A PRESENTATION OF PGL($2, p$) WITH THREE DEFINING RELATIONS

by E. F. ROBERTSON and P. D. WILLIAMS

(Received 13th June 1983)

Let p be an iJdd prime and let $G L(2, p)$ denote the general linear group of invertible 2×2 matrices with entries in the field of p elements. The group $P G L(2, p)$ is the factor of $G L(2, p)$ by its centre and has derived group $P S L(2, p)$ with derived factor C_{2}, the cyclic group of order 2 .

For any group G let G^{\prime} and $Z(G)$ denote the derived group and the centre of G respectively. We shall let $G^{\text {ab }}$ denote G / G^{\prime} and $M(G)$ denote the Schur multiplier of G. It is well known that $M(P G L(2, p))=C_{2}$ and this imposes a bound on the minimum number of relations required to define $P G L(2, p)$. We show that this bound is attained and so $P G L(2, p)$ is efficient in the following sense. A finite group G is called efficient, see [2] or [6], if it has a presentation with d generators and r relations while $M(G)$ requires $r-d$ generators.

A group C is called a covering group of the finite group G if $M(G) \cong A \leqq Z(C) \cap C^{\prime}$ with $C / A \cong G$. We find the minimum number of relations required for a covering group of $P G L(2, p)$ and show that this covering group has a deficiency zero presentation, that is a presentation with an equal number of generators and relations. See [4] for a survey of finite groups of deficiency zero.

We shall prove the following results:
Theorem A. If p is an odd prime

$$
P G L(2, p)=\left\langle a, b \mid a^{2} b^{p}=\left(a b^{2}\right)^{4}=\left(a b a b^{2}\right)^{3} b^{p}=1\right\rangle .
$$

Theorem B. If p is an odd prime

$$
\left\langle a, b \mid a^{2} b^{p}=1,\left(a b^{2}\right)^{2}=b^{p-1}\left(a b^{2} a b\right)^{2}\right\rangle
$$

is a covering group of $\operatorname{PGL}(2, p)$.
We introduce the class of groups

$$
G(p, q)=\left\langle a, b, c \mid a^{2}=b^{p}=(a c)^{2}=(a b c)^{3}=1, c b c^{-1}=b^{q}\right\rangle
$$

where p is an odd prime and $1<q<p$. Now $q-1$ must be coprime to p so, abelianising the relations of $G(p, q)$, we have $G(p, q)^{\mathrm{ab}} \cong C_{2}$.

Lemma 1. Suppose p is an odd prime and $1<q<p$. Then

$$
G^{\prime}(p, q)=\left\langle w, y, z \mid y^{2}=(y z)^{2}=w^{p}=(w y)^{3}=\left(w^{q} z y\right)^{3}=1, z w z^{-1}=w^{q^{2}}\right\rangle .
$$

Proof. We show that $K=\left\langle b, a c, c^{2}\right\rangle=G^{\prime}(p, q)$ and find a presentation for K. It is clear that $K \leqq G^{\prime}(p, q)$. Defining cosets 1 and 2 of K in $G(p, q)$ by $1=K, 2=K c$ we see, using the Todd Coxeter coset enumeration algorithm, that the generators a, b, c of $G(p, q)$ act as the permutations (12), (1), (12), respectively, on the cosets so K has index 2 in $G(p, q)$. Let $x=b, y=a c, z=c^{2}$ and choose the transversal $T=\{1, c\}$ of K in $G(p, q)$. Then rewriting the Schreier generators $s_{t, g}, t \in T, g \in\{a, b, c\}$ in terms of x, y, z gives:

$$
s_{1, a}=y z^{-1}, s_{1, b}=x, s_{1, c}=1, s_{c, a}=z y^{-1}, s_{c, b}=x^{q}, s_{c, c}=z
$$

and the following presentation for K on the generators x, y, z is obtained by the method described in [5]

$$
\begin{equation*}
\left\langle x, y, z \mid y^{2}=(y z)^{2}=x^{p}=(x z y)^{3}=\left(x^{q} z y z^{-1}\right)^{3}=1, z x z^{-1}=x^{q^{2}}\right\rangle . \tag{1}
\end{equation*}
$$

Now letting $w=x^{r}$, where $r q \equiv 1(\bmod p)$, (1) may be transformed to

$$
\left\langle w, y, z \mid y^{2}=(y z)^{2}=w^{p}=\left(w^{q} z y\right)^{3}=\left(w^{q^{2}} z y z^{-1}\right)^{3}=1, z w^{q} z^{-1}=w^{q^{3}}\right\rangle .
$$

Clearly we may replace the relation $z w^{q} z^{-1}=w^{q^{3}}$ by $z w z^{-1}=w^{q^{2}}$ and, substituting for $w^{q^{2}}$, the relation $\left(w^{q^{2}} z y z^{-1}\right)^{3}=1$ simplifies to $(w y)^{3}=1$. This completes the proof.

Lemma 2. When $q=2$, or $q=(p+1) / 2$, or q is a primitive element of $G F(p)$, then $G^{\prime}(p, q) \cong P S L(2, p)$.

Proof. Let $r q \equiv 1(\bmod p)$ and consider the presentation for $G^{\prime}(p, q)$ given in Lemma 1. Now if s is a non-negative integer $z^{s} w=w^{q^{s}} z^{s}$ while $z^{-s} w=w^{r^{s}} z^{-s}$. Using these results together with $z^{n} y=y z^{-n}$ for any integer n we obtain from the relation $z^{s}(w y)^{3}=z^{s}$

$$
\begin{equation*}
z^{2 s}=w^{q^{2 s}} y w^{r^{2 s}} y w^{q^{2 s}} y \tag{2}
\end{equation*}
$$

Similarly from $z^{s}\left(w^{q} z y\right)^{3}=z^{s}$ we obtain

$$
\begin{equation*}
z^{2 s+1}=w^{q^{2 s+1}} y w^{r^{2 s+1}} y w^{q^{2 s+1}} y \tag{3}
\end{equation*}
$$

From (2) and (3) we deduce

$$
\begin{equation*}
z^{s}=w^{q^{s}} y w^{r^{s}} y w^{q^{s}} y \tag{4}
\end{equation*}
$$

Suppose t is such that $q^{t} \equiv \pm 1(\bmod p)$. Then from (4) we obtain $z^{t}=1$. Putting $S=w$, $T=y, V=z^{-1}$ we now have

$$
G^{\prime}(p, q)=\left\langle S, T, V \mid S^{p}=V^{t}=T^{2}=(S T)^{3}=(T V)^{2}=\left(S^{q} T V\right)^{3}=1, V^{-1} S V=S^{q^{2}}\right\rangle .
$$

If q is primitive and $t=(p-1) / 2$ this is Frasch's presentation for $\operatorname{PSL}(2, p)$, see [3].
The cases $q=(p+1) / 2$ and $q=2$ proceed by eliminating z from the presentation of Lemma 1 using (4) with $s=1$. Further Tietze transformations then reduce the presentation to the Behr-Mennicke presentation for $\operatorname{PSL}(2, p)$, see [1]. Details may be found in [7].

The results of Lemma 2 may fail for other values of q. For example in [7] it is shown that $G^{\prime}(29,12) \nsubseteq P S L(2,29)$ and $G^{\prime}(89,34) \nsubseteq P S L(2,89)$.

Lemma 3. When $q=2$, or $q=(p+1) / 2$, or q is a primitive element of $G F(p)$, then $G(p, q) \cong P G L(2, p)$.

Proof. Using Lemma 2 together with $G(p, q)^{\mathrm{ab}}=C_{2}$ we see that

$$
|G(p, q)|=|P G L(2, p)| .
$$

However $P G L(2, p)$ is easily seen to be a homomorphic image of $G(p, q)$ using the map induced by

$$
a \mapsto\left(\begin{array}{rr}
0 & -r \\
1 & 0
\end{array}\right), \quad b \mapsto\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad c \mapsto\left(\begin{array}{ll}
q & 0 \\
0 & 1
\end{array}\right)
$$

where $r q \equiv 1(\bmod p)$.
Theorem 4. $\quad P G L(2, p)$ may be presented by

$$
\left\langle a, b \mid a^{2}=b^{p}=\left(a b^{2} a b^{r}\right)^{2}=\left(a b a b^{r}\right)^{3}=1\right\rangle
$$

where $r=2$, or $r=(p+1) / 2$, or r is a primitive element of $G F(p)$.
Proof. Let $r q \equiv 1(\bmod p)$. Then notice that the conditions given on r imply that q satisfies the conditions in Lemma 3 so $G(p, q) \cong P G L(2, p)$. We show that c is a redundant generator of $G(p, q)$ as follows. The relation $(a b c)^{3}=1$ becomes, on putting $c a$ $=a c^{-1}$

$$
b a c^{-1} b c a b a=c
$$

that is

$$
\begin{equation*}
c=b a b^{r} a b a \tag{5}
\end{equation*}
$$

Using (5) to eliminate c the presentation for $G(p, q)$ becomes

$$
\begin{equation*}
\left\langle a, b \mid a^{2}=b^{p}=\left(a b^{2} a b^{r}\right)^{2}=\left(b^{2} a b^{r} a b\right)^{3}=1, a b^{r} a b a b a b^{-1} a b^{-r} a=b^{q}\right\rangle \tag{6}
\end{equation*}
$$

Now it is easy to see that the relation $\left(b^{2} a b^{r} a b\right)^{3}=1$ simplifies to $\left(a b a b^{r}\right)^{3}=1$ on substituting $b^{2} a b^{r} a=a b^{-r} a b^{-2}$. Further the final relation in the presentation (6) is
redundant since it may be deduced from the first four relations as follows:

$$
\begin{aligned}
a b^{r} a b a b a b^{-1} a b^{-r} a & =\left(a b^{r} a b a b^{r} a b^{-1} a b^{-r} a\right)^{q} \\
& =\left(b^{-1} a b^{-r} a b^{-2} a b^{-r} a\right)^{q} \\
& =\left(b^{-1} a b^{-r} a \cdot a b^{r} a b^{2}\right)^{q} \\
& =b^{q} .
\end{aligned}
$$

We restate Theorem 4 in the case $r=2$.

Corollary 5. $\quad P G L(2, p)=\left\langle a, b \mid a^{2}=b^{p}=\left(a b^{2}\right)^{4}=\left(a b a b^{2}\right)^{3}=1\right\rangle$.
It may be of interest to note that this presentation may be rewritten, on the same generators a and b, as

$$
P G L(2, p)=\left\langle a, b \mid a^{2}=b^{p}=\left(a b^{2}\right)^{4}=\left(a b a b^{4}\right)^{2}=1\right\rangle .
$$

We now prove Theorem A. Let G be the group with presentation

$$
\left\langle a, b \mid a^{2} b^{p}=\left(a b^{2}\right)^{4}=\left(a b a b^{2}\right)^{3} b^{p}=1\right\rangle .
$$

Clearly, in view of Corollary 5, it suffices to prove that $b^{p}=1$ in G. Certainly $b^{p} \in Z(G)$ since $b^{p}=a^{-2}$. $\operatorname{Now}\left(\mathrm{ab}^{2}\right)^{4}=1$ gives

$$
b a b^{2} a b=b^{-1} a^{-1} b^{-2} a^{-1} b^{-1}
$$

and substituting this into $\left(a b a b^{2}\right)^{3} b^{p}=1$, using the fact that $a^{2} \in Z(G)$, gives

$$
\begin{equation*}
\left(a b a b^{2} a\right)^{-1} b^{2}\left(a b a b^{2} a\right)=b^{1-p} a^{-2}=b . \tag{7}
\end{equation*}
$$

Raising (7) to the power p and using the fact that $b^{p} \in Z(G)$ gives $b^{2 p}=b^{p}$ so $b^{p}=1$ as required.

Finally we give a proof of Theorem B. Let \tilde{G} denote the group with presentation given in the theorem. Notice that the relations of \tilde{G} can be written as

$$
a^{2} b^{p}=1,\left(a b^{2}\right)^{4}=b^{p}\left(a b a b^{2}\right)^{3}
$$

Now $\left\langle a b, a b^{2}\right\rangle=\bar{G}$ since $b=(a b)^{-1} a b^{2}, a=a b\left(a b^{2}\right)^{-1} a b$. Let $H=\left\langle\left(a b^{2}\right)^{4}\right\rangle$. Now $b^{p} \in Z(\tilde{G})$, since $b^{p}=a^{-2}$, so $a b a b^{2}$ commutes with $b^{p}\left(a b a b^{2}\right)^{3}$ and so commutes with $\left(a b^{2}\right)^{4}$. Therefore $\left(a b^{2}\right)^{4} \in Z(\tilde{G})$. Now in $\tilde{G}^{\text {ab }}$ we have $a^{2}=b=1$ so $\left(a b^{2}\right)^{4} \in \widetilde{G}^{\prime}$. Hence $H \leqq Z(\widetilde{G}) \cap \widetilde{G}^{\prime}$ and $\widetilde{G} / H \cong P G L(2, p)$ by Theorem A.

Now \widetilde{G} cannot be $P G L(2, p)$ since \widetilde{G}, having deficiency zero, must have trivial Schur multiplier. Therefore \tilde{G} is a covering group of $\operatorname{PGL}(2, p)$ and the proof is complete.

REFERENCES

1. H. Behr and J. Mennicke, A presentation of the groups PSL(2,q), Canad. J. Math. 20 (1968), 1432-1438.
2. C. M. Campbell and E. F. Robertson, Two generator two relation presentations for special linear groups, The Geometric Vein (Springer-Verlag, New York, 1982), 561-568.
3. H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed. (Springer-Verlag, New York, 1980).
4. D. L. Johnson and E. F. Robertson, Finite groups of deficiency zero, Homological Group Theory (L.M.S. Lecture Notes, Vol. 36, Cambridge University Press, 1979), 275-289.
5. J. NeubUser, An elementary introduction to coset table methods in computational group theory, Groups-St Andrews 1981 (L.M.S. Lecture Notes, Vol. 71, Cambridge University Press, 1982), 1-45.
6. E. F. Robertson, Efficiency of finite simple groups and their covering groups, Proceedings of Finite Groups-Coming of Age (to appear).
7. P. D. Williams, Presentations of Linear Groups (Ph.D. thesis, University of St Andrews, 1982).

Mathematical Institute
California State College
University of St. Andrews
St. Andrews KY16 9SS
San Bernardino
Scotland
California
U.S.A.

