAt))

+<u(t), vAt)>] < » for XQ(t) = 0}

>. va(t)/\At)) e o a ( t ) , xa(t) > o}

and

sup
x(t)tC(t)
u(t)ZU(t)

, y(dt)>
s

+ <u(t), v (dt))} < °° for A (dt) = 0}s s

u {(«„(«£*), u ( d t ) ; X (dt)) | (w (dt)/X (dt), vAdt)/\Adt)) e D It),
b o o o B o S S

x (dt) > o} .
S

Thus the conjugate transform of |o , f(t) 2 0, t <• [0, T}\ i s

[G+(y, v, X), D+] and i s defined t y

G+(y, v; X) = j / ( * ,

rT
s+( t , w (dt), « (dt); A

JQ S S

and

As a consequence of the definition of the conjugate transform, we have
the following conjugate inequality. For x € C and u € U ,
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rT rT ,T
(11) fit, x, u)dt + g[t, y , u )dt + a(t, y (dt), w (dt))Jo Jo Jo

> < x, y) + < M, u> .

For the particular case of the positive homogeneous extension, the

conjugate inequality takes the form

rT (T
(12) g+{t, y It), v it); \it))dt + s+(t, v idt), i' (dt); X (dt))

Jo a a a j Q & s s

> <x, y> + < w, u> ,

for x € C , u £ U , fit, x, u) S 0 , almost everywhere on [0, T] , and

(», »; A) € fl+ .

We are interested, of course, in the inequality holding at equality

since in this case there is no duality gap. In order to study this, we

require the concept of subvariation.

DEFINITION 4. The subvariation of a functional fit, x, u)dt is

the set 8 / ( * , x, u)dt where

3 fit, x, u)dt = Uy, v) | fit, x, u)dt+<x-x, y>+<u-u, w>

£j fit, x, u)dt, for all (x, u) € C * u\ .

Hence, by construction, (11) holds at equality if and only if

iy, v) € 9 fit, x, u)dt . For the positive homogeneous extension, we

have two cases to consider. If X > 0 , then (12) holds at equality if and

only if (y/X, u/X) € 3 / ( * , x, u)dt . This is a consequence of the

conjugate inequality for convex functionals. We now consider the case of

XQ(i) = 0 , which implies that [yait), Vait)) = (0, 0) , and X idt) = 0 ,

which implies that {yAdt), v idt)) = (0, 0) . This is the case when

ix, u) are defined over the whole space,which is the case for constraints

(2), (3), and (U) in (A). With the convention that X3 fit, x, u)dt

means that the scalar multiplier X multiplies the absolutely continuous
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part of 3 / (* , x, u)dt and A multiplies its singular part, (12)

holds at equality if and only if (y, v) € X8 fit, x, u)dt .

4 . D u a l i t y

The dua l t o (A) i s t h e following opt imal c o n t r o l problem

rT
(B) ^

rT ,

minimize ^ g^t, y^, vjdt + £ j g\[t, y^; X

# * • Via' Via> XiJdt

+ f ff e [t, yls(dt)) + I f 8*(t, y. (dt); X̂  (d*))

subject to implicit constraints:

[yv vj € D1 ,

[y.; X.) 6 0* , i € J x ,

and subspace

*U, o)
0

+ I $*(t, o)( T yi8(dt)} = o ,

a n d
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rT

£ vAt) = - «*(T, t)
n7" n7" *• J*

- J «*(T, *)(_ Y yis(dx)} ,

where $* denotes the adjoint of $ .

We note that singular parts only appear in the costate variables

i € {1} u J and are associated with the implicit and explicit primal pure

state constraints. The dual subspace is the orthogonal complimentary sub-

space of the primal subspace (6) and (7); m is the conjugate transform of

I and is defined on the convex set M . gjdt + \ sAdt) is the

conjugate transform of f,dt . g.dt + s.(dt) , i € I , is the

positive homogeneous extension of the conjugate transform of f.dt ,

i £ I . g .dt , i 5 I. u I, , is the absolutely continuous part of the
J % d i

positive homogeneous extension of the conjugate transform of f.dt ,

i € I- u T, . The implicit constraints derive from the associated

conjugate transforms.

At the optimality, we have for feasible primal and dual trajectories

that

Jl '

vi € h \ k^' uddt ' i € J2 '

bv v^ € X;3 J fA\tt xv ujdt , i € J3 .

The results given in this section are proved in Theorem 1 which

follows.

https://doi.org/10.1017/S0004972700010984 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010984


310 T .R . J e f f e r s o n and C .H . S c o t t

THEOREM 1. Given that Programs A and B are both consistent and the
functionals have the properties stated in Section 2, then for feasible
solutions (x, u) and (y, v, X) of Programs A and $ respectively, we
have that (x, u), (y, v, X) satisfy the optimality conditions if and only
if (x, u) and (y, v, X) are optimal for Programs A and B respectively.

In either case, the primal and dual objective functions sum to zero.

Proof. Assume f i rs t that the optimal points for Programs A and B are
(x*, u*) and (y*, v*, A*) respectively. Let (z/\ v', X') satisfy the
optimality conditions with respect to (x*, u*) ; that i s ,

fx[t, **, u*)dt ,

We condense these results to

(y', v', X') 6 9F(x*, u*) .

Since the functionals are closed and convex, the primal and dual

objective functions sum to <x*, y'> + <u*, v'> . We define X to be the

subspace associated with (6), (7) of Program A. If "dF{x*, u*) n x * 0 >

choose (y', v', X') to be in this intersection. Then

<x*, y"> + <u*, u'> = 0 . If (y*, v*, X*) is optimal for Program B, it

must belong to dF(x*, u*) n x since otherwise it would be either

infeasible or non-optimal.

We now prove &F(x*, u*) n X to be non empty by contradiction.

Suppose 3P(x", u*) n X = 0 . Let P(x*, u*) be the closed convex cone

of feasible directions at (x*, u*) . Now 3i?(x*, U*) n P(x*, u*) is a

compact convex set and x is a subspace.

By the Hahn-Banach Theorem, there exists a function (x, u) such that

<x, y> + <u, v> = 0 for {y, v, X) € x""" .
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and

<x, y) + < M , v) < 0 for {y, v, X) € 8F(x*, M*) n P(x*, u*) .

This implies that (x*+ctx, w*+cui) € x a n d the objective function of

the primal decreases for some positive value of a . This contradicts the

optimality of (x*, u*) .

Suppose now that (x*, u*) and {y*, v*, X*) satisfy feasibility and

the optimality conditions. The primal and dual objective functions sum to

zero as a direct consequence of feasibility and the conditions for equality

of the conjugate inequality. Optimality is guaranteed by the fact that the

negative of one objective function provides a lower bound on the value of

the other and the fact that they sum to zero. Thus (x*, u*) and

(y*, v*, X*) are optimal.
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