Unifying a range of topics that are currently scattered throughout the literature, this book offers a unique and definitive review of some of the basic mathematical aspects of quantization and quantum field theory. The authors present both elementary and more advanced subjects of quantum field theory in a mathematically consistent way, focusing on canonical commutation and anti-commutation relations. They begin with a discussion of the mathematical structures underlying free bosonic or fermionic fields, such as tensors, algebras, Fock spaces, and CCR and CAR representations (including their symplectic and orthogonal invariance). Applications of these topics to physical problems are discussed in later chapters.

Although most of the book is devoted to free quantum fields, it also contains an exposition of two important aspects of interacting fields: the diagrammatic method and the Euclidean approach to constructive quantum field theory. With its in-depth coverage, this text is essential reading for graduate students and researchers in departments of mathematics and physics. This title, first published in 2013, has been reissued as an Open Access publication on Cambridge Core.

Jan Dereziński is a Professor in the Faculty of Physics at the University of Warsaw. His research interests cover various aspects of quantum physics and quantum field theory, especially from the rigorous point of view.

Christian Gérard is a Professor at the Laboratoire de Mathématiques at Université Paris-Sud. He was previously Directeur de Recherches at CNRS. His research interests are the spectral and scattering theory in non-relativistic quantum mechanics and in quantum field theory.
Y. Makeenko Methods of Contemporary Gauge Theory
N. Manton and P. Sutcliffe Topological Solitons
N. H. March Liquid Metals: Concepts and Theory
I. Montvay and G. Münster Quantum Fields on a Lattice†
L. O’Raifeartaigh Group Structure of Gauge Theories†
T. Ortín Gravity and Strings
A. M. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization†
L. Parker and D. Toms Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity
R. Penrose and W. Rindler Spinors and Space-Time Volume 1: Two-Valued Calculus and Relativistic Fields†
R. Penrose and W. Rindler Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry†
S. Pokorski Gauge Field Theories, 2nd edition†
J. Polchinski String Theory Volume 1: An Introduction to the Bosonic String
J. Polchinski String Theory Volume 2: Superstring Theory and Beyond
J. C. Polkinghorne Models of High Energy Processes†
V. N. Popov Functional Integrals and Collective Excitations†
L. V. Prokhorov and S. V. Shabanov Hamiltonian Mechanics of Gauge Systems
R. J. Rivers Path Integral Methods in Quantum Field Theory†
R. G. Roberts The Structure of the Proton: Deep Inelastic Scattering†
C. Rovelli Quantum Gravity†
W. C. Saslaw Gravitational Physics of Stellar and Galactic Systems†
R. N. Sen Causality, Measurement Theory and the Differentiable Structure of Space-Time
M. Shifman and A. Yung Supersymmetric Solitons
H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt Exact Solutions of Einstein’s Field Equations, 2nd edition†
J. Stewart Advanced General Relativity†
J. C. Taylor Gauge Theories of Weak Interactions†
T. Thiemann Modern Canonical Quantum General Relativity
D. J. Toms The Schwinger Action Principle and Effective Action
A. Vilenkin and E. P. S. Shellard Cosmic Strings and Other Topological Defects†
R. S. Ward and R. O. Wells, Jr Twistor Geometry and Field Theory†
E. J. Weinberg Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics
J. R. Wilson and G. J. Mathews Relativistic Numerical Hydrodynamics

† Issued as a paperback.