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A novel mild-slope equation is derived based on a manipulation of the cylindrical
and Cartesian coordinate reference systems. The vertical profile of the velocity field is
constructed by solving an approximate problem in cylindrical coordinates. This allows
us to address the local derivatives on the bottom profile along a constant-slope line.
This formulation is as opposed to the Cartesian-based mild-slope equations in terms
of which the profile is constructed by assuming a constant depth. An angular profile is
derived for the three-dimensional case on a sloping plane beach. For the two-dimensional
case, a mild-slope polar-Cartesian equation is derived, for which an improved linear
dispersion relation is reconstructed. This is accomplished due to the inclusion of first-order
derivatives of the local bottom profile. The coefficients of the polar-Cartesian mild-slope
equation contain the derivatives of the bottom profile up to third order as opposed
to second-order derivatives in the Cartesian-based equations. The equation is derived
by applying the variational principle to the Cartesian Lagrangian when formulated
as a function of the profile in polar coordinates. It is then compared with existing
models of the mild-slope equation for simulations of two-dimensional test cases and
a quasi-three-dimensional case, which have known analytical solutions. Our modified
equation exhibits better matching to the exact solutions for a majority of the investigated
cases.
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1. Introduction

Mild-slope equations (MSE) address the problem of linearly propagating waves in an
irrotational flow of an incompressible, inviscid, homogeneous fluid. These equations
describe the combined effect of diffraction and refraction of linear surface waves
propagating over a variable bathymetry. The waves being addressed are monochromatic
and therefore a narrow wavenumber spectrum is achieved. This justifies the use of an
approximate vertical velocity profile in order to reduce the original three-dimensional
(3-D) problem to a two-dimensional (2-D) one.

The original mild-slope assumption states that the change in the water depth over
the wave wavelength is small. This assumption is represented by the introduction of a
small parameter into the equations, allowing higher-order terms in the bottom slope and
curvature to be discarded. This approach was introduced by Berkhoff (1973, 1976). An
MSE is introduced by a vertical-averaging procedure to reduce the governing equations of
the full 3-D problem to the depth-integrated equations in the horizontal plane. The vertical
structure utilized fits that of waves on a horizontal bottom.

The MSE may be unsuccessful in producing adequate approximations to certain types
of topography, such as rippled beds, which present higher-order phenomena due to steeper
bottom slopes. Equations with higher-order bottom derivatives are required to overcome
this difficulty.

Chamberlain & Porter (1995) addressed this issue by adding the second-order bottom
derivative terms which were neglected in the MSE. The same vertical profile of the
velocity field is assumed and, when averaged over the depth, the second-order terms
in derivatives of the depth (∇2h and (∇h)2) are retained. This equation, which is
referred to as the modified MSE (MMSE), successfully predicts known scattering
phenomena which were undetected by Berkhoff by retaining the higher-order terms. These
second-order terms were first introduced by Smith & Sprinks (1975). Miles & Chamberlain
(1998) expanded the MMSE and derived a fourth-order equation. Porter (2003) used
transformation of variables to derive a model that accounted for Bragg scattering using
only first-order bottom derivatives.

Kirby (1986) addressed the problem of nearly resonant Bragg scattering due to small
oscillatory depth variations around a mildly sloped reference depth. The same vertical
structure of the velocity field was employed along with Green’s second identity for
a vertical-averaging technique. The resulting equation is applicable both to the case
of resonant scattering by an undulating bottom and to the case of slow, non-resonant
scattering. The scattering is defined by detuned undulations or by the slow change in
the average depth, which is important in the absence of strong resonant scattering. The
emphasis of the equation is for small deviations in relation to the wave amplitude on a
mean, slowly varying depth.

All the equations mentioned so far take the potential function as the unknown which is to
be determined. Kim & Bai (2004) derived an MSE in terms of the streamfunction vector.
In this formulation, referred to as the complementary MSE (CMSE), the bottom condition
is satisfied exactly and not only on a horizontal bottom as in the potential formulations.
The continuity equation and kinematic free-surface condition are satisfied as well while
the irrotational condition is satisfied only in the averaged sense. The CMSE was shown
to give a better agreement with exact linear theory compared with other mild-slope type
equations. The drawback in this formulation is that a vector equation is derived for the
general case. This was somewhat alleviated by Toledo & Agnon (2010) who formulated
an equivalent scalar equation to the vector equation using a pseudo-potential formulation.
The equation performed especially well for sinusoidal beds and bottom mounds and is an
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efficient tool to predict wave diffraction over steep bathymetries. A unified approach to
MSE was recently presented by Porter (2020).

Ehrenmark (2005) derived an improved linear dispersion relation which accounts for the
first-order bottom slope as well as for the depth. The relation is derived from an asymptotic
analysis of the exact solution of the linear wave problem combined with the method of
steepest descent.

The modified dispersion relation appears to have significantly increased accuracy over
sloping beds when tested on the plane beach problem with various forms of the MSE
(Ehrenmark & Williams 2010). It provides a global error reduction of the order of
50 per cent in some ‘from deep to shore’ computations. Specifically, this dispersion
relation is utilized to obtain modified coefficients in the MMSE for the case of small
bottom slopes. Belibassakis & Athanassoulis (2006) have addressed normally incident
waves on a sloping plane beach using polar coordinates. By doing so they have derived the
modified dispersion relation and a polar MSE, exhibiting very good agreement with exact
solutions.

In this paper, the steps to derive a 3-D MSE in cylindrical-Cartesian coordinates on a
sloping plane beach are outlined. In addition, a quasi-3-D equation of oblique incidence is
derived along with a 2-D MSE in polar-Cartesian coordinates. All equations are derived
as a function of the streamfunction. The advantage of using the cylindrical coordinates
is that the profile is formulated by using the boundary conditions at the bottom given as
a constant-angle line, whereas the Cartesian coordinate formulation is a better fit for the
bottom located along a horizontal line. This is a significant distinction since it increases
the order of the bottom slope contribution in the formulation while maintaining the same
order of expansion to the equation. This is manifested in the 2-D polar linear dispersion
relation which is a function of the bottom slope to first order, as well as the bottom location
as first derived by Ehrenmark (2005).

The streamfunction vertical profile is constructed based on the polar coordinate
formulation. A combined polar-Cartesian (PC) MSE (PCMSE) is then derived by taking
a variation of the Lagrangian functional. The functional represents the energy of the
system and is generally equal to the difference between its kinetic and potential energies.
Hamilton’s principle states that the solution to the equations of motion is obtained
where the time-averaged Lagrangian has a stationary value for the solutions satisfying
the kinematic constraints. The equation is developed in § 2 by taking variations of the
Cartesian Lagrangian formulation while substituting the polar vertical profile to the
variables. Finally, the PCMSE is compared with the benchmark MSE models in § 3 for
several test cases. Conclusions are drawn in § 4.

2. Mathematical formulation

In the following subsections, the vertical profile of a two-component vector streamfunction
in a 3-D fluid domain, is determined. The vector function represents an extension to
the 2-D streamfunction and is derived by using the cylindrical coordinate formulation.
In this formulation, the flow domain is subdivided into stripes of constant-radius arcs
which connect the corresponding points on the free surface and the bottom. The bottom
gradient defines the arc function and the corresponding linear mean free-surface point.
This approach was used successfully by Belibassakis & Athanassoulis (2006) who derived
a polar MSE and applied it to a wedge geometry with a constant slope. However, on a
non-planar beach, when stratifying the fluid domain in this manner, there are crossings
and overlaps between different arcs depending on the bottom gradient in the region. This
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Figure 1. Polar coordinates – problem description.

results in a solution which is not determined continuously along the flow direction, but in a
more sporadic manner. In addition, some free-surface regions will have a stronger impact
than others. Due to this, we found that a cylindrical MSE does not provide good results for
a general bathymetry. In order to overcome this difficulty and still exploit the advantages
of the cylindrical representation, only the vertical profile of the vector streamfunction is
determined using cylindrical coordinates. This profile is then translated to an equivalent
Cartesian profile for the remainder of the solution.

In § 2.1, the cylindrical vertical profile is presented. In § 2.2 we derive the 2-D PCMSE
and in § 3.3, the quasi-3-D equation for obliquely incident waves.

2.1. The angular profile

2.1.1. Cylindrical coordinates – problem definition
The governing equations and boundary conditions are presented in cylindrical coordinates
in order to provide an approximate angular profile for the two-component vector
streamfunction in a 3-D fluid domain. This domain is contained in the polar plane for
which r and θ are the radial distance and the angle, respectively, and the longitudinal
y-axis is normal to the polar plane. The ray θ = 0 represents the mean location of the free
surface, and r = 0 corresponds to the shore, as depicted in figure 1.

Introducing the complex-valued vector streamfunction

Ψ (x, y, z) ≡
∫ z

−h
u(x, y, z0) dz0, (2.1)

which defines the time harmonic streamfunction by Re(Ψ exp(−iωt)), with ω being the
angular frequency of the incoming wave, and z = −h being the location of the bottom.
The horizontal and vertical velocity components are denoted by u and w, respectively, and
are determined via

u = ∂Ψ

∂z
, w = −∇ · Ψ , (2.2a,b)

with ∇ = (∂/∂x, ∂/∂y). The vector streamfunction Ψ satisfies the Laplace equation
formulated in cylindrical coordinates in the flow domain

1
r
∂

∂r

(
r
∂Ψ

∂r

)
+ 1

r2
∂2Ψ

∂θ2 + ∂2Ψ

∂y2 = 0 in 0 < r < ∞, −α < θ < 0, −∞ < y < ∞.

(2.3)

The bottom boundary condition is formulated in terms of the vector streamfunction (2.1)

Ψ = 0 at θ = −α, (2.4)
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and the Cartesian free-surface condition is translated to cylindrical coordinates. At the
undisturbed free surface

rdθ = dz → 1
r
∂Ψ

∂θ
= ∂Ψ

∂z
, ∇ · Ψ = ∇cy · Ψ , (2.5a,b)

with ∇cy = (∂/∂r, ∂/∂y).
These relations are then substituted into the boundary condition to be satisfied at

the undisturbed location z = 0 of the free surface. These conditions arise from the
minimization of the energy functional (Kim & Bai 2004) in terms of the vector
streamfunction Ψ . They are then written in the Cartesian frame in order to derive the
equivalent cylindrical condition

∂Ψ

∂z
+ 1
σ

∇(∇ · Ψ ) = 0 at z = 0, (2.6)

where σ ≡ ω2/g. In cylindrical coordinates, (2.6) is written as

1
r
∂Ψ

∂θ
+ 1
σ

∇cy(∇cy · Ψ ) = 0 atθ = 0. (2.7)

Equations (2.3)–(2.7) constitute a closed set of equations to find a solution for the vector
streamfunction Ψ , when supplemented by lateral boundary conditions. This solution can
then be utilized to determine the free-surface location by resolving it from the kinematic
boundary condition

η = 1
iω

∇cy · Ψ at θ = 0. (2.8)

2.1.2. The θ -dependent profile
The set of equations (2.3)–(2.7) is solved by assuming a solution to the vector
streamfunction, Ψ , in a separable form. It is noted that this variable separation will provide
an approximate solution to the problem when solved on the cylinder segment. The segment
is composed of a circle sector in the polar plane, defined between the free surface and the
planar bottom and along the shore in the longitudinal plane

Ψ (r, θ, y) =
∞∑

n=0

Rn(r)Fn(θ)Yn( y), (2.9)

and Fn(θ) will be utilized as the approximation for the angular profile of the vector
streamfunction.

Substituting this expression into (2.3) yields

1
Fn

d2Fn

dθ2 = γ 2
n ,

1
Yn

d2Yn

dy2 = −δ2
n,

d2Rn

dr2 + 1
r

dRn

dr
+
(
γ 2

n

r2 − δ2
n

)
Rn = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

where γn and δn are positive constants, analogous to the components of the vector
wavenumber k, normally used in the Cartesian formulation.
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Defining the solution around a local wavenumber expressed by the constants γn and δn,
an oscillating solution is chosen in the y direction. In the r direction, Bessel functions are
obtained. The solution in the angular direction has exponential form

F(θ) = A sinh(γ θ)+ B cosh(γ θ). (2.11)

This solution is then substituted into the boundary condition at the bottom and then
normalized with the value at the free surface (θ = 0) to yield

F(θ) = sinh(γ (θ + α))

sinh(γ α)
. (2.12)

The sinh(γ (θ + α)) shape will serve in what follows as an approximated profile and will
be utilized to derive the mild-slope equation in the horizontal direction.

This profile is then substituted into the time-averaged cylindrical Lagrangian in order to
provide a solution for the case of a 3-D planar beach

L̄ =
∫ ∫

L dr dy,

L̄ = ρ

2

∫ 0

−α

(
|∇cy · Ψ |2 + 1

r2

∣∣∣∣∂Ψ∂θ
∣∣∣∣
2
)

r dθ − ρ

2σ
|∇cy · Ψ (r, y, 0)|2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

Here, L is the Lagrangian density and the double integration is made in the domain defined
by lateral boundary conditions which appropriately depict the problem at hand. Since the
wave field is harmonic, the (quadratic) Lagrangian has a zeroth harmonic component and
a second harmonic one. Hence, there are two alternative applications of the Lagrangian:
the present, time-averaged component, utilized by Kim & Bai (2004), or the oscillatory
component, utilized by Chamberlain & Porter (1995).

The extension of this formulation to a full 3-D bathymetry will be provided in future
work.

For the case of a general 2-D bathymetry, the Cartesian equivalent to the angular profile
is substituted into the Cartesian Lagrangian

L̄ =
∫

Ldx,

L = ρ

2

∫ 0

−h(x)

(∣∣∣∣∂Ψ∂x

∣∣∣∣
2

+
∣∣∣∣∂Ψ∂z

∣∣∣∣
2
)

dz − ρ

2σ

∣∣∣∣∂Ψ (x, 0)
∂x

∣∣∣∣
2

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.14)

after which the first variation is equated to zero to derive a 2-D MSE.

2.2. The 2-D PC mild-slope equation
In two dimensions, the problem is constructed in the polar plane and the vector
streamfunction reduces to a scalar streamfunction Ψ = (ψ, 0). The set of equations
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O
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z = 0

z = –h
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θ

Figure 2. Polar-Cartesian relations.

(2.3)–(2.7) reduces to

1
r
∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2
∂2ψ

∂θ2 = 0 in 0 < r < ∞, −α < θ < 0. (2.15)

ψ = 0 at θ = −α, (2.16)

1
r
∂ψ

∂θ
+ 1
σ

∂2ψ

∂r2 = 0 at θ = 0. (2.17)

The solution form for variable separation around a local wavenumber

F(θ) = A sinh(γ θ)+ B cosh(γ θ), (2.18)

R(r) = C cos(γ ln r)+ D sin(γ ln r), (2.19)

where the constants are determined by substitution into the boundary conditions. A
localized dispersion relation is derived when substituting the solution form into the
free-surface boundary condition (2.17)

σ r = γ tanh(γ α). (2.20)

This is simply a reconstruction of the relation derived by Ehrenmark (2005), as stated
above.

When solving for a general bathymetry, the local bed gradient defines the angle α. The
origin of the polar reference frame is located where the corresponding ray intersects with
the line of the undisturbed free surface. Therefore, at each local point the axis origin shifts
according to the bottom gradient.

The relations between the polar and Cartesian parameters, as depicted in figure 2, are
provided by the following:

θ = arctan
(

zh′

h

)
, α = arctan(h′). (2.21a,b)

The following form of ψ is substituted into the Lagrangian

ψ(r, θ) = ψ0(r)F(θ), (2.22)

and the problem is then to be solved for the unknown function ψ0(r).
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The Cartesian equivalent profile of (2.12) is given by

F
(
h(x), h′(x), z

) =
sinh

(
γ

(
arctan

(
zh′

h

)
+ arctan(h′)

))
sinh (γ arctan(h′))

. (2.23)

A solution for ψ(x, z) is sought in the form of

ψ(x, z) = ψ0(x)F
(
h(x), h′(x), z

)
. (2.24)

Substituting the profile into the Lagrangian (2.14), yields

L =
(

a − 1
σ

)
|ψ0x |2 + (c + d)|ψ0|2 + 2b Re

(
ψ0ψ

∗
0x

)
, (2.25)

where Re(x) denotes the real part of x, ∗ denotes the complex conjugate and the
coefficients a, b, c and d are real-valued functions of h(x) and h′(x) defined by

a =
∫ 0

−h
F2 dz b =

∫ 0

−h
FFx dz c =

∫ 0

−h
F2

x dz d =
∫ 0

−h
F2

z dz. (2.26a–d)

Following the substitution, the Lagrangian becomes a functional of a single variable,
ψ0, and the Euler–Lagrange equation is derived in the form

−
[(

a − 1
σ

)
ψ0x + bψ0

]
x
+ bψ0x + (c + d)ψ0 = 0. (2.27)

Its solution will provide the stationary point of the Lagrangian and the solution to the
original system of equations. Note that the coefficients of (2.27) depend on x, so the b-term
does not cancel out.

This is the PCMSE and the main result presented in the paper. The structure of the
equation is similar to that of the CMSE and the fundamental difference is in the order
of the bottom derivative in the coefficients. This is up to third order here as opposed to
second order in the CMSE.

We note that numerical issues arise with evaluation of the coefficients a, b and c defined
in (2.26a–d) when solving (2.27) in a horizontal or close to horizontal bed. The values of
α and θ both tend to zero at the limit where h′ → 0. In order to obtain a smooth solution
in the entire range from a steep slope to a horizontal bottom, the variables are normalized
in the following form:

α0 = αr0, θ0 = θr0, γ0 = γ

r0
, r0 ≡ h

h′ . (2.28a–d)

Under this transformation, the vertical velocity profile remains unchanged. The polar
coordinate variables reduce to the equivalent Cartesian variables in the limit of a horizontal
bottom, and this resolves the numerical complications

lim
h′→0

α0 = h, lim
h′→0

θ0 = z, (2.29a,b)

and the polar dispersion relation reduces to its Cartesian version

σ = γ0 tanh(μγ0h), μ ≡ α cot(α), lim
h′→0

μ = 1. (2.30a–c)

This representation reduces the PCMSE to the CMSE for bottom slopes which tend to
zero. Effectively, this means that when solving horizontal or close to horizontal bottom
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profiles the CMSE and PCMSE will provide similar results. For relatively steep gradients
the results will differ according to the coefficient terms of each equation.

In terms of the normalized variables, the streamfunction profile is now given as

F(γ0, h, h′) = sinh
[
γ0(θ0 + α0)

]
sinh(γ0α0)

=
sinh

[
γ0h
h′

(
arctan

(
zh′

h

)
+ arctan(h′)

)]

sinh
(
γ0h
h′ arctan(h′)

) . (2.31)

This profile and its derivatives are integrated with respect to the vertical coordinate in
order to obtain the coefficients of (2.27). Due to the complexity of the terms derived by
analytical integration, this task is accomplished in two ways. The first one is by a Taylor
expansion, assuming a small α, which reduces the complexity of the terms derived from
the analytical integration. The challenge is that using α as the expansion parameter requires
taking several orders to obtain values that warrant a satisfactory approximation. This leads
to lengthy and cumbersome expressions. To overcome this difficulty and to simplify the
coefficients resulting from (2.26a–d), the following parameter is utilized:

p ≡ 1 − μ. (2.32)

With p as the expansion parameter, accurate simulations are derived by expanding (2.31)
to first order. Also, α is expanded into powers of p by using successive approximations
α = √

3p(1 − p/10 + O( p2)) and subsequently used in the integration (2.26a–d) to obtain
the coefficients of the PCMSE. The coefficient terms to first order in p are provided in
Appendix A. This is referred to in the following as the PCMSE.

The second is by numerical integration of the full coefficients in what will be referred
to as the ‘steep-slope’ equation. In this equation, no approximations have been imposed on
the bottom slope and therefore it exceeds the mild-slope approximation and provides a first
‘steep-slope’ equation. This is referred to in the following as the PCSSE (PC steep-slope
equation).

2.3. The quasi-3-D equation of oblique incidence
The case of an incoming wave which is incident to the bottom gradient at a varying
angle is considered. A local axis system is defined such that the x axis is oriented in the
direction of the gradient at each point. The PC vertical profile is utilized in this direction of
varying depth topography (2.31). This profile is denoted as f1 in the following derivation.
The corresponding local y axis is that of a horizontal bottom which specifies a harmonic
solution dependence. The profile in this direction is defined as

f2 = sinh (γ0(z + h))
sinh(γ0h)

. (2.33)

Where γ0 is the solution of the PC dispersion relation (2.30a–c), as stated previously. The
vector streamfunction is approximated by a separation of variables. This is expressed as
a multiplication of a y dependent harmonic function, an approximated vertical profile and
an unknown horizontal function. The horizontal function represents the stream value at
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the undisturbed free surface

Ψ (x, y, z) = exp(iβ0y)
(

f1(h, h′, z)ψ1(x), f2(h, z)ψ2(x)
)
, (2.34)

with β0 being the y component of the wavenumber vector. This is then substituted into the
3-D time-averaged Lagrangian

L =
∫ 0

−h

(
|u|2 + |v|2 + |w|2

)
dz − g|ζ |2, (2.35)

where u, v and w are the complex-valued local velocities in the x, y and z directions and ζ
is the complex-valued free-surface location. The velocities are calculated according to the
streamfunction definition

[u, v] = Ψ z = exp(iβ0y)
(

f1zψ1, f2zψ2
)

w = −∇ · Ψ = − exp(iβ0y)( f1xψ1 + f1ψ1x + iβ0f2ψ2),

}
(2.36)

and the free-surface location is calculated according to the kinematic linear free-surface
condition

ζ = 1
iω

∇ · Ψ 0 = 1
iω

exp(iβ0y)(ψ1x + iβ0ψ2). (2.37)

These expressions are substituted into the Lagrangian

L = (c1 + d1)|ψ1|2 + a2(β
2
0 − γ 2

0 )|ψ2|2 + a1|ψ1x |2
+ 2b1(ψ1ψ

∗
1x

+ ψ∗
1ψ1x)+ iβ0b12(ψ2ψ

∗
1 − ψ1ψ

∗
2 )

+ iβ0a12(ψ2ψ
∗
1x

− ψ1xψ
∗
2 ), (2.38)

where

a1 =
∫ 0

−h
f 2
1 dz − 1

σ
b1 =

∫ 0

−h
f1f1x dz c1 =

∫ 0

−h
f 2
1x

dz

d1 =
∫ 0

−h
f 2
1z

dz a2 =
∫ 0

−h
f 2
2 dz − 1

σ
a12 =

∫ 0

−h
f1f2 dz − 1

σ

b12 =
∫ 0

−h
f2f1x dz.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.39)

Variations are taken with respect to both parameters, ψ1 and ψ2, and equated to 0. The
variation with respect to ψ2 provides

ψ2 = iβ0
(
b12ψ1 + a12ψ1x

)
a2(β

2
0 − γ 2

0 )
≡ iβ0(r1ψ1 + r2ψ1x), (2.40)

and with respect to ψ1, after substituting for ψ2 and rearranging

ψ1xx + R1

L1
ψ1x + R2

L1
ψ1 = 0 (2.41)

where

R1 = −a1x − β2
0 (b12 − a12x)r2 + β2

0 a12(r1 + r2x)

R2 = c1 + d1 − b1x − β2
0 (b12 − a12x)r2 + β2

0 a12(r1 + r2x)

L1 = −a1 + β2
0 a12r2.

⎫⎪⎪⎬
⎪⎪⎭ (2.42)
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Figure 3. Roseau’s bed function for hL/h0 = 0.25. The x axis is the horizontal distance. The z axis is the
vertical location of the bottom. The values are normalized with respect to h0. Green (dotted) curve – β = 0.5;
red (dashed) curve – β = 0.45; blue (solid) curve – β = 0.4.

3. Simulations

Numerical results are presented for the simulation of four 2-D test cases in the following
subsections: the Roseau bathymetry, a constant-slope bottom, a benchmark example
known as Booij’s ramp and a doubly sinusoidal bottom which allows us to test the case of
a class II Bragg resonance. A simulation of the quasi-3-D case of obliquely incident waves
is performed as well. The numerical simulations for all MSE models presented here are
solved by using the NDsolve function of Mathematica and the ODE45 function of Matlab.
The spatial step size is of the order of 0.01. These results are then presented along with the
results of other benchmark MSE models in comparison with known analytical solutions
of these test cases.

3.1. Roseau’s bathymetry
Roseau (1976) derived the only analytical solution for waves propagating over a
non-constant-slope bathymetry. In his solution, the bed location is defined by

x(ξ)
h0

= ξ − (2Πβ)−1
(

1 − hL

h0

)
ln (1 + exp(2βΠξ)+ 2 exp(βΠξ) cos(βΠ)) ,

z(ξ)
h0

= −1 + (Πβ)−1
(

1 − hL

h0

)
arctan

(
sin(βΠ)

exp(−βΠξ)+ cos(βΠ)

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where β ∈ (0, 1) is a shoaling parameter and the bed is defined parametrically as z(ξ) =
−h(x(ξ)). The bed function tends to two flat semi-infinite sections at the limits x → ±∞,
as depicted in figure 3.

The reflection coefficient, defined as the ratio of the amplitude of a reflected wave to
that of a corresponding incident wave, is as given by Roseau

|R| =
∣∣∣∣sinh ((k0h0 − kLhL)/β)

sinh ((k0h0 + kLhL)/β)

∣∣∣∣ , (3.2)
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Figure 4. Simulation of the reflection coefficient vs σh0 for the Roseau bathymetry. Here, β = 0.5. Panels
show (a) hL/h0 = 0.1, (b) hL/h0 = 0.25. Blue (smaller dashed) curve – PCMSE; orange (larger dashed) curve –
PCSSE; red (dot dashed) curve – CMSE; green (dotted) curve – MMSE; black (solid) curve - exact solution.

where k0 and kL are the wavenumbers at the constant depth locations, h0 and hL,
respectively. A solution to the case of reflection and transmission of temporally harmonic
waves as presented by Porter (2019) is utilized here. The waves are of frequency ω,
incident from x = −∞ over a finite region of variable 2-D bathymetry between two flat
semi-infinite sections defined by h = h0 at x < 0 and h = hL at x > L,

This method is applied to the MSE models and the reflection coefficient is solved for
numerically. The results are presented in comparison with the exact solution of Roseau
for three values of β and two relations between the depths at the flat regions hL/h0. The
maximum slopes of the simulations which are presented here are 0.75, 0.68 and 0.62 for
β = 0.5, 0.45 and 0.4, respectively.

In addition, the conservation of energy flux (as presented by Massel 1993) is tested
for the steepest bathymetry case by equating net energy flux values on both sides of
the variable region. This is stated by the following relation between the reflection and
transmission coefficients and the relevant group velocity:

(Cg)h=h0(1 − |R|2) = (Cg)h=hL |T|2. (3.3)

Figure 4 displays the reflection coefficient R as a function of the non-dimensional σh0
for β = 0.5 for the CMSE, MMSE, PCMSE and the PCSSE in comparison with the
analytical result of Roseau. In panel (b), (hl/h0 = 0.25) the results obtained from the
PC equations are almost identical to the exact result and outperform the other models.

970 A4-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.576


The polar-Cartesian mild-slope equation

0.8

0.6

0.4

0.2

0.8

1.0

0.6

0.4

Er

Er

0.2

1.5

2.0

1.0

0.5

0

0

0.8

0.6

0.4

0.2

0

0

1 2 3 4 5 0

0

1 2 3 4 5

1 2 3 4 5 0

0

1 2 3 4 5

σh0 σh0

(b)(a)

(d )(c)

Figure 5. Simulation of the relative error vs σh0 for the Roseau bathymetry. Here, β = 0.5. Panels show (a,b)
hL/h0 = 0.1, (c,d) hL/h0 = 0.25. (a,c) Blue (smaller dashed) curve – PCMSE; orange (larger dashed) curve –
PCSSE; red (dot dashed) curve – CMSE; green (dotted) curve – MMSE. (b,d) Blue (smaller dashed) curve –
PCMSE; orange (larger dashed) curve – PCSSE; red (dot dashed) curve – MSE; green (dotted) curve – MSE
with Ehrenmark’s dispersion.

In panel (a), (hl/h0 = 0.1) the differences are more significant and clearly the PC
equations provide a better match than the other model equations. The PCSSE outperforms
the PCMSE by a significant amount and is very close to the exact solution. In figure 5,
the relative error (Er = (Rm − Rr)/Rr, where Rm and Rr are the MSE model and
Roseau reflection coefficients, respectively) is presented for the PCMSE and PCSSE
in comparison with the MMSE and CMSE (a,c) and with the MSE with the standard
Cartesian dispersion relation and with Ehrenmark’s dispersion relation (b,d) for β = 0.5
as well. The energy flux conservation (3.3) was tested for the case of hL/h0 = 0.25. The
maximum relative income–outcome energy flux value(

Ef = (Cg)h=h0(1 − |R|2)− (Cg)h=hL |T|2
(Cg)h=h0(1 − |R|2)+ (Cg)h=hL |T|2

)
, (3.4)

is 4 × 10−7 for all σh0 values which were tested. Figure 6 compares the relative error of the
CMSE, MMSE and the PCMSE for β values of 0.45 and 0.4. In panel (c), the PCMSE and
the CMSE models provide indistinguishable results. The PCMSE can be seen to provide
smaller relative errors in comparison with all models in an overall observation.

3.2. Constant-slope bathymetry
An exact solution to waves normally incident to the bottom gradient can be found in
Stoker (1957). The solution is limited to bottom slopes of π/2n, where n is an integer.
Simulations were performed for the bed slopes of 45, 30, 22.5, 18 and 15 degrees. The
analytical solution (Stoker 1957) is compared with the results of numerical simulations for
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Figure 6. Simulation of the relative error vs σh0 for the Roseau bathymetry. Panels show (a,c) hL/h0 = 0.1,
(b,d) hL/h0 = 0.25, for (a,b) β = 0.45, (b,d) β = 0.4. Blue (smaller dashed) curve – PCMSE; orange (larger
dashed) curve – PCSSE; red (dot dashed) curve – CMSE; green (dotted) curve – MMSE.

the PCMSE, CMSE and a full polar MSE in figure 7 for slopes of 45◦ and 30◦ degrees. For
45◦, the polar equation agrees slightly better than the PCMSE with the analytical result,
and both provide better agreement than the CMSE, as observed in the figure. For 30◦, all
models are effectively indistinguishable from the exact solution, as is for all angles smaller
than 30◦. This strengthens the result from the previous test case for which the PCMSE has
an advantage for steep slopes. The polar model, which is specifically designed for this test
case, has a small advantage over the PC equations. The results of the CMSE matched those
of the PC equations for milder slopes.

3.3. Booij’s ramp
The bed shape in the form of a ramp tested by Booij (1983) is simulated in what follows.
The bathymetry is given by

h(x) = hm −
(

hp − hm

L

)
x, 0 < x < L, (3.5)

where hm and hp are the constant depths upstream and downstream of the ramp,
respectively. Following the studies by Kim & Bai (2004), we use the values

hp

hm
= 1

3
,

ω2hm

g
= 0.6, (3.6a,b)

with the non-dimensional ramp length ω2L/g in the range between 0.1 and 5. In figure 8,
the values of the reflection coefficient obtained using the PCMSE, CMSE and MMSE
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Figure 7. Normalized free-surface values for a normal incidence simulation for two values of the bed slope.
Panels show (a) 45◦, (b) 30◦. Blue (smaller dashed) curve – PCMSE; orange (larger dashed) curve – PCSSE;
red (dot dashed) curve – CMSE; green (dotted) curve – polar MSE; black (solid) curve – exact solution.

are compared with the result of the full linear theory of Bai & Yeung (1974) using the
localized finite-element method. The CMSE was solved in the domain containing the two
points of a discontinuous bed slope by using the jump conditions suggested by Kim & Bai
(2004). The PCMSE was solved using the same jump conditions extended to include the
second-order slope discontinuity, as detailed below.

The streamfunction solution over the horizontal bed on both sides of the ramp is
provided by (43) and (44) in Kim & Bai (2004) as

ψ0(x) ≡ ψ−
0 (x) = ωA

km
(exp(ikmx)− R exp(−ikmx)), x < 0,

ψ0(x) ≡ ψ+
0 (x) = ωA

kp
T exp(ikpx), x > L,

⎫⎪⎪⎬
⎪⎪⎭ (3.7)

with T being the amplitude-transmission coefficient, km and kp are the wavenumbers of the
wave upstream and downstream of the ramp, respectively. At the points of discontinuity in
the bottom slope, namely, x = 0 and x = L, a continuity of both (a − 1/σ)ψ0x + bψ0 and
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Figure 8. Comparison of the reflection coefficient derived using the exact solution and computed using various
model equations for Booij’s ramp. Blue (smaller dashed) curve – PCMSE; orange (larger dashed) curve –
PCSSE; red (dot dashed) curve – CMSE; green (dotted) curve – MMSE; black (solid) curve – exact solution.

ψ0 is required

ψ0 = ψ−
0 ,

(
a(h−, h′+)− 1

σ

)
ψ0x + b(h−, h′+, h′′+)ψ0

=
(

a(h−, 0)− 1
σ

)
ψ−

0x
at x = 0,

ψ0 = ψ+
0 ,

(
a(h+, h′−)− 1

σ

)
ψ0x + b(h+, h′−, h′′−)ψ0

=
(

a(h+, 0)− 1
σ

)
ψ+

0x
at x = L,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

equating the terms on both sides of the discontinuity points. The (+) and (−) signs
indicate taking a limit downstream and upstream of the discontinuity. Normalizing and
substituting the streamfunction solution in the flat region into the equations above yields

ψ0x +

⎛
⎜⎝ikm

a(h−, 0)− 1
σ

a(h−, h′+)− 1
σ

+ b(h−, h′+, h′′+)

a(h−, h′+)− 1
σ

⎞
⎟⎠ψ0 = 2iωA

a(h−, 0)− 1
σ

a(h−, h′+)− 1
σ

, x = 0,

(3.9)
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ψ0x −

⎛
⎜⎝ikp

a(h+, 0)− 1
σ

a(h+, h′−)− 1
σ

+ b(h+, h′−, h′′−)

a(h+, h′−)− 1
σ

⎞
⎟⎠ψ0 = 0, x = L. (3.10)

These are the jump conditions utilized in the numerical solution of the PCMSE.
Figure 8 demonstrates that the reflection coefficient obtained using the PCMSE shows

a better agreement with the exact solution than that obtained using the CMSE in the range
ω2L/g < 0.6. The MMSE provides the best results in this region. All models are almost
indistinguishable in the rest of the region. This result shows yet again the compatibility
of the PCMSE to the CMSE for milder slopes and a clearly improved solution for steeper
slopes. All in all, the PCMSE solution provides a relatively good agreement in the entire
region. It is noted that the left edge of the figure depicts very large bottom slopes which
are outside the scope of relevance of these models.

3.4. Bragg resonance – class II
Bragg resonance refers to the interaction of free-surface incident waves with periodic
bottom undulations satisfying resonant conditions. This phenomenon plays an important
role in the evolution of nearshore waves. The class I Bragg resonance involves interactions
of two surface waves and one bottom undulation satisfying the conditions

k1 − k2 − kb = 0,

ω1 − ω2 = 0.

}
(3.11)

The subscript indices refer to the number of the free-surface wave, whereas b refers to
the bed. This type of resonance has a significant effect on linear waves. The class II
Bragg resonance involves the interaction of two surface waves and two bottom undulations
satisfying the conditions

k1 − k2 − (kb1 ± kb2) = 0,

ω1 − ω2 = 0.

}
(3.12)

This type of resonance has a weaker effect on linear waves than the class I Bragg
resonance, but can still have significant effects due to undulating bottom components. The
classical MSE, which account for second-order terms, generally provide a good agreement
with the class I Bragg resonance. On the other hand, they fail to capture the results of the
higher-order conditions of the class II and higher.

The consideration of higher-order bed slopes in the PCMSE is expected to provide a
better match to the class II Bragg resonance as compared with the classical MSE. The
leading-order term for this class in the bottom slope is the (∇h)2 term. The comparison
is performed below for small values of the dispersion parameter, kh, which is where the
PCMSE equation is expected to provide the most accurate results.

Figures 9 and 10 depict the simulation results for the PCMSE, CMSE and MMSE in
modelling the class II Bragg resonance reflection coefficient R on a doubly sinusoidal
bottom as a function of σh0. The range of σh0 values is 0.02 to 0.58 in figure 10 which
is within the range where the PCMSE is expected to work well. The range in figure 9 is
0.35 to 2.15 which extends well beyond this range and is therefore expected to provide
more of a challenge to the models. The simulations of the MSE models are compared
with the ‘linear exact’ result, as displayed in figure 3 of Kim et al. (2010) in figure 9. The
first peak located at 2k/kb1 ≈ 0.3 in the figure is a result of the class II Bragg resonance.
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Figure 9. Comparison of the values of the reflection coefficient R obtained from simulations of the analytical
PCMSE (blue – smaller dashed curve), PCSSE (orange – larger dashed curve), CMSE (red – dot dashed curve)
and MMSE (green – dotted curve) along with the result arising from the ‘linear exact’ solution presented
by Kim, Ertekin & Bai (2010) (black – solid curve) taken from figure 3 there. The bed wavenumbers are
kb1 = 2π cm−1 and kb2 = 4π/3 cm−1. The patch length is L = 12 cm, the amplitude ratio is ΔH/H0 = 0.25
and H0 = 2.5 cm.

The result of the PCMSE is significantly closer to the linear exact result than the CMSE.
The MMSE provides the closest value for this peak. It is noted that Kim et al. (2010)
obtained slightly different results for the CMSE which are closer to the PCMSE results
presented here.

Figure 10 presents a comparison between the numerical results obtained by Guazzelli
et al. (1992) accounting for three evanescent modes on one hand and the results obtained
from the MSE on the other hand. The black curve is a reconstruction of the results
presented in figure 2 in Guazzelli et al. (1992). The first major peak at f ≈ 1.7 Hz is a
result of the class II Bragg resonance. Figure 10(b) displaying a blowup of this peak shows
that the PCMSE-based result is significantly closer to the ‘linear exact’ result than those
of the other models.

3.5. Obliquely incident waves
Ehrenmark (1998) presented an exact solution to obliquely incident waves over a plane
beach. The solution is limited, as is the solution of Stoker (1957), to bottom slopes
of π/2n, where n is an integer. Simulations were performed for a 45 degree bottom
slope along with a deep water, 45 degree, oblique incidence angle. Equation (2.41) is
utilized for this simulation. The exact solution is compared with the results of numerical
simulations for the PCSSE, PCMSE and CMSE in figure 11. A blowup of the wave
peak is presented in the bottom part of the figure. Both PC models provide a closer
approximation to the peak value than the CMSE when comparing with the exact solution.
Closer to the shore, the CMSE provides a slightly better result than the PCSSE with
the PCMSE farther off. This difference is diminished among approaching the shore. As
an overall observation it seems that the PCSSE provides the most accurate description
out of all the simulated MSE models. This simulation provides an initial insight as to
the performance of the PC equations for the 3-D case. A more thorough examination is
required.

970 A4-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.576


The polar-Cartesian mild-slope equation

1.0

0.8

0.6

0.4

R

0.2

0

1.0

0.9

0.8

0.7R

0.6

0.5

0.4

1.0 1.5 2.0 2.5

f (Hz)

3.0 3.5

1.4 1.6 1.8 2.0

(b)

(a)

Figure 10. Comparison of the values of the reflection coefficient R obtained from simulations of the analytical
PCMSE (blue – smaller dashed curve), PCSSE (orange – larger dashed curve), CMSE (red – dot dashed curve)
and MMSE (green – dotted curve) along with the numerical results of Guazzelli, Rey & Belzons (1992) (black –
solid curve) taken from figure 2 there. The bed wavenumbers are kb1 = π/6 cm−1 and kb2 = π/3 cm−1.
The patch length is L = 48 cm, the amplitude ratio ΔH/H0 = 0.25 and H0 = 2.5 cm. (a) An entire domain.
(b) Blowup of class II resonance peak.

4. Conclusions

The formulation of a 3-D cylindrical-Cartesian equation on a planar beach bathymetry is
outlined. In addition, a quasi-3-D equation for obliquely incident waves is derived. A full
3-D formulation will be presented in a future publication. A 2-D MSE is derived here using
the variational principle and based on a manipulation of polar and Cartesian coordinates.
The vertical profile of the streamfunction is derived from the Polar coordinate formulation
accommodating the bottom boundary condition along a constant-slope line. This is in
contrast to the Cartesian coordinate formulation which is defined along a horizontal line.
This profile in then transformed to the equivalent Cartesian profile and substituted into
the time-averaged Lagrangian to which the variational principle is applied. This operation
incorporates coefficients of the derivatives of the bottom profile up to third order while
maintaining the same basic structure as other MSE models. Two forms of the equation,
which differ by the calculation of the coefficients, are provided. In the first, referred to as
the PCMSE, the coefficients are expanded to first order in a parameter which represents
the bottom slope and integrated analytically. In the second, referred to as the PCSSE, the
integration of the full coefficients is performed numerically.
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Figure 11. Normalized free-surface values for an oblique incidence simulation for a 45◦ bottom plane and a
45◦, deep water, incidence angle. (a) The full domain. (b) Blowup of the wave peak. Blue (smaller dashed)
curve – PCMSE; orange (larger dashed) curve – PCSSE; red (dot dashed) curve – CMSE; black (solid) curve –
exact solution.

The PC models are compared with the benchmark MSE models as well as to the known
analytical and numerical results for four 2-D test cases and a quasi-3-D case. They provide
more accurate results for a majority of the presented test cases, with the differences more
pronounced for steeper bottom slopes. This is due to the normalization of the coefficients
which reduces the PC equations to the CMSE for a horizontal bottom. The results are
similar to those of the CMSE for mild bottom slopes and the distinction is for the steep
bathymetries.

The improved results show the strength of the proposed models in the prediction of
wave diffraction over steep bathymetries. The class II Bragg resonance presents distinct
results which in one case are better than those of the CMSE, but not as good as those of
the MMSE; whereas in the other case the performance of the PCMSE was slightly better
than those of the CMSE and the MMSE, being far from accurate.
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Appendix A

The PCMSE coefficients from (2.26a–d) to first order in the expansion parameter p used
in the simulations presented here are

a = coth(γ0h)− γ0h cosech2(γ0h)
2γ0

+ p
γ0h(−3 + 2h2γ 2

0 )cosech2(γ0h)+ coth(γ0h)
(
3 − 4h4γ 4

0 cosech2(γ0h)
)

4h2γ 3
0

+ O( p2)

(A1)

b = √
p

√
3
(
γ0h − coth(γ0h)+ γ0h coth2(γ0h)

)
2 (2γ0h + sinh(2γ0h))

− px
cosech2(γ0h)

(
3 + 24γ 2

0 h2 + 16γ 4
0 h4(1 + cosh(2γ0h))− 3 cosh(4γ0h)

)
32h2γ 3

0 (2γ0h + sinh(2γ0h))

+ O( p3/2, p2
x) (A2)

c = p
γ0cosech2(γ0h)

(−12γ0h + 8γ 3
0 h3 + 12γ 2

0 h2 sinh(2γ0h)+ 3 sinh(4γ0h)
)

4 (2γ0h + sinh(2γ0h))2
+ O( p2)

(A3)

d = γ0

4
cosech2(γ0h) (2γ0h + sinh(2γ0h))+ p

cosech2(γ0h)
16γ0h2

×
(

12γ0h − 8γ 3
0 h3 + (3 + 16γ 4

0 h4) coth(γ0h)− 3 cosh(3γ0h)cosech(γ0h)
)

+ O( p2)

(A4)
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