
ON THE DISTRIBUTION OF 4-CYCJLES IN 
RANDOM BIPARTITE TOURNAMENTS 

J. W. Moon and L». Moser 

Let there be given two sets of points, P = { P , . . . , P } 
1 m 

and Q ~ { Q , „ . . , Q } , such that joining each pair of points 
(P . , O ), for i sr i , * . . , m and k = 1 . . » , n, is a line oriented 

towards one, and only one, of the pair . Such a configuration 
will be called an m x n bipart i te tournament. If the line joining 
P. to Q, is oriented towards Q, we may indicate this by 

i k k 
P. ~* Q, $ and similarly if the line is oriented in the other sense. 

i k 

The points P . , P . , O , and Q . will be said to form a 4-cycle 

if ei ther P. «* O -* P . -+ Q -* P . or P . -*> Q ,-+ P . -* Q, — P . . 
I K J ^ I l ^ j k l 

C(m,n) , the number of 4~cycles in a given m x n biparti te 
tournament, provides, in some sense, a measure of the 
degree of transit ivity of the relationship indicated by the 
orientation of the l ines, and the complete configuration may 
be thought of as representing the outcome of comparing each 
member of one population with each member of a second 
population, and making a decision, upon some bas i s , as to 
which component of each pair is the preferred one. 

The object of this note is to investigate the distribution 
of C(m,n) under the hypothesis that all orientations of the lines 
a re equally likely. This para l le ls the study of the number of 
3-cycle s in ordinary tournaments made by Kendall [1], 
Moran [3], and others in connection with the method of paired 
comparisons. We will obtain sharp upper bounds for C(m,n) 
and prove that under mild res t r ic t ions on the relative ra tes of 
growth of m and n the distribution of C(m,n) tends to 
normality a s m and n tend to infinity. 
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i = 1, . . . . m, be the number of distinct points, Q , such that 

(1) 

For an arbitrary mxn bipartite tournament let V., for 

. . • , m, b 

'. — CI . Then 

m 

i =1 

equals the number of ordered pairs of distinct points (Q, > QJ 

for which there is a point P. such that Q -*• P. -* ÇL , counting 

multiplicities. 

Number the ordered pairs of distinct points, (O , Q ), 

from 1 to n(n-l) in such a way that if the ordered pair (Q , Q ) 

corresponds to s, where s = 1, . . . , n(n-l), then the ordered 
pair (Q , Q ) corresponds to n(n-l) -(s-1). Let t denote the 

number of times the ordered pair corresponding to s is 
counted in the sum of (1). It follows that 

(2) C(m,n) = ^ t • t 4A 

s n(n~l)-(s-l) 

Assume temporarily that m = n = o (mod 2), We then 
observe that 

(n) 
n(n-l) K2' 

/ , s / _ , s n(n-l)-(s-l) 
s=l s=l 

2 
n 

in 

=\ V.(n-V.)< 

i=l 
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It is now easily seen that an upper bound for C(m,n) in 
(2) results by first having 

2 
(4) (t + t ) =m fo r - values of s, 

s n(n-l)-(s-l) 4 

and zero for the others, and then setting t =t , M% , 
5 s n(n-l)-(s-l) 

This gives 
2 2 

THEOREM 1 : C(m, n) < ̂  ' £ if m = n H 0 (mod 2). 
— 4 4 

m2 m2- l 
If m is odd then— is replaced by —r—, and similarly 

for n, as may be seen by making the appropriate changes in 
(3) and (4). 

That the upper bound is sharp for the case m = n = 0 
(mod 2) is demonstrated by the bipartite tournament in which 

P -*• O if» and only if, either i < — and k < — o r i > — and 
i K — 2 — 2 2 

k> n/2, otherwise O -*> P.. Equally simple examples suffice 

for the other cases. 

In an mxn bipartite tournament define a random variable, 
S(i,j; k,^), i, j = 1, . . . , m, i 4 j , and k,-/=l, . . . , n, k ^ - / , 
to be 1 or 0 according as the points P., P., Q, and Q . do or 

i J k J 
do not form a 4-cycle. Since only 2 of the 16 equally likely 
ways of orienting the 4 lines between these points yield a 
4-cycle it follows that E[S(i, j ;k,/)] = 1/8 and summing over 
all suitable pairs (i, j) and (k,-^) we have: 

(5) E[C(m,n)l=|(^)(J . 

2 2 
Similarly E[C (m,n)] = E[(SS(i,j;k,i)j ] , where the 

latter sum is again over the pairs (i, j) and (k,^). In the 
expansion of this, the various types of products involved, 
and the number and expected value of such products are found 
to be as follows: 
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S(i,j;k,J?) • 

S(i,j;k,^) ' 

S(i,j;k,/) • 

S(i,j;k,./) • 

(6) S(i,j;k,/) • 

S(i,j;k^) • 

S(i,j;k,i) • 

S(i,y,-k,J) ' 

S(i,j;k,J) • 

S(i,j;k,i) 

S(i,j;k, s) 

S(i,h;k,7) 

S(i, j ; r , s) 

S(g.h;k,y) 

S(i,h;k, s) 

S(i,h;r, s) 

S(g,h;k, s) 

S(g,h;r, s) 

0 <? 
2 < , , - » , 

2-r;1) <°> 

0 <? '"à'1 

0 (m2-
2> <°> 

, m - l ,11-1 
n ( 2 * ( 2 * 

2m( 2 ) (2) ( 2 ) 

, ,m .m-2 n-1 
2 n < 2 ) { 2 ) ( 2 > 

0 ^ 0 <n22> 

1/8 

1/32 

1/32 

1/64 

1/64 

4/64 

1/64 

1/64 

1/64 

Combining these we have, where u equals the k 

moment of C{m,n) about its mean, that 

(7) fi2[C(m,n)] = E[C2(m,n)] - E2[C(m,n)] 

= K O Ô (2m+2n-l) . 
2 

To show that the distribution of C(m,n) tends to normality 
it suffices (Kendall [2]) to show that, for h = 1, 2, . . . , 

. . . p2h+l . , . . . . fl2h (2h)i 
(I) " 0 and (ii) — - — 

i(2h+l) u 2 h! 
*2 2 

as m and n tend to infinity. 

We shall temporarily assume that n = o(m) as m, n -*• oo. 

If T(i,j;k,^) = S(i,j;k,^) - j - then 
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M-2h . = E[ (ST( i , j ; k , i ) ) ] , for h = 1,2, . . . , where the sum 

is again over the pai rs (i,j) and (k,^) . 

A typical t e rm in the expansion is T(i , j ;k , - / ) 
1 1 1 1 

T^O^A ' Ux^A ^ k<>^4 ' A^A )• P l l t a U t h e T ' S ' ^ t h l S t e r m » 
2h+l 2h+l 2h-fl 2h+l 

which have any values of i, j , k or^/ in common with those of 
the first factor in a c lass with it. Add to this c lass any T ! s, 
in this t e rm, which have any values of i, j , k o r - / in common 
with those of any of the T1 s already in this c lass , and continue 
this process as long as possible. In a s imilar fashion form 
another c lass starting with, say, the first factor not already 
included in the first c lass . 

By repeating this p rocess , any te rm may be expressed 
as the product of c lasses of products, such that no two factors 
in different c lasses have any values of i, j , k, or^ / in common, 
while for any factor in a c lass containing more than one factor 
there is another factor, in the same c lass , which does have a 
value of i, j , k o r^ / in common with it. 

Combining all t e rms which have s imilar combinations of 
(i, j) and (k,^2) occurring, as was done in (6) for the second 
moment, the number of t imes t e r m s of a given type appear 
will be a polynomial in m and n, whose largest t e rm is of 
o rder equal to the number of distinct values of i and j , and k 
and «/, respectively, that appear in the t e rm. 

If any class in a t e rm contains just one factor the expected 
value of that t e rm will equal the expected value of the product 
of the remaining factors t imes the expected value of the single 
factor, or zero. Also, any t e rm with more than h c lasses has 
expectation zero, since it is forced to have at least one class 
containing a single factor. 

Restricting ourselves now to t e rms all of whose c lasses 
contain at least two factors we may make the following asser t ion . 
If such a t e rm is to have a non-zero expectation, then each 
factor in a c lass may include at most one value of i, j , k, o r - / 
not included in any other factor in the c lass . For , if any factor 
has fewer than three values of i, j , k, a n d / in common with 
those of the remaining factors in the c lass , then its expectation 
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is independent of the expectations of the remaining factors, 

as was seen in (6). As its expectation is then zero the 

expectation of the whole term is consequently zero. 

Therefore, for any class of factors in a term the largest 
number of distinct values of i, j , k, and-/ that may occur in 
it is four for the first factor and one new value for each of the 
remaining factors. Hence, the term containing the largest 
number of distinct values of i, j , k, and-/ with a non-zero 
expectation will have h-1 classes of two factors each and one 
class of three factors. From the hypothesis on the relative 
orders of m and n, we see that the largest term in u 
is contributed by products of the form 

h-1 

t ï ï T ( i s . j e ; k 8 , - / g ) . T ( g s , j s ; k s , ^ ) ] 

s=i 

x T(V V V \ ] ' T(Mh: Vyh> • T(V V VA> 
where different letters represent different numbers. 

Therefore, jx is a polynomial whose largest term 

is of degree 3h-f 1 in m and 2h in n. Hence 

Ii,, A 3h+l 2h 
#_% Zh+1 _ , m n . _ , 1 
(7) = 0 ( ) = 0 ( ) -* 0 . 

i(2h+i) i(2h+l) 2h+l m ' n 
^2 m n 

In considering u the same type of argument may be 
2h 

used to assert that its highest ordered terms arise from 
products of the following type: 

TT T(i , j ; k ,J) • T(g , j ; k y^) 11 s Js s s s s s s 
s=d 
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The number of t imes t e r m s of this type occur is 

3h 2H 
/OLM / m \ / m " h \ /n\ "#m-3h+2. ,n-2h+2x m n (2h)! , 
(2h)! < >< . ) < ) . . . ( ) ( ) — — 

2 h! 

retaining only t e rms of highest order . 

The expectation of such a t e rm equals 

( E [ T ( i , j ; k , ^ ) • T ( g , j ; k , ^ ) ] } h = l / 2 6 h , 

as may be seen by direct considerations. Thus the leading 
3h 2 h , ^ x f 3 2 

. m n (2h) Î , , _ . m n 
t e rm of \x is — and that of \i is ——-— . 

2 h 2 8 h h ! 2 2 7 

It follows that 
/ai ^ h (2h)! . . 
(8) —— -* .—r as required. 

For each fixed value of h the only essential difference in 
the arguments when n -> cm, 0 < c < 1, as m , n -*• oo , will be 

the appearance of an additional factor of (1+c) in both p. and 
2n 

h 
fx , which, obviously, leaves (8) unchanged. 

This proves, under the given conditions, 

THEOREM 2: 

C ( m , n ) - i ( ) ( ) , 2 
P r { a < r < b } -75=- e dy . 

![(X>(2m+2n-l)]* ^ . 
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