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ANALYTIC STRUCTURES FOR Hœ OF CERTAIN 
DOMAINS IN O 

ERIC P. KRONSTADT 

Let 12 C Cn be a bounded domain; let Hœ(12) be the uniform algebra of 
bounded analytic functions on 12; and let S (12) be the maximal ideal space of 
i7°°(12). In the weak-* topology of (Hœ(12))*, S (12) is a compact Hausdorf space 
in which 12 is embedded in a natural fashion, so tha t to every g £ Hœ(Çl) there 
corresponds the Gelfand transform g £ C(2(!2)) ; g|12 = g. Let ^ # =^#(12) 
be the weak-* closure of 12 in 2(12). We want to know w h e n ^ # \ l 2 contains 
analyt ic s t ructures of dimension n. More precisely, if ^ is a domain in Ck, 
an analytic map from °tt to S (12) is a function, / : °ti —» 2(12), with the 
proper ty t ha t for every g in if00(12), g of is holomorphic on ^ . An analytic 
structure of dimension k is the range of a one-to-one analytic map from a do­
main in Ck into 2(12). We shall prove the following theorem. (A sequence 
{z*}S=i C 12 is an interpolating sequence if the map T : i7°°(12) —> f° given by 
Tf = {/(**)}*U i s surjective.) 

T H E O R E M 1. //12 C Cn is a bounded homogeneous domain, {zk}T=i C 12 is an 
interpolating sequence, and m £ ~^\12 is in the weak-* closure of {zk}T=i, then m 
is contained in an analytic structure of dimension n. 

In the case n = 1 and 12 is the unit disk, D, K. Hoffman [7] showed tha t being 
in the closure of an interpolating sequence is necessary and sufficient for con­
ta inment in a one dimensional analytic s tructure. T h a t result is jus t pa r t of 
the material in [7], where Hoffman gives a rather complete description oî^(D). 
Although interpolating sequences play a central role in Hoffman's paper, the 
interpolation proper ty appears to be incidental. Rather , certain characteristics 
of Blaschke products which vanish a t the points of an interpolating sequence 
are crucial to the story. Similarly, in this paper, another property, t h a t of 
strong separation, which is possessed by interpolating sequences, plays the 
central role. We will find tha t the notion of strong separation yields a neces­
sary and sufficient condition for the embedding of certain types of ^-dimensional 
analyt ic s tructures i n < ^ . 

1» N o t a t i o n a n d pre l iminary m a t e r i a l . Let & be the group of au to­
morphisms (biholomorphic maps) of 12 onto itself. I t is possible t ha t ^ may 
be trivial. On the other hand, if & is transit ive, i.e. if for every pair of points, 
p and q in 12, there is an element in ^ which carries one into the other, the 
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domain il is said to be homogeneous. Throughou t the remainder of this paper, 
il will be a bounded homogeneous domain containing the origin. Examples of 
such domains include simply connected domains in C, polydisks, balls, and 
Cartesian products of bounded homogeneous domains. T h e reader is referred 
to [3; 8; or 9] for descriptions of more complicated bounded homogeneous 
domains. 

L e t s / be the set of analyt ic maps (not necessarily one-to-one or onto) of il 
into itself. For z G il, let stz = [f G s/ : / ( 0 ) = z), and let ^ z = <3 C\ s/„ 
the set of automorphisms of il which carry 0 into z. 

I f / = (/ i , . . . , fn) is a holomorphic Cw-valued m a p defined on a neighbor­
hood of z G Cn, we will let Df(z) denote the Jacobian matr ix, 

(w»„=j£(«). 
The de terminant of 2?/(2) will be denoted by Jf(z). T h e following elementary 

facts are doubtlessly well known. 

PROPOSITION 1. Let il be a bounded homogeneous domain in Cn. 
i) If z G il, and g G & z, then ^ z = g o ^ 0 , andst? z = go s/0. 
ii) / / / G j/o,/A^|J/(0)| ^ 1. 

iii) The function g —» | / g ( 0 ) | w constant on &z. If Jz = | / g ( 0 ) | /or g G ̂ z , 
//zew I//"(0)| ^ Jz for every f ins/z. 

iv) The function z —> Jz is continuous on il. 

Proof. S ta tement (i) is evident. I f / G s/0 and \Jf(0)\ = R > 1, let / n be 
the composition of./ with itself w times, then / n G -Q^o, and | / / n ( 0 ) | = i£w. 
Since il is bounded, a subsequence of t h e / n ' s converges uniformly on compact 
sets to an element in s/0 with an infinite Jacobian de te rminant . Since this is 
impossible, (ii) is proved. From (ii) it follows tha t if g G &0, then | / ^ (0 ) | = 
| ^ - i ( 0 ) h 1 = 1, and | / / ( 0 ) | ^ 1 = Jo, for e v e r y / in s/Q. This gives (iii) in 
the case where z = 0. The general case follows from this and s t a t ement (i). 
T o prove (iv), fix z0 and e > 0. Suppose t h a t for every integer N, one can find 
zN G il such t ha t \zN — z0\ < 1/N and \JZN — Jzo\ > e. Let gN G ^ zN\ then 
there are subsequences of {gN\ and [gN~x\ which simultaneously converge 
uniformly on compact sets to maps g and h, respectively. Clearly h = g - 1 , 
and g(0) = z0, so g G ^ z 0 - But then 

0 = \\Jg(0)\ - JZ0\ = |Lim„ | / ^ ( 0 ) | - J a o | = L i m „ \JZN - JZ0\ > e. 

This contradiction proves (iv). 
S i n c e ^ # is a compact Hausdorf space, it follows t h a t the Cartesian product 

^ # " (the set of all functions from il into <Jt with the topology of pointwise 
convergence) is also compact . Let Se C - ^ 1 2 be the set of analyt ic maps from 
il t o - # . The set £8 is a closed, hence compact , subset of^# f i . C o n s i d e r i n g ^ / as 
a subset o f ^ ° , its closure i n ^ # ° , which we denote b y s e , is compact . 
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2. Strongly separated sets and strong analytic structures. We will 
use the symbol Hn

œ(il) to represent the space of bounded, Cw-valued holo-
morphic functions on 12. If F G Hn

œ(Çl), F is the continuous Cn-valued function 
on 2(12) whose components are the Gelfand transforms of the components 
of F. 

Definition. Let m G *Jt. A strong jxnaly tic structure of dimension n, containing 
m is the image of a map </> G ^/ with the property that </>(0) = m, and 
\J(G o 0)(O)| > 0, for some G G Hn

œ(tt). 

Clearly if \J(G o </>) (0)| > 0, then G o <j> is invertible in a neighborhood of 0, 
and 0 is a one-to-one biholomorphic map of a neighborhood of 0 into^#. 

Definition. A set S C ^ is strongly separated if there is a constant r > 0, and 
a map G G Hn

œ(iï), such that for every 5 G 5, G(s) = 0, and \JG(s)\Js ^ r. 

It is clear that a strongly separated set is discrete, hence countable. One can 
show directly that if 12 is the unit disk in C, then a set is strongly separated if 
and only if it is an interpolating sequence. This fact will also follow from 
Theorems 3 and 4. 

Our central result is the following generalization of Theorem 3.4 of [7], and 
extension of Theorem V of [4]. 

THEOREM 2. //12 is a bounded homogeneous domain in Cw, and m is a maximal 
ideal in^\&, then m is contained in a strong n-dimensional analytic structure if 
and only if m is in the closure of a strongly separated set. 

Proof. Suppose first, that m is in the closure of a strongly separated set S. 
Then there is a map G G Hn

œ(Çl), and a constant r > 0, such that for every 
s £ S, G(s) = 0, and \JG(s)\Js > r. For each 5 in S, choose gs G &s- Since m 
is in the closure of S, there is a net {sa}a£A C S which converges to m. The 
corresponding net {gSa}a£A has a converging subnet, {gsJv^N, in the compact 
s e t J ^ C^"-Let</> = Lim„ gSv. Then 0(0) = Lim„ gSv(0) = Lim„ sv = m, and 
G o gSv converges uniformly on compact subsets of 12 to G o </> G Hn

œ(Çl). 
Hence J (G o gSv) (z) converges uniformly on compact subsets of 12 to J(G o 0) 
(z). Since 

\J(GogSv)(0)\ = \JG(sv)\JSv > r , 

it follows that \J(G o </>) (0)| ^ r, and m is contained in a strong analytic 
structure of dimension n. 

Before proving the converse we need to state the following lemma from 
advanced calculus (cf. [5, Lemma 3.2]). Let Dn(r) be the polydisk of radius r 
in Gn, let || • || represent the operator norm on n X n matrices, and let / be 
the n X n identity matrix. 

LEMMA 1. For every e > 0 there is a ô > 0, such that whenever F : Dn(e) —> 
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Cn satisfies | F ( 0 ) | < <5 and \\DF(z) - I\\ < 5, for all z in Dn(e), it follows that 
F(h) = Ojfor a unique point b G Dn(e). 

Now suppose m is contained in a s trong n-dimensional analyt ic s t ruc ture . 
Then there are maps G G Hn°°(Çl) and 0 G se for which 0(0) = w, and 
| / ( G o 0) (0) | = R > 0. W e can assume G{m) = 0. Since 0 € Jaf, there is a 
net {0a}«cA C *3^, such t h a t 0 = Lim a 0 a . If /a = 0a(O), then ta G 12, and m = 
Lim« ta. By the inverse function theorem, there is a compact polydisk of radius 
r > 0,Dn(r)} contained in 12, on which G o 0 is invertible and \J(G o 0) | ^ R/2. 
Since Z)w(r) C 12, it follows from (iv) of Proposition 1 t h a t 

(1) Co = min [Jz:z G £>w(r)J > 0. 

Let F be an inverse to G o 0 in a neighborhood of Dn(r), so t h a t T7 G Hn
œ (Dn (p) ) 

for some p > 0, and F o G o <j)(z) = 2 for all z in Dn(r). In part icular , F (0) = 
0, and F o G o <j}a{z) —> z uniformly on Dn(r). Finally, since / ( G o 0«) con­
verges to / ( G o 0) on Dw(r) we can assume t h a t 

(2) \J(G o 0 a ) ( s ) | è i^/4, for all z in £>w(r) and alia £ A. 

Now a weak-* neighborhood of m is a set of the form 

°ti = {^G 2 : | A ( t f ) | < 1, w h e r e / , E i T ( 0 ) J , ( m ) = 0, j = 1 , 2 , . . . , * } . 

Given such a ^ , we have jjO <j> G H°°(Çl), and /^ o 0(0) = 0. Consequent ly, 
there is a constant , e > 0, such t h a t for each j = 1, 2, . . . , k, \fj o 0| ^ 1/2 
on the poly-disk i^w(e) C 12. Let e0 < Min (e, r). Since fjO<t>(z) = Lim a 

/;- o <t>a(z), and convergence is uniform on Dn(e0), there is a net index a i with the 
proper ty t h a t for every a ^ an, |/^ o 0 a | < 1 on Dn(eo), for j = 1, 2, . . . , k. 
Consequently, 0a(Dw(eo)) C ^ , whenever a è «i- Apply L e m m a 1 in the case 
where e = eo to obtain ô > 0. There is a net index a2 è «î for which a ^ a 2 

implies | F o G o 0 a ( O ) | < <5, and \\D(F o G o 0«)(z) - J | | < ô, for all 2 in 
Dn(e0). Hence, for all a: ^ a2, there is a unique point fa G Dn(eo) for which 
F o G o 0a(f«) = 0, and, since F is univalent , G o 0«(fa) = 0. For all a ^ a2} 

let 5a = 0 a ( f a ) . Then sa G <t>a(D
n(eo)) C ^ , and G f e ) = 0. If ga G ^ r a , let 

ha = 0« o ga G ^ s a . Since fa G ^>w(eo) C Dn(r), it follows from Proposit ion 1 
and inequalities (1) and (2) t h a t 

\JG(sa)\JSa ^ \J(Goha)(0)\ = \J(Go4>a)(ta)\Jta ^ coR/4. 

Let S<% = {sa : a. ^ a 2 } , and let 5 = U { ^ : ^ is a weak-* neighborhood 
of m\. By construction, S is strongly separated, and m is in the closure of S. 

3. Interpolating sequences and simultaneous interpolation. In this 
section we will show t h a t every interpolat ing sequence in a bounded homo­
genous domain is strongly separated. Theorem 1 will then be an immedia te 
corollary to Theorem 2. We require the following very useful result of A. 
Bernard [1]. 
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LEMMA 2 [1, Theorem 2]. If {zj}%i is an interpolating sequence in a domain, 
Q) C Cn, then there is a sequence {/,}7=i C Hœ(3ï), and a constant M, such that 
M*t) = Oifj * k,fk(zk) = 1, and £7 - i | / , (*) | ^ M, for all z G ®. 

THEOREM 3. In a bounded homogeneous domain, every interpolating sequence 
is strongly separated. 

Proof. Let {zj}J=1 C 12 be an interpolating sequence. Let M, fu f2, . . . be 
the constant and functions given by Bernard's Theorem. For each j , choose 
gj G S ^ , andletG(s) = ZUgF1^) (/,(s))2. Then 

oo oo 

\G(z)\ ^ Z \gr\*)\ \f^)\" ^KZ \fi(z)\2 ^ KM\ 

where the constant K reflects the fact that 12 is bounded. Thus G G Hn
œ(Q). 

Clearly G(zf) = 0, for every Zj. Also, 

CO 

DG(z) = £ (2fj(z)Aj(z) + (MztfDkr1)®), 
j=i 

where the ikth entry in the matrix Aj(z) is dfj/dzk(z) multiplied by the ith. 
component of gf~l(z). In particular, for each k, 

(3) DG(zk) = D(gk-')(zk). 

Therefore D(Gogk)(0) is the identity matrix. Hence \JG{zk)\JZk = 1, for 
every zk. 

Theorem 3 has applications in balls and polydisks to simultaneous inter­
polation of the values of a function and its derivatives. Let B(R) be the 
(Euclidean) ball of radius R in C", and let 12 = B = B(l) be the unit ball. 
In this case & Q is the unitary group, and it follows from proposition 1, that 
for any r > 0 and z G B, the set Vz(r) = ((Dg(0))~1)TB(r) is independent of 
the choice of g G @ z. If / G iF°(12), then it follows from the Cauchy integral 
formula in one variable that the gradient of/ at 0, Df(0), is in I ? ( | | / | | ) r , the 
set of row vectors of norm | |/ | | . Consequently, for any z G B, and any g f ^ z , 
Df(z)Dg(0) G B(\\f\\)T, so that (Df(z))T G 78( | | / | | ) . On the other hand, we 
have the following. 

PROPOSITION 2. Suppose {zk}k°=i C B is an interpolating sequence, {ak}ks=i 
is a sequence in C, and {vk}t=i is a sequence of (row) vectors in Cn. Suppose, 
moreover, that there is a constant M, for which \ak\ ^ M and vk

T G VZk(M), for 
all k. Then there is a function f G Hœ(B) such that f(zk) = ak and Df(zk) = vk, 
for all k. 

Proof. Since {zk\k==i is interpolating, there is a function ho G H°°(Q) such that 
ho(zk) — ak, for all k. By the argument preceding the statement of the proposi­
tion, if wk = Dh0(zk), then wk

T G V^fllAoll). Let uk = vk — wkJ and let Mx = 
M + \\h0\\. Then uk

T G VgJt(Mi), so that if we choose gk G &Zk, there are 
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vectors À* Ç B(Mi) such that 

Define G G Hn
œ(B) as in the proof of Theorem 3, and let Gi, G2, . . . , Gn be 

the components of G. For each k, let X, = ( \ ^ \ . . . , X,^) . Then {\k
U)}T=i is 

a bounded sequence for each j = 1, 2, . . . , n, so there are functions hi, ... , 
hn e Hœ(B) such that fcjfo) = X„^. Let h = E î - i ^ A - Then fcfe) = 0, for 
all &. Also, 

Dh(z) = E (hjfàDGjiz) + Gj(z)Dhj(z)). 

Applying equality (3) we have, for each k, 

Dh(zk) = £ \k
(j)DGj(zk) = «DG(zk))

T\k)
T = vk- wk. 

The desired function is / = h0 + h. 

A similar, but simpler, argument yields the following result. 

PROPOSITION 3. Suppose {zk}%=i = {(zk
(1), . . . } zk

{n))}T=i is an interpolating 
sequence in the unit polydisk, Dn C C7*. Suppose that {ak}™=i, \bk

{1)}f=i, . . . , 
{^^(w)}?=i (ire n + 1 sequences in C satisfying \ak\ ^ M, aw^ |&^(;)| = 
M/(l — \zk

(j)\2), for j = 1, . . . , n, and all k, where M is some fixed constant. 
Then there is a function f £ Hœ(Dn) satisfying f(zk) = ak, and df/dZj(zk) = 
bk

U),for all k and j . 

4. Uniform separation and a partial converse to Theorem 1. A sequence 
{zk}t=i C ^ is uniformly separated if there exist functions fi,f2, . . . G Hœ(tt), 
and a constant M, such that for every j , \\fj\\ ^ M,fj(zj) = 1, and fj(zk) = 0 
when k ^ 7. It is well known [2] that uniform separation is a necessary and 
sufficient condition for a sequence in the unit disk of C to be an interpolating 
sequence. For balls and polydisks, strong separation implies uniform separation. 

THEOREM 4. / / Q is the unit ball or unit polydisk in Cn, then every strongly 
separated set is uniformly separated. 

LEMMA 3. If Œ is the unit ball or unit polydisk in Cn, then every f G i7°°(12) 
which vanishes at 0 can be written in the form 

n 

/ (*) = f(Zl, • • • , Zn) = X) Zifi(z), 
i=l 

where fi £ Hœ(iï), \\fi\\ ^ iW||/||, and M is an absolute constant. (For the poly­
disk, M g 2.) 

Proof. The case of the polydisk is an elementary exercise and is well known. 
The case of the unit ball was proved by Z. Leibenzon (see [6]). 

https://doi.org/10.4153/CJM-1978-075-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-075-4


ANALYTIC STRUCTURES 869 

We note that if/ = £ L i ztfi9 then/ f(0) = df/dzt(0). 

Proof of Theorem 4. (We are indebted to B. A. Taylor for pointing out this 
argument.) Suppose S = {zk}t=i is strongly separated. Let G = (Gi, G2, . . . , 
Gn) G H^°{Q) and r > 0 be as in the definition of strong separation; let ||G|| = 
Max, ||G,||. For each zk G S, let gk G ^ . For i = 1, . . . , n, Gto gk £ Hœ(U), 
and GiOgk(0) = 0. So there are functions hijk G Hœ(Q), \\hijk\\ ^ ikf||G||, 
such that 

n »\ 

GfO^(s) = XI Zjhijk(z), and A<#(0) = — (G< o gfc)(0), 
i = l ^ j 

the ijth component of the matrix D(G o ^ ) (0). If mk(z) is the matrix valued 
function whose ijth component is (rnk(z))ij = hijk(gk~

l(z)), then the vector 
valued function G is given by the matrix equation 

(4) G(z) = mk(z)gk~^z). 

Let Fk(z) = det(m*(z)). Since (>»*(*))<* € ^ ( Q ) , and KM*)) , , ! g M||G||, 
it follows that F* G H°°(Î2), and 

II^H ^ Mi = »!(M||G||)». 

Now \Fk(zk)\ = |det(A<iJt(0))| = \J(Gogk)(0)\ ^ r. On the other hand, if 
Zt G S, Zi 9e zk, then the left hand side of (4) vanishes while the vector on the 
right hand side, gk~

l(zi), is not zero. Hence, the matrix mk(zi) is singular, so its 
determinant Fk(zt) = 0. If «*(*) = Fk(z)/Fk(zk), then 0* G £T(12), | | ^ | | g 
Mi/r,<t>k(zk) = 1, and <l>k(zi) = 0, fori ^ &. Therefore5is uniformly separated. 

If it were known that uniform separation implies interpolation (as is the case 
for n = 1) in either the ball or the polydisk, then Theorems 2, 3, and 4 would 
give a converse to Theorem 1. Some partial results for the polydisk are possible. 

A wedge in the unit disk D is the region inside D lying between two distinct 
circles, 71 and 72, such that 71 C\ 72 is contained in the boundary of D, and 
both 71 and 72 intersect D. A near wedge in the polydisk Dn is the Cartesian 
product of one copy of D with n — 1 one dimensional wedges. 

THEOREM 5. If Q, is the unit polydisk, and m G ±J£s$L is in the closure of a near 
wedge, then m is contained in a strong analytic structure of dimension n if and only 
if it is a limit point of an interpolating sequence. 

Proof. We have already shown that a limit point of an interpolating sequence 
is contained in a strong w-dimensional analytic structure. 

Let Wbe a near wedge in Dn, and let p(z, w) be the pseudohyperbolic distance 
between points z and w in Dn. (p(z, w) = |||g_1(w)lll> where g G ^ 2 , and 
HI • HI is the polydisk norm in Gn.) It is easy to see that for any r, 0 < r < 1, 
the set {z G Dn : p(s, w) < r, for some w G W) is contained in another near 
wedge, Wr. One can show (see, e.g., Lemmas 4.6, 5.10, and 5.11 of [10]) that 
there is a constant r and an open set © of 2, such that the weak-* closure of W 
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is contained in 0, and Dn C\ 0 \s contained in the near wedge Wr. Now if m 
is contained in a strong analytic structure of dimension n, it is in the closure of 
a strongly separated, hence, uniformly separated sequence S. If also m is in 
the weak-* closure of W, then m G Û, so m is a. limit point of S C\ & C @ C\ 
Dn C Wr. So 5 H ^ is a uniformly separated sequence contained in a near 
wedge, and hence by Theorem 5.1 of [11], S C\ 0 is an interpolating sequence. 

5. Related results and remarks. J. P. Rosay [13] and M. Range [12] have 
demonstrated the existence of a particular kind of strong ^-dimensional 
analytic structure, which Rosay calls an injective system, in ^(Dn) and 
<JK(B). More specifically, an injective system is a pair of maps, </> £ 38 and 
G G s/, such t h a t / o G o # = / for every/ in i7°°(ft). Hence 0 is a homeomor-
phism of all of ^_or Dw onto its image. In both Rosay's and Range's examples, 
0 is actually in J^, and every point in the range of <j> is in the closure of some 
interpolating sequence. This type of analytic structure is indeed special, since, 
as Hoffman points out [7, p. 109], there are one dimensional analytic structures 
m^(D) which are not homeomorphic images of D. 

In [4], using a projection from (*Jt(Dn)) into Ç^f(D))n, W. Cutrer constructs 
analytic structures of dimensions 0 through n m^(Dn). The points contained 
in ^-dimensional analytic structures are all limit points of interpolating se­
quences. The lower dimensional structures are of particular interest. For most 
of the examples in [4] of analytic structures of dimension less than n, it remains 
to be shown that the given structures are not merely lower dimensional sub­
sets of analytic structures of higher dimension. More specifically, since 2 is 
a subset of (if°°(Œ))*, it inherits the norm topology as well as the weak-* 
topology. If m G 2, the Gleason part of m, 3P (m), is the connected component 
of m in the norm topology of 2. It is well known that if/ is an analytic map 
from an open set in C* into 2, then m G Range(/) implies Range(/) C 3P {m). 
The parts oî^(D) are either points or analytic disks [7]. If 12 C Cn

} it is an 
open question under what conditions, if any, 3P (rri) is the image of an analytic 
map of a domain in C*. 
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