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  Abstract
  We propose a new approach based on a generalization of the logit model to improve prediction accuracy in U.S. bank failures. Mixed-data sampling (MIDAS) is introduced in the context of a logistic regression. We also mitigate the class-imbalance problem in data and adjust the classification accuracy evaluation. In applying the suggested model to the period from 2004 to 2016, we show that it correctly classifies significantly more bank failure cases than the classic logit model, in particular for long-term forecasting horizons. Some of the largest recent bank failures in the United States that had been previously misclassified are now correctly predicted.
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