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On some integrodifferential equations

in Banach spaces

B.G. Pachpatte

This paper is concerned with the stability, boundedness, and

asymptotic behavior of solutions of integrodifferential systems

of the form

:'(*) = A{t)x(t) + At, x(t), \ k{t, 8,

We shall also investigate the behavioral relationships between

the solutions of two integrodifferential systems related to this

system.

1 . Introduction

Let B be a real Banach space. We are interested in the operators

which are defined on subsets of B and take values belonging to B .

The operator A is linear if i t is additive and homogeneous. Denote i ts

domain of definition by D[A] . The operator A is said to be closed if

the set of couples (x, Ax) , x £ D[A] , is closed in the topological

product B x B . For a real a , suppose that [I-aA] exists, where I

is the identity operator and £>[[J-a4]~ ] is dense in B . Let

i?(a, A) = [I-aA]~ and since A is closed we have

D[B(a, A)] = B ,

[I-aA]E(a, A)x = x , (x € B) ,

R(a, A)[I-aA]x = x , x ( D[A] ,
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where i?(a, A) is called the resolvent of A . Let J denote the

interval t £ t < °° , t. 2 0 , and | • | denote any suitable norm in B

We denote by C[X, Y] , the class of functions defined and continuous on

X taking values in 'Y , where X and Y are any convenient spaces. In

this paper we wish to study the behavior of solutions of integro-

differential systems of the form

(1) *'(*) = A{t)x{t) + / [* , x(t), J k{t, 8, x(s))ds} , x[tQ) = xQ ,

where x t B , f € C[J*B*B, B] and k € C[J*J*B, S] , f ( t , 0, 0) = 0 ,

fe(t, s , 0) = 0 , and the operator A(t) s a t i s f i e s the assumption (*) given

fcelow.

(*) Suppose that for t € J , {A{t)} i s a one parameter family

of closed l inear operators. Assume that for each t € J , the resolvent

set of A{t) includes a l l posit ive real numbers, that the domain of

i?(a, A{t)) i s dense in B , and that the domain D[A(t)] of A(t) i s

independent of t .

Let x(t) € D[A(t)] be a strongly continuous function defined for

t £ J and having a strong derivative x ' ( t ) in S . We shall ca l l x( t )

a solution of the integrodifferent ial system ( l ) i f i t sa t i s f ies equation

(1) , with the i n i t i a l value x[t ) = x , x € Z?[d(t )] , t >-o for

In recent years differential equations in abstract spaces with

operator coefficients have been studied by a number of authors. Since

several problems for partial differential equations and integrodifferential

equations can be reduced to problems for equations with unbounded operator

coefficients in a suitable abstract space, the study of abstract

differential equations is becoming increasingly important. Many recent

papers have dealt with the existence and uniqueness of solutions of some

integral and integrodifferential equations in Banach spaces; see, for

example, Friedman and Shinbrot [J], Lovelady [5], [6], Mar+i [7], to

mention a few. However, it often happens that once existence and

uniqueness have been established a quite different analysis is required for

finding more detailed boundedness and asymptotic properties of the
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solution. In this paper, we shall assume, without further mention, that

(l) has a solution with the initial value x(*n)
 = x

r) >
 xn ^ ̂ D H ^ O J ] »

i > 0 , and limit our discussion to some problems in stability,

boundedness and asymptotic behavior if solutions of (l) and the integro-

differential systems related to this system. The integrodifferential

systems considered in this paper contain, in particular, the abstract

differential systems studied by Lakshmikantham [2], Lakshmikantham and

Leela [4, Chapter 12], and the abstract integrodifferential systems

recently studied by this author in [9], [//], by using different

techniques.

2. Main results

In this section, theorems are stated and proved which yield conditions
for stability, boundedness, and asymptotic behavior of the solutions of
( l ) . We require the following integral inequality recently established by
this author in [JO].

LEMMA 1. Let u{t), p(t) , and q{t) be real-valued nonnegative
continuous functions defined on J , for which the inequality

rt rt its \

u(t) S u + p(s)u(s)ds + p(s)\\ q(T)u{x)di\ds , t € J ,

holds, where u is a nonnegative constant. Then

u(t) £ wJl + J p(s)exp(j (p(T)+^(T))dTjds| , t I J .

In this section our interest l ies in the following definitions.

DEFINITION 1. The solution x = 0 of (l) is said to be
exponentially asymptotically stable, if there exist positive constants M

and a, such t h a t for any s o l u t i o n x ( t ) of ( l ) , x ( * n ) = 2>n > 'the
inequality

|x(t)| 5 M\xQ\e^ *"*° , * > tQ ,

holds for |x | sufficiently small.
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DEFINITION 2. The solution x = 0 of ( l ) i s said to be uniformly

slowly growing i f , and only if, for every a > 0 there exis ts a constant

M , possibly depending on a , such that for any solution x(t) of ( l ) ,

x[t ) = x , the inequality

a[t-t )
\x(t)\ £ M\xQ\e ° , t > t0 ,

holds for |xQ| < °° .

Our f i r s t theorem deals with the boundedness of the solutions of ( l )

under some suitable conditions on the functions involved in ( l ) .

THEOREM 1 . Asewne that for each t € J , x € B ,

(2) l l m R[h, A(t))x = x ;

h+0

and

(3) \ R [ h , A ( t ) ) x + h f { t , x , z ) \ < | x | + h p ( t ) [ \ x \ + \ z \ ] ,

( U ) \ k { t , s , x ) \ < q ( s ) \ x \ , 0 < s < t < « > J

for every x, z € B and for all sufficiently small h > 0 , where

ip, q € C[J, R ] and

(5) p{s)ds < °° , q(s)ds

any solution x(t) of (l) with x{t.) = xQ is bounded on J .

Proof. Let x(t) be any so lu t ion of ( l ) wi th x[^r^ ~ x
0 > a n d

define m(t) = | x ( t ) | . For small h > 0 , we have

(6) m(t+7z) £
r f f*

(h, 4(t))a;(t)-^ /\t, x(t), k[t, s, x(s))ds
L I J , Q

S[h, A(t))x(t)+h\f\t, x{t), f
U J*o

, s,

Since for every x f Z?[A(t)] , J?(fc, A{t)) [l-hA(t))x = x , it follows that

(7)
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From ( 6 ) , ( 7 ) , t o g e t h e r w i t h ( l ) , ( 2 ) , ( 3 ) , C O , WJ o b t a i n t h e i n e q u a l i t y

i:(8) m'(t) Sp(fc)U(t) + j q(s)m(e)ds\ .

Integrating both sides of (8) from t to t , we get

rt rt rrS \
m(t) £ m[t ) + p(s)m{s)ds + p(s) q(T)m(x)dx\ds .

tn ' t . * t '

0 0 0

Now an application of Lemma 1 yields

rt (rS5 \xj\l + f p(s)expff
L J,Q U ,

The above estimation in view of the assumptions on p and q implies the

boundedness of the solution x(t) of (l) on J . This proves the theorem.

REMARK I. It is important to note that Theorem 1 implies not only

the boundedness, but the stability of x{t) , if |x | is small enough.

However, the above estimation does not prove the asymptotic stability.

Our next theorem shows that under some suitable conditions on the

functions involved in (1), any solution of (l) is exponentially

asymptotically stable.

THEOREM 2. Assume that for each t Z J , x € 5 ,

(9) llrn̂  B[h, A(t))x = x ,
ft-K)

and

(10) \R{h, A(t))x+hf(t, x, z) | £ \x\ + fce"<Jt*p(*)[|x| + |a|] ,

(11) \k(t, e, x)| 5 e~atq{s)\x\ , 0 £ e £ t < « ,

for every x, z € B , for a constant a 2 1, and for all sufficiently

small h > 0 , where p, q € C[J, R+] , p(t) 2; 1 , and

(12)

"0

,00 .00

p(s)(2s < °° , e~aSq{s)ds < °° .
]tn >tn
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Then any solution x{t) of (l) with #(*_) = x is exponentially

asymptotically stable.

Proof. Let x(t) be any solution of (l) with x[t
Q) = ̂ n > and

define m{t) = |a:(t)| . How following a similar argument as in the proof
of Theorem 1 we obtain the inequality

(13)

Multiplying both sides of (13) by e and then adding ae m(t) , we have

m'(t) S e~a*p(t)Lt) + e"a* f q(s)m(s)ds] .
L }t J

[eatm(t)] ' S aeatm(t) + p{t)\m{t) + e"01* [ q(s)m(s)ds]
1 ho J

£ ap(tMt)eat + ap(t)eat\m(t) + ee~at |

*0

since p ( t ) — 1 , a — 1 , e - 1 . Integrating both sides of the above

inequality from t to t , we get

. at . rt
m{t)e <m[t)e u + 2ap(s)

f 2op(«)ff
o

Now, applying Lemma 1- with u(t) = m{t)e , and then multiplying by

-at ^ .
e , we obtain

(2ap(x)-
"0 "0

The above estimation in view of the assumptions on p and q implies

where M > 0 is a constant. This proves the exponential asymptotic
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s t ab i l i t y of the solution x ( t ) of ( l ) .

Our Theorem 3 below demonstrates that the solution of ( l ) grows more

slowly than any posi t ive exponential.

THEOREM 3 . Assume that for each t € J , x € B ,

(lU) lin,. R[h, A[t))x = x ,
h+0

and

(15) \ R [ h , A(t))x+hf(t, x , z ) \ £ | x | + heatp(t)[\x\+\s\] ,

(16) \Ut, s, x)\ £ eatq(s)\x\ , 0 5 s 5 t < «> ,

for every x, z € B , for a constant a > 0 , and for all sufficiently small

h > 0 , where p, q € C[J, R ] and

(17) f easp(s)exPff
*0 *0

w/iere V̂ > 0 is a constant. Then an!/ solution x{t) of (1) uit/i

x(t ) = x- is uniformly slowly growing.

Proof. Let x ( t ) be any solution of ( l ) with x ( t - ) = x , and

define m(t) = \x(t)\ . Now following a similar argument as in the proof

of Theorem 1 we obtain the inequali ty

t
m>(t) 5 ea*p(*)t(*) + eat \ q(s)m(s)ds~\ .

Multiplying both sides of the above inequality by e , and then

subtracting e m(t) , we have

i P ft
\m{t)e ] 5 -ae m(t) + p(t) \m(t) + e

L J +

|*

since e i 1 . Integrating both sides of the above inequality from t

https://doi.org/10.1017/S0004972700023984 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023984


344 B.G. Pachpatte

t o

m(t

t , we get

- a t ft
1 as

• j t o . „

+ j . P *0

)ds .emq(x)m(T)e~aTdT:

Now, applying Lemma, 1 with u{t) = m{t)e and then mtatiplying by e ,
we obtain

|x(t)| < | z j / ° fl + [ e^p

The above estimation in view of the assumption (17) implies

where M = 1 + N . This proves that the solution of (l) is uniformly

slowly growing.

REMARK 2. We note that the important special case which is covered

by the integrodifferential system (l) (when the integral term in (l) is

absent) is the abstract differential system studied by Lakshmikantham [Z],

and Lakshmikantham and Leela [4, Chapter 12].

3. B e h a v i o r a l r e l a t i o n s h i p s

In this section we shall investigate the behavioral relationships
between the solutions of integrodifferential systems

(18)
ft

x ' ( t ) = A(t)x'.t) + f[t, x(t)) + I k[t, s, x(s))ds

rt
+ I C(t, s, x(s))ds , x[tQ) = xQ

and

rt
(19) y'(t) = A(t)yU) + f[t, y(t)) + J k[t, s, y{s))ds , y[tQ) = yQ ,

*0
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where x, y € B , f 6 C[J*B, B] , k, G (. C[Jxjx-B, B] , and the operator

A(t) is as defined above.

To obtain our results in this section, we make use of the following

lemma which can be found in [HJ. We shall state it in a suitable form

whose proof needs very little modification of the proof of the basic

comparison theorem given in [3, Theorem l.l+.l]. For a similar lemma we

refer the reader to Nohel [g].

LEMMA 2. Let the scalar functions W± € c[J*B, B] ,

d^ € ClJxJxB, B] and assume W (t, s, r) is nondecreasing in r for each

ti s 6 J . Suppose that At) is the solution of the scalar integro-

differential equation

rt
(20) r'(t) = Wx[t, At)) + I W2[t, s, r(.s)+il>(s)e

a8)ds ,

a > 0 , r[tQ) = rQ ,

existing to the right of tQ , where 4>(t) 5: 0 is a continuous function

defined on J . Let m{t) > 0 be continuous on J such that "!(*0) -
 r

and' let it satisfy

Irti'(t) 5 Wx{t, m(t)) + I W2(t, s, m(s)+4>(s)e
as)ds ,

where m'{t) = lim sup rr [m(t+h)-m(t)] . Then
h+Q H

m{t) S r(t) , t € J .

We shall now give definitions of various types of stability which will

be discussed in this section.

Let x(t) and y(t) be any two solutions of the integrodifferential

systems (18) and (19) respectively.

DEFINITION 3. The system (18) or (19) is said to be equi-stable with

respect to the system (19) or (18), if for each e > 0 and t > 0 , there

exists a positive function i(*0> e) continuous in tQ for each e , such

that
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\x(t)-y(t)\ < e

whenever |«O-J/OI S n(*0, e) for t > tQ .

DEFINITION 4. . The system (18) or (19) is said to be quasi-equi-

a8ymptotieally stable with respect to (19) or (18) if for each e > 0 ,

a > 0 and t > 0 , there exists a positive number T[t., e, a) , such

that

\x{t)-y(t)\ < e

whenever \xQ-yQ\ S a1 for t > tQ + T[tQ, e, a) .

DEFINITION 5. If Definitions 3 and h hold simultaneously, then the

system (18) or (19) is said to be equi-asyrnptotically stable with respect

to the system (19) or (18).

REMARK 3. We note that if n(*Q, e) = ri(e) and

T(tQ, e, a) = T(e, a) , that i s , if they are independent of t , equi in the

above definitions will be replaced by uniform.

Theorem k below establishes the asymptotic relationship between the

solutions of (18) and (19).

THEOREM 4 . Let the scalar functions W , W be ae defined in Lemma

2. Let r(t) be any bounded solution of (20) existing to the right of

tQ . Assume that for each t € J , x, y € B , and

(21) lim R{h, A(t)){x-y) = x - y ,
h*0

and

(22) R(h, A(.t))(x-y)+hi^ [k(t, s, x)-k(t, s, y) ]dsj| < \x-y\

(23) \f{t, x)-f(t, y)\ < W±{t, Ix-yle^e^ ,

(21*) \G{t, s, x)\ < W2[t, s, Ix lOe" 0 1 * ,

for every x, y € B } and for all sufficiently small h > 0 . Then

lim \x(t)-y(t)\ = 0 ,
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where x(t) and y{t) are the solutions of (18) and (19) respectively for

all t > tQ such that \xQ-yQ\ s rQ .

Proof. Define m(t) = eat\x(t)-y(t)| . For small h > 0 we have

(25) mlt+h) £ ea(*+?l)[]xU+ft)-i?(ft, A{t))x{t)-h\f{t, x(t))

+ j k[t, s, x(8))ds + J G[t, s, x{s))ds\-{y{t+h)

*0 *0

-*[h, A{t))yU))-h\f{t, y{t)) + | k[t, 8, 2/(
t

*0
if (ft, A(.t))x(t)-R[h, A(t))y(t)+h{f{t, x(t))-f[t,

t Jt[fc(*. e, »(e))-k(t, 8, y(8))]dB + J C(t, 8,

Since x € D[A(t)] , R[h, A(t))[l-hA(t))x = x , i t follows that

(26) R[h, A(t))x = x + hA(t)x + h[R[h, A(t))A(t)x-A{t)x~\ .

Similarly for every y (. D[A(t)] , R[h, A(t)) [l-hA(t))y = y , i t follows

that

(27) R{h, A(t))y = y + fcA(*)i/ + ft [if (ft, 4(t))il(t)j/-^(t)j/] .

From (25), (26), (27) together with (18), (19), (21), (22), (23), (2U) we

obtain the inequality

t(28) m'(t) < WAt, m(t)) + W [t, 8,

where i|<(t) = |j/(t)| . Now applying Lemma 2 to (20) and (28) we have

(29) eat\x(t)-y(t)\ s r(t) , t € J .

Since the solution r(t) of (20) is bounded we can bring e , a > 0 ,

in (29) to the other side; then we obtain

lim \x{t)-y(t)\ = 0 .
*•*»

The proof of the theorem is complete.
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REMARK 4. The above theorem is an extension of a similar result due

to Lakshmikantham [2, pp. 27^-275] obtained for abstract differential

systems. Further, we note that the integrodifferential systems considered

in (1), (18), and (19) are of a more general type and contain, in

particular, the integrodifferential systems recently studied by this author

in [9], [ / / ] .

Finally we state and prove the following theorem which yields

sufficient conditions for various forms of stability in the sense of the

Definitions 3, h and 5-

THEOREM 5. Suppose that all assumptions of Theorem k hold, and that

the identically zero solution of (20) is equi-stable. Then, the

integrodifferential systems (18) and (19) are quasi-equi-asymptotically and

equi-asymgtoticaVly stable.

Proof. Suppose that the scalar integrodifferential equation (20) is

equi-stable and assume that x(t) and y(t) are any two solutions of (18)

and (19) such that !«„-£/,.| - r . Then, as in Theorem k, we have

(30) eat\x(t)-y(t) I < Ht) , t € J .

From (30) it is easy to see that the systems (18) and (19) satisfy

Definition 1.

Suppose {t } is a divergent sequence and assume that

where £.. is an arbitrary constant greater than zero. Then we obtain

at

As n •*• "> t this leads to a contradiction, because e, and e are

positive. Since e. is arbitrary this shows that the systems satisfy

Definition 2. This completes the proof of the theorem.

REMARK 5. If the functions involved in Theorem 5 are independent of

£ the equi will be replaced by uniform.
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