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Abstract

We consider the portfolio optimization problem of maximizing the asymptotic growth rate
under a combination of fixed and proportional costs. Expressing the asymptotic growth
rate in terms of the risky fraction process, the problem can be transformed to that of
controlling a diffusion in one dimension. Then we use the corresponding quasivariational
inequalities to obtain the explicit shape together with the existence of an optimal impulse
control strategy. This optimal strategy is given by only four parameters: two for the
stopping boundaries and two for the new risky fractions the investor chooses at these
times.
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1. Introduction

Typical transaction costs considered in portfolio theory are constant costs, fixed costs
(proportional to the portfolio value), and proportional costs (proportional to the transaction
volume). While the latter penalizes the size of the transaction, the first two punish the frequency
of trading. So a combination of both types is of interest, from a practical as well as a theoretical
point of view. In this case the trading strategies of interest are so-called impulse control strategies
consisting of a sequence of stopping times at which trading takes place and the transactions at
those times. Optimal impulse control strategies can be described as solutions of quasivariational
inequalities.

We use the framework of the Black–Scholes model, which will allow us to obtain an explicit
solution, and consider an investor who faces proportional costs and fixed costs. The objective
is to maximize the asymptotic growth rate

lim inf
t→∞

1

t
E[logVt | V0 = x, π0 = π ], (1.1)

where Vt is the value of the portfolio at time t ≥ 0 and π0 the initial fraction of V0 invested in
the stock.

Without transaction costs, the problem of maximizing the expected utility was solved by
Merton [12]. Merton showed that, for logarithmic and power utility, the optimal trading strategy
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Optimal portfolios under transaction costs 917

is given by a constant, η̂, which is the optimal risky fraction, i.e. the fraction of wealth invested
in the stock, to be held at all times. To keep the risky fraction constant involves continuous
trading, which under transaction costs is no longer adequate.

A wealth of papers dealing with transaction costs have appeared in the last decade. The
first type of costs considered were purely proportional costs for which the optimal solution is
given by a cone in which it is optimal not to trade at all, and which corresponds to an interval
for the risky fraction. When reaching the boundaries, infinitesimal trading occurs in such a
way that the wealth process just stays in the cone. This kind of behaviour was first described
in [11]. A rigorous proof of a discounted consumption criterion can be found in [4]. It uses
methods of stochastic control theory and shows that the wealth process is a diffusion reflected
at the boundaries of the cone. Under weaker assumptions, the authors of [1], [8], and [16]
proved the existence and uniqueness of a viscosity solution for the corresponding Hamilton–
Jacobi–Bellman equation, and those of [2] and [18] derived similar no-transaction regions for
the asymptotic growth rate under somewhat different proportional costs.

Adding a constant component to the transaction costs punishes very frequent trading and so
will avoid the occurrence of infinitesimal trading at the boundary. This approach was used in
another group of papers which dealt with constant and proportional costs. An investor now has
to choose discrete trading times and optimal transactions at these times, so the methodology
of optimal impulse control comes into play. The authors of [5] and [9] gave general existence
results for finite and infinite horizons and determined optimal strategies for maximizing the
utility of terminal wealth both for the identity as utility function and for exponential utility.
Maximizing discounted consumption under power utility for an infinite horizon and allowing
for continuous consumption, the authors of [14] derived quasivariational Hamilton–Jacobi–
Bellman inequalities whose solution yields the optimal strategy. The insight, already obtained
in [9], is that there is still some no-transaction region, but reaching the boundary transactions
will be done in such a way that the wealth process restarts at some curve between the boundary
and the Merton line.

A different approach was provided in [13] for purely fixed costs. There, for the purpose of
maximizing the expected asymptotic growth rate (1.1), a factorization of the wealth process
into the wealth gained per period was obtained which leads under logarithmic utility to an
additive representation. An optimal stopping problem for the risky fraction process with linear
costs yields an explicit solution. A general cost structure was treated in [3], where a set of
quasivariational inequalities for the optimal trading strategy for (1.1) was derived. From this,
the results of [13] were obtained in a different manner. The approaches described above lead
to plausible optimal strategies.

In [6], the current authors treated transaction costs which have proportional costs in addition
to the fixed costs, which is often the case for private investors. In the spirit of [13], they
introduced a class of natural trading strategies which can be described by four parameters,
(a, b, α, β): a and b for the stopping boundaries and α and β for the new risky fractions.
When the risky fraction process reaches a or b, trading occurs in such a way that the new risky
fractions are given by α or β, respectively. Stopping at a corresponds to buying stocks and
stopping at b to selling stocks. This class of constant boundary (CB) strategies is motivated by
the results discussed above. The cone obtained for proportional costs corresponds to an interval
for the risky fraction process. The results of [13] say that for fixed costs a constant, new risky
fraction is optimal, and, from the results for combined constant and proportional costs, we may
expect that, due to the proportional costs, we now have two different new risky fractions, one
after buying and one after selling.
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918 A. IRLE AND J. SASS

In this class of strategies, the analysis can be simplified to the study of one period between
two trading times using renewal-theoretic arguments; see [6]. This yields an explicit functional
that, if the aim is to find an optimal CB strategy, has to be maximized with respect to these four
parameters, which can easily be done numerically. By adapting the results of [3] and using
substantial numerical evidence, it was conjectured in [6] that CB strategies provide optimal
strategies within the whole class of impulse control strategies.

Here we shall show that this conjecture is valid. We prove that overall optimal impulse control
strategies exist and that they are CB strategies. Our results thus provide explicit solutions, up to
a simple numerical optimization, in the case of proportional costs plus fixed costs, thus coming
closer to the actual costs a private investor faces.

In a certain average-reward control problem with linear costs, the authors of [7] also arrived
at CB strategies and found that such strategies provide optimal solutions. The methodology
for solving average-reward control problems used in the above paper also proved useful for the
derivations in our problem, but various additional difficulties arose due to the nonlinearity of
our costs.

The paper is organized in the following manner. After presenting some notation and the
solution to the problem without transaction costs, in Section 2, in Sections 3–7 we shall consider
the model with both fixed costs and proportional costs, first using controls given by stopping
times and the transactions at those times, described by the amount of money invested in the
stock. Then we shall describe how to reformulate the problem in terms of the risky fraction
process. In Proposition 3.1 we show that the controls, the costs, and the reward function can
all be expressed in terms of these risky fractions; the problem can thus be transformed to that
of controlling a diffusion in one dimension.

In Section 4 we give a general formulation of an optimal impulse control problem for
maximizing average rewards, which relates our model to [7]. An upper bound on (1.1) based
on the standard Hamilton–Jacobi–Bellman approach can be given by a solution to certain
quasivariational inequalities. From the proof of this result, Theorem 4.1, it is obvious how
we have to proceed to find an optimal solution; see Remark 4.2. In Section 5 we show how
to embed the problem of portfolio optimization under fixed and proportional costs, and in
Section 6 we derive necessary conditions for the optimality. The solution to the differential
equation corresponding to the continuation region, where no controls take place, is given in
terms of the speed measure and the scale function of the diffusion.

Based on this representation and our special cost function, we show in Section 7 that a
solution to the conditions derived in Section 6 exists and defines a CB strategy. Theorem 7.1
states the main result: an optimal strategy exists and is a CB strategy. These derivations are
done under the condition that the Merton fraction η̂ lies in (0, 1), which implies that short
selling and borrowing do not have to be taken into account.

In Section 8 we look at short selling and borrowing, corresponding to η̂ < 0 and η̂ > 1,
respectively. There we have to guarantee that the risky fraction process stays in the so-called
solvency region, in which the liquidation of the stock holdings is possible with positive wealth
remaining. Again we can show that an optimal strategy exists and is a CB strategy.

In Section 9 we provide some examples and discuss the relation of our scenario to the case
of purely fixed costs and the case of purely proportional costs.

2. Trading and optimization without transaction costs

We consider one bond or bank account and one stock with price processes (Bt )t≥0 and
(St )t≥0, respectively, which evolve according to the Black–Scholes model. Hence, the prices
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are given, for interest rate r ≥ 0, trend µ ∈ R, and volatility σ > 0, by B0 = S0 = 1 and

dBt = Btr dt, dSt = St (µ dt + σ dWt),

where (Wt )t≥0 is a standard Brownian motion on a suitable probability space (�,F ,P). Let
(Ft )t≥0 denote the augmented filtration generated by (Wt )t≥0.

Without transaction costs the trading of an investor may be described by the constant initial
capital V0 > 0 and by the risky fraction process (πt )t≥0, where πt is the fraction of the total
portfolio value (wealth) which the investor chooses to hold in the stock at time t . Given V0
and (πt )t≥0, the corresponding wealth process (Vt )t≥0 is defined, to be self-financing, as the
continuous solution to

dVt = (1 − πt )Vt r dt + πtVt (µ dt + σ dWt), t > 0.

Our objective is the maximization of the asymptotic growth rate (1.1) over all admissible – say
bounded and progressively measurable – risky fraction processes (πt )t≥0. Using

E[logVt ] = logV0 + E

[∫ t

0

(
r + πs(µ− r)− 1

2
(πsσ )

2
)

ds

]
,

a simple pointwise maximization yields as optimal solution πt = η̂, t ≥ 0, where

η̂ = µ− r

σ 2 and the optimal growth rate is R̂ = r + 1

2

(
µ− r

σ

)2

.

This constant optimal risky fraction η̂ corresponds to the well-known Merton line.
Multiplying the prices by e−rt , we see that we may assume from now on that r = 0, to

simplify notation, whence Bt = 1, t ≥ 0. The solution to (1.1) for general r is then obtained
by adding the rate r and using µ− r instead of µ. So in the following we let

η̂ = µ

σ 2 and R̂ = 1

2

(
µ

σ

)2

.

3. Fixed and proportional transaction costs

Let us now assume that an investor faces transaction fees. With current wealth Vt > 0, the
transaction costs for a transaction of volume �t ∈ R are

δVt + γ |�t |, (3.1)

where δ ∈ (0, 1) and γ ∈ [0, 1 − δ). We call δVt and γ |�t | the fixed cost and the proportional
cost, respectively. Note that the definition of the fixed cost is the same as in [13]. Costs of this
type may be interpreted as managing costs.

It is convenient to use two processes to describe the evolution of the wealth. We use the
wealth process (Vt )t≥0 and the risky fraction process (πt )t≥0.

Since δ > 0, the natural class of strategies to consider is that of impulse control strategies
where trading occurs at time points τn, τ0 ≤ τ1 ≤ · · · ; see [3]. In view of (3.1) and [3,
Proposition 4.1], we can restrict to trading times which are separated.

Definition 3.1. (i)An impulse control strategy (τn,�n)n∈N0 consists of stopping times τn, 0 =
τ0 ≤ τ1 ≤ · · · ≤ ∞, with respect to (Ft )t≥0, the trading times, which satisfy τn → ∞ almost
surely and τn < τn+1 on {τn < ∞}; and of Fτn -measurable, R-valued random variables �n,
n ∈ N0, the transactions.
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(ii) The wealth process V and the risky fraction process π controlled by an impulse control
strategy K̃ = (τn,�n)n∈N0 are given, for initial values V0 > 0 and π0 ∈ [0, 1], by

V̄0 = V0 − δV0 − γ |�0|, π̄0 = (π0V0 +�0)/V̄0,

and are given, for n ∈ N on {τn < ∞}, by

Vt = (1 − π̄n−1 + π̄n−1St/Sτn−1)V̄n−1, t ∈ (τn−1, τn], (3.2)

πt = π̄n−1V̄n−1St/(Sτn−1Vt ), t ∈ (τn−1, τn], (3.3)

V̄n = Vτn − δVτn − γ |�n|, (3.4)

π̄n = (πτnVτn +�n)/V̄n. (3.5)

(iii) An impulse control strategy is called admissible if the corresponding wealth and risky
fraction processes satisfy Vt > 0 and πt ∈ (0, 1), respectively, for all t ≥ 0.

Thus, (Vt )t≥0 and (πt )t≥0 are defined to be left continuous with right-hand limits. We
call V̄n the new wealth and π̄n the new risky fraction. Because (1 − π̄n−1)V̄n−1 is the new
value invested in the bond and π̄n−1V̄n−1 the new value invested in the stock at time τn−1,
these parts evolve without trading according to the dynamics of the bond and of the stock,
respectively, yielding (3.2) and (3.3). At τn the new wealth V̄n is the wealth before trading
minus the transaction costs to be paid, and the new risky fraction π̄n is the new amount,
πτnVτn +�n, invested in the stock divided by the new wealth, leading to (3.4) and (3.5). Note
that Definition 3.1(iii) implies that short selling and borrowing is not admissible; see also
Remark 3.1. The case of short selling and borrowing will be taken up in Section 8.

From Definition 3.1, it follows, for admissible impulse control strategies (τn,�n)n∈N, that

�n = (1 − δ)π̄n − πτn

1 + γ π̄nAn
Vτn, (3.6)

where An = sgn(�n) = sgn((1 − δ)ηn − πτn) and

π̄n = πτnVτn +�n

Vτn − δVτn − γ |�n| . (3.7)

Using these representations, it was shown in [6, Lemma 2] that we can use a different para-
metrization of the control. In fact, we have a one-to-one correspondence between admissible
impulse control strategies, as defined in Definition 3.1, and new risky fraction impulse control
strategies (NRF strategies) (τn, ηn)n∈N0 consisting of stopping times (τn)n∈N0 as defined in
Definition 3.1(i) and Fτn -measurable random variables ηn with values in (0, 1), the latter
corresponding to π̄n in (3.5) and (3.7). We call τn the nth trading time and ηn the new risky
fraction at τn. We will denote by K the class of NRF strategies. So by setting ηn = π̄n the
investor chooses, at τn, the new starting value of the risky fraction process as in (3.3) and the
wealth process evolves as in (3.2) with new wealth given by (3.4) using (3.6).

Our objective is the maximization of

R(K) ≡ R(K, x, π) = lim inf
t→∞

1

t
E[logVKt | V0 = x, π0 = π ], x > 0, π ∈ (0, 1),

(3.8)
over all NRF strategies K . We would like to find an optimal strategy, K∗, for which R∗ =
sup{R(K) : K is an NRF strategy} = R(K∗). Note that an NRF strategy automatically corre-
sponds to an admissible impulse control strategy.
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To make use of the reformulation of the control problem in terms of the new risky fractions, we
have to show that we can also express our objective in terms of the risky fraction process (πt )t≥0
and new risky fractions (ηn)n∈N0 . This was done in [6, Theorem C.1], where a factorization of
the wealth process was derived which allows one to proceed by renewal-theoretic arguments.
However, in the subsequent stochastic control approach, the following representation is more
convenient.

Proposition 3.1. For any admissible NRF strategy (τn, ηn)n∈N,

logVt = logV0 +
∫ t

0
πs

(
µ− σ 2

2
πs

)
ds +

∫ t

0
πsσ dWs +

Nt∑
n=0

�̄(πτn, ηn) (3.9)

and

πt =
∫ t

0
πs(1 − πs)(µ− σ 2πs) ds +

∫ t

0
πs(1 − πs)σ dWs +

Nt∑
n=0

(ηn − πτn), (3.10)

where Nt = sup{n ∈ N0 : τn < t}, t > 0, and

�̄(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

log
1 − δ − γ x

1 − γy
, y <

x

1 − δ
,

log
1 − δ + γ x

1 + γy
, y ≥ x

1 − δ
.

Proof. Note that the wealth in the bank account and the wealth in the stock are given by

V 0
t = (1 − π0)V0 +

∑
k≥0

1{τk<t}(−�k − γ |�k| − δVτk ),

V 1
t = π0V0 +

∫ t

0
V 1
s µ ds +

∫ t

0
V 1
s σ dWs +

∑
k≥0

1{τk<t}�k,

respectively. Using (3.6) and (3.7), and the definition of �̄, the representations can be obtained
by straightforward applications of Itô’s formula for semimartingales with jumps to Vt = V 0

t +
V 1
t and πt = V 1

t /(V
0
t + V 1

t ), respectively.

By (3.9), the asymptotic growth rate does not depend on the initial capital V0. The investor
always has to pay at least the fixed costs when stopping; in particular, fees have to be paid at
τ0 = 0 even if �0 = 0. However, the initial payment does not matter in the maximization
of (3.8), so the asymptotic growth rate is also independent of the initial fraction π0. Using the
notation of Proposition 3.1, for all initial values V0 > 0 and π0 ∈ (0, 1) we therefore obtain

R(K) = lim inf
t→∞

1

t
E

[∫ t

0
πs

(
µ− 1

2
σ 2πs

)
ds +

Nt∑
n=0

�̄(πτn, ηn)

]
. (3.11)

We will compare these quantities with the growth rates

R0 = 0 and R1 = µ− σ 2/2, (3.12)
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where R0 corresponds to the pure-bond portfolio (η0 = 0, τ1 = ∞) and R1 to the pure-stock
portfolio (η0 = 1, τ1 = ∞). For any other buy-and-hold strategy (η0 ∈ (0, 1), τ1 = ∞) with
growth rate R̃, we can show that R̃ ≤ max{0, µ− σ 2/2}; see [6, Lemma 1]. Hence, within the
class of buy-and-hold strategies it is enough to look at the pure-bond and pure-stock strategies.

Advantages of the reformulation of strategies in terms of the new risky fractions ηn are the
easier admissibility conditions, the direct use of the representation in Proposition 3.1 leading
to the simpler representation (3.11), instead of (3.8), and the fact that we hence only have to
control (πt )t≥0. So we have reduced the control problem to one dimension.

Remark 3.1. Definition 3.1(iii) describes admissible strategies as those which satisfy Vt > 0
and πt ∈ (0, 1) for all t ≥ 0. Such strategies will be compared with the pure-bond and pure-
stock strategies. Now assume that we allow for short selling (πt < 0) and borrowing (πt > 1),
retaining the condition Vt > 0 for all t and adding the condition E

∫ t
0 πs dWs = 0 for all t , this

of course being satisfied for all bounded (πt )t . Then representation (3.11) still holds if �̄ is
well defined.

(i) Let us first assume that 0 < η̂ < 1. Then

π(µ− 1
2σ

2π) <

{
0 = R0 for all π < 0,

µ− 1
2σ

2 = R1 for all π > 1;
hence, short selling is inferior to pure-bond holding and borrowing is inferior to pure-stock
holding. So, for the problem of maximizing R(K), only the admissible strategies of Def-
inition 3.1(iii) have to be considered, and compared with the pure-bond and the pure-stock
strategies.

(ii) In the cases η̂ = 0 and η̂ = 1, the pure-bond strategy and the pure-stock strategy are
respectively optimal, since these are also optimal in the model without transaction costs and,
after the initial trading, no fees have to be paid.

(iii) For η̂ < 0, i.e. negative stock growth rate, we have

π(µ− 1
2σ

2π) ≤ 0 for all π > 0,

so only strategies with πt < 0 (short selling) have to be considered in the maximization of
the asymptotic growth rate, and compared with the pure-bond strategy. Consider any strategy
starting at someπ0 < 0 withV0 > 0. Then, with positive probability, the resulting uncontrolled
risky fraction process (πt )t will be explosive. This happens at the first time τ at which Vτ = 0
and, consequently, πτ = −∞. So the strategy must act before that time.

Similarly, for η̂ > 1 only strategies with πt > 1 (borrowing) have to be considered. Again
we will have an explosion for the uncontrolled risky fraction process with positive probability,
at the first time τ at which Vτ = 0 and, consequently, πτ = ∞.

The case 0 < η̂ < 1 will be treated in detail in Sections 4–7, and the cases η̂ < 0 and 1 < η̂,
in Section 8.

4. A general optimal impulse control problem

We consider a one-dimensional diffusion process (Xt )t≥0 which is in the regime of an
impulse control strategy. The impulse control is given by an adapted, piecewise-constant
stochastic process (Zt )t≥0 which jumps at times τn, n ∈ N, with jumps of size �Zτn, n ∈ N.
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We consider (Zt )t≥0 to be a càglàd process (one that is left continuous with right limits), so
�Zt = Zt+ − Zt , and assume that there are almost surely only finitely many jumps in any
finite interval.

We consider a diffusion which is nonexplosive and, uncontrolled, follows the stochastic
differential equation

dXt = µ̃(Xt ) dt + σ̃ (Xt ) dWt, X0 = x,

on some open interval I ⊆ R, where µ̃, σ̃ : I → R. Under the control (Zt )t≥0, the controlled
process evolves according to

dXt = µ̃(Xt ) dt + dZt + σ̃ (Xt ) dWt ;

hence, the controlled process is càglàd. We could also use the càdlàg version of the problem
(which is right continuous with left limits), which would, in the following, lead to using Zt and
Xt instead of Zt+ and Xt+, and Zt− and Xt− instead of Zt and Xt .

There is given a measurable function h : I → R, and the aim is to maximize the average
reward rate

lim inf
T→∞

1

T
E

[∫ T

0
h(Xt ) dt +

∑
t∈[0,T ]

C(Xt ,�Zt)

]
,

where C : {(x, z) : x ∈ I, z ∈ I − x} → R defines the cost structure. This corresponds to
the model treated in [7] for a diffusion on R with costs C(x, z) = K1z + c1 if z > 0 and
C(x, z) = −K2z+ c2 if z < 0, for constants K1, c1,K2, c2 > 0.

We require of a control (Zt )t≥0 that the controlled process not leave I , i.e. thatXt+�Zt ∈ I
for all t . Note that between jump times the process (Xt )t≥0 evolves according to

dXt = µ̃(Xt ) dt + σ̃ (Xt ) dWt. (4.1)

To proceed formally, let there be given an open interval I ⊆ R and functions µ̃ : I → R and
σ̃ : I → R such that the stochastic differential equation (4.1) has a unique nonexplosive weak
solution on I for any initial state x ∈ I , where (Wt )t≥0 is a Wiener process.

Definition 4.1. A controlled stochastic system with initial condition x ∈ I is given by a Wiener
process (Wt )t≥0, with respect to a filtration (Ft )t≥0, and an adapted piecewise-constant process
(Zt )t≥0, having almost surely only finitely many jumps in any finite interval, such that a solution
to

dXt = µ̃(Xt ) dt + dZt + σ̃ (Xt ) dWt, X0 = x,

exists as a stochastic process on I .

Remark 4.1. We can construct such a solution in the following way. Let τn, 0 = τ0 < τ1 <

τ2 < · · · , denote the jump times of (Zt )t≥0. Let X0 = x. Start a diffusion in x + �Z0
according to the uncontrolled stochastic differential equation up to time τ1. This gives the
values of (Xt )t≥0 on (0, τ1]. Start a diffusion in Xτ1 + �Zτ1 according to the uncontrolled
stochastic differential equation, giving the values on (τ1, τ2]. Proceed in this manner to obtain
the whole controlled process (Xt )t≥0. Our definition hence implicitly contains the requirement
that Xτn +�Zτn ∈ I, n ∈ N0.
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Denote by Kx the set of all controlled stochastic systems K defined according to Defini-
tion 4.1. The aim is to find

J ∗ = sup
K∈Kx

lim inf
T→∞

1

T
E

[∫ T

0
h(Xt ) dt +

∑
t∈[0,T ]

C(Xt ,�Zt)

]
(4.2)

and an optimal (Zt )t≥0.
As we may switch between initial conditions x and x′ by using a suitable Z0, this quantity

J ∗ does not depend on x. Using Itô’s formula and the standard Hamilton–Jacobi–Bellman
approach, we first give an upper bound for J ∗. Denote by

L = 1

2
σ̃ 2(x)

d2

dx2 + µ̃(x)
d

dx

the characteristic operator of the uncontrolled diffusion (4.1). Let v : I → R and λ ∈ R satisfy
the following conditions.

(A1) Lv(x)+ h(x)− λ ≤ 0 for all x ∈ I .

(A2) v(x + z)− v(x)+ C(x, z) ≤ 0 for all x ∈ I and z ∈ I − x, z 
= 0.

(A3) v is continuously differentiable and piecewise twice continuously differentiable.

Hence, v is an element of the Sobolev spaceH 2(0, 1) and sufficiently smooth that Itô’s formula
may be applied.

Theorem 4.1. Assume (A1)–(A3) to hold, assume that, for any controlled system,

sup
T

E |v(XT+)| < ∞,

and assume that (∫ t

0
σ(Xs)v

′(Xs) dWs

)
t≥0

is a martingale.

Then J ∗ ≤ λ.

Proof. By Itô’s formula,

v(XT+) = v(x)+
∫ T

0
Lv(Xt ) dt +

∫ T

0
v′(Xt ) dZt +

∫ T

0
σ̃ (Xt )v

′(Xt ) dWt

+
∑
t∈[0,T ]

(v(Xt+)− v(Xt )− v′(Xt )�Xt)

= v(x)+
∫ T

0
Lv(Xt ) dt +

∫ T

0
σ̃ (Xt )v

′(Xt ) dWt +
∑
t∈[0,T ]

(v(Xt+)− v(Xt )),

as
∫ T

0 v′(Xt ) dZt = ∑
t∈[0,T ] v′(Xt )�Xt . (Here a prime denotes differentiation.)
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This implies that, for any controlled system with initial state x,∫ T

0
h(Xt ) dt +

∑
t∈[0,T ]

C(Xt ,�Zt) = λT + v(x)− v(XT+)+
∫ T

0
σ̃ (Xt )v

′(Xt ) dWt

+
∫ T

0
(Lv(Xt )+ h(Xt )− λ) dt

+
∑
t∈[0,T ]

(v(Xt +�Zt)− v(Xt )+ C(Xt ,�Zt))

≤ λT + v(x)− v(XT+)+
∫ T

0
σ̃ (Xt )v

′(Xt ) dWt,

using (A1) and (A2). By taking expectations and dividing byT , from the additional assumptions
we obtain

lim sup
T→∞

1

T
E

[∫ T

0
h(Xt ) dt +

∑
t∈[0,T ]

C(Xt ,�Zt)

]
≤ λ.

Remark 4.2. The proof immediately shows how we may proceed to find J ∗ and an optimal
strategy. Find v and λ satisfying (A1)–(A3) and a control strategy such that, at least from some
fixed time onwards, Lv(Xt )+ h(Xt )− λ = 0 and v(Xt +�Zt)− v(Xt )+ C(Xt ,�Zt) = 0
when controls take place. For such v, λ, and (Zt )t≥0, it follows that

lim
T→∞

1

T
E

[∫ T

0
h(Xt ) dt +

∑
t∈[0,T ]

C(Xt ,�Zt)

]
= λ;

hence, J ∗ = λ and (Zt )t≥0 defines an optimal control.

Suitable candidates for optimal controls were found in [6] and [7] and, for discrete time,
in [15]. These strategies are described by four parameters, a, α, β, and b, with a < α and
β < b, of the state space. Start the control strategy by bringing the process into some state
in (a, b). Then let the diffusion run uncontrolled until it hits a or b. From a control it by
an upwards jump into state α, and from b, by a downwards jump into state β. Repeat this
procedure. This clearly defines a control strategy according to Definition 4.1; see Remark 4.1.
Let us call such a strategy a constant boundary strategy (CB strategy).

5. Specification of the problem

Starting in this section, we show optimality of CB strategies in the problem of portfolio
optimization with transaction costs discussed in Section 3. Let η̂ ∈ (0, 1).

By Proposition 3.1, the uncontrolled diffusion is given by the risky fraction process (πt )t≥0,
with state space (0, 1), such that

dπt = πt (1 − πt )(µ− σ 2πt ) dt + πt (1 − πt )σ dWt. (5.1)

Thus, in the notation of Section 4,

µ̃(x) = x(1 − x)(µ− σ 2x), σ̃ (x) = σx(1 − x), (5.2)

and the corresponding operator is given by

Lv(x) = x(1 − x)(µ− σ 2x)v′(x)+ 1
2σ

2x2(1 − x)2v′′(x). (5.3)
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Proposition 3.1 and a comparison of (3.11) and (4.2) furthermore show that the function h is
given by

h(x) = x(µ− 1
2σ

2x), x ∈ (0, 1). (5.4)

For (πt )t≥0, a scale function ρc and a speed measuremc are given, for some constant c ∈ (0, 1),
by

ρc(x) =
∫ x

c

exp

(
−2

∫ z

c

µ̃(y)

σ̃ 2(y)
dy

)
dz, (5.5)

mc(dx) = 2

ρ′
c(x)σ̃

2(x)
dx.

A solution, vc, to the differential equation Lv + h− λ = 0, with v′
c(c) = 0, is given by

v′
c(x) = ρ′

c(x)

∫ x

c

(λ− h(y))mc(dy) = ρ′
c(x)

∫ x

c

(λ− h(y))
2

ρ′
c(y)σ̃

2(y)
dy.

Since ρ′
a(x) is of the form fρ(a, b)ρ

′
b(x), x ∈ (0, 1), for some function fρ , we may insert any

scale function ρ(x), to obtain

v′
c(x) = ρ′(x)

∫ x

c

(λ− h(y))
2

ρ′(y)σ̃ 2(y)
dy. (5.6)

The controls �Zn at τn (in Section 4) correspond to the increments of the risky fraction,
ηn − πτn . It is easier to use the costs with direct dependence on the new fraction ηn, so we
switch to costs depending on x and y = x + z using

�̄(x, y) = C(x, y − x),

when controls take place. As discussed earlier, the cost structure is given by

�̄(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

log
1 − δ − γ x

1 − γy
, y <

x

1 − δ
,

log
1 − δ + γ x

1 + γy
, y ≥ x

1 − δ
,

which is continuous at y = x/(1 − δ) with value log(1 − δ). For fixed x, the derivative of
the cost function �̄ has a discontinuity at y = x/(1 − δ) (equivalently, C has a discontinuity
at z = δx/(1 − δ)) which, if �̄ were used, would lead to problems in our later reasoning. We
therefore use the following modification of the cost function:

�(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

log
1 − δ − γ x

1 − γy
, y ≤ x,

log
1 − δ + γ x

1 + γy
, y > x.

We can justify this modification as follows. Our original aim was to find a control strategy K
maximizing the asymptotic growth rate (for this argument denoted by R̄(K)) with respect to
costs �̄. It is easily seen that

log
1 − δ − γ x

1 − γy
≤ log

1 − δ + γ x

1 + γy
for y ≤ x

1 − δ
;
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thus,
�̄(x, y) ≤ �(x, y) for all x, y ∈ (0, 1),

since we changed the cost function on (x, x/(1 − δ)) only. Hence, for any control strategy,

R̄(K) ≤ R(K),

the latter denoting the asymptotic growth rate with respect to costs �. Assume now that we
have found an optimal strategy K∗ with respect to �, whence

R̄(K) ≤ R(K) ≤ R(K∗).

If R̄(K∗) = R(K∗), K∗ is then also optimal with respect to �̄. As introduced at the end
of Section 4, a CB strategy is given by four parameters a, α, β, and b, where (a, b) is the
continuation region for the uncontrolled (πt )t≥0 and α and β are the new risky fractions after
buying and selling, respectively. For a CB strategy K , R̄(K) = R(K) holds if α ≥ a/(1 − δ).
So if K∗ is an optimal CB strategy with respect to R, it is also optimal with respect to R̄ if
α ≥ a/(1 − δ). Our numerical examples at the end of the paper will show that this condition
is usually fulfilled. From now on we shall therefore use the costs �.

For later reference, we note that

∂

∂y
�(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

γ

1 − γy
, y ≤ x,

− γ

1 + γy
, y > x,

(5.7)

∂

∂x
�(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

γ

1 − δ + γ x
, x < y,

− γ

1 − δ − γ x
, x ≥ y.

(5.8)

6. Conditions for the optimality of CB strategies

According to Section 4 and Section 5 we have to find v and λ and a, α, β, and b, 0 < a <

α < β < b < 1, such that

Lv(x)+ h(x)− λ ≤ 0, (6.1)

v(y)− v(x)+ �(x, y) ≤ 0, (6.2)

for all x, y ∈ (0, 1). Furthermore, we must also have

Lv(x)+ h(x)− λ = 0, x ∈ (a, b), (6.3)

v(β)− v(b)+ �(b, β) = 0, (6.4)

v(α)− v(a)+ �(a, α) = 0. (6.5)

As pointed out in Section 5, (6.3) can be satisfied by choosing v(x) = vc(x) on (a, b), where
vc is given by its derivative in (5.6) and is thus unique up to some constant term. We elaborate
on the last two conditions; these will be satisfied if, furthermore,

v(β)− v(x)+ �(x, β) = 0 for all x ≥ b,

v(α)− v(x)+ �(x, α) = 0 for all x ≤ a.
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So, for some c ∈ (0, 1), we shall choose

v(x) =

⎧⎪⎨
⎪⎩
vc(α)+ �(x, α), x ≤ a,

vc(x), x ∈ (a, b),
vc(β)+ �(x, β), x ≥ b.

(6.6)

In addition, we look for a solution which has the smooth-fit property

v′
c(b) = v′(b−) = v′(b+) = ∂

∂x
�(x, β)

∣∣∣∣
x=b

, (6.7)

v′
c(a) = v′(a+) = v′(a−) = ∂

∂x
�(x, α)

∣∣∣∣
x=a

. (6.8)

Furthermore, the mappings

v(x)− v(b)+ �(b, x), v(x)− v(a)+ �(a, x)

will have local maxima at β and at α, respectively, translating into

v′
c(β) = − ∂

∂y
�(b, y)

∣∣∣∣
y=β

, v′
c(α) = − ∂

∂y
�(a, y)

∣∣∣∣
y=α

. (6.9)

Denoting v′
c by g, we shall determine g (i.e. c), λ, a, α, β, and b using the following conditions,

where we have written the explicit expressions for the derivatives:

g(b) = − γ

1 − δ − γ b
, (6.10)

g(β) = − γ

1 − γβ
, (6.11)

∫ b

β

g(x) dx = �(b, β), (6.12)

g(a) = γ

1 − δ + γ a
, (6.13)

g(α) = γ

1 + γα
, (6.14)∫ α

a

g(x) dx = −�(a, α). (6.15)

In detail, (6.10) follows from (6.7), (6.11) and (6.14) follow from (6.9), (6.12) follows from (6.4),
(6.13) follows from (6.8), and (6.15) follows from (6.5), using (5.7) and (5.8).

Here, according to (5.6), g will be a function of the form

g(x) ≡ g(x; c, λ) = ρ′(x)
∫ x

c

(λ− h(y))
2

ρ′(y)σ 2(y)
dy,

where c and λ will have to be chosen appropriately and ρ is any scale function of the form
given in (5.5). We point out that

g′(x) = − 2

σ 2(x)
(h(x)+ µ(x)g(x)− λ). (6.16)
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The following arguments will use the properties of g, which in turn depend on the properties
of the diffusion.

Different scale functions arise according to whether η̂ = 1
2 or η̂ 
= 1

2 . We shall discuss the
case η̂ > 1

2 in detail.

7. Existence of optimal CB strategies

We consider the case η̂ ∈ ( 1
2 , 1). This implies that R1 = µ − σ 2/2 > 0 = R0. Hence,

by (3.12), we are only interested in an optimal growth rate λ > R1 since otherwise the buy-
and-hold strategy performs better. On the other hand, due to the transaction costs we expect
that λ < R̂, so we are searching for λ ∈ (R1, R̂). We shall frequently use the relation

(2η̂ − 1)σ 2 = 2R1.

According to the argument preceding (5.6), we can choose

ρ(x) = − 1

2η̂ − 1

(
1 − x

x

)2η̂−1

as our scale function. Then

ρ′(x) = 1

x(1 − x)

(
1 − x

x

)2η̂−1

and, for c ∈ (0, 1),

g(x; c, λ)

= ((1 − x)/x)2η̂−1

x(1 − x)R1

{
(λ− R1x)

(
x

1 − x

)2η̂−1

− (λ− R1c)

(
c

1 − c

)2η̂−1}
. (7.1)

To simplify the notation, we do not always note the dependency of g on c and λ, i.e. we may
write g(x) instead of g(x; c, λ). By (6.16),

g′(x) = ∂

∂x
g(x; c, λ) = −x(2η̂ − x)σ 2 + 2x(1 − x)(η̂ − x)g(x)σ 2 − 2λ

x2(1 − x)2σ 2 . (7.2)

We shall frequently use the mapping

ϕ : (0, 1) → R, ϕ(x) = x

(
µ− σ 2

2
x

)
. (7.3)

Note that
ϕ(0) = 0, ϕ(η̂) = R̂ > R1 = ϕ(2η̂ − 1) = ϕ(1). (7.4)

We shall denote the partial derivatives of g ≡ g(x; c, λ) by g′, gc, and gλ (in an obvious
notation).

Lemma 7.1. Suppose that c ∈ (0, 1).

(i) g(c) = 0, and g′(c) < 0 if and only if λ < ϕ(c).

(ii) For fixed c, g is strictly increasing in λ on (c, 1) and strictly decreasing on (0, c).
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(iii) For fixed λ, g is strictly increasing in c on {c ∈ (0, 1) : λ < ϕ(c)} and strictly decreasing
in c on {c ∈ (0, 1) : λ > ϕ(c)}.

Proof. The definition of g and (7.2) imply (i). For (ii), it suffices to note only that

gλ(x; c, λ) = 1

x(1 − x)R1

{
1 −

(
c(1 − x)

x(1 − c)

)2η̂−1}
(7.5)

and that x �→ ((1 − x)/x)2η̂−1 is strictly decreasing on (0, 1). Finally, (iii) is obvious from

gc(x; c, λ) = ([(1 − x)c]/[x(1 − c)])2η̂−1

x(1 − x)c(1 − c)

2

σ 2 (ϕ(c)− λ). (7.6)

In Lemma 7.2 we discuss the detailed behaviour of g in the case λ > R1, as this will be
essential in our arguments.

Lemma 7.2. Suppose that c ∈ (0, 1) and λ > R1.

(i) limx→0 g(x) = −∞ and limx→1 g(x) = ∞.

(ii) If λ < ϕ(c) then g has three roots, x1 ≡ x1(c), c, and x2 ≡ x2(c), satisfying x1 < c < x2,
g′(x1) > 0, g′(c) < 0, and g′(x2) > 0.

(iii) Suppose that λ = ϕ(c). Then g′(c) = 0 and g has at most two roots, x1 ≡ x1(c) and
x2 ≡ x2(c).

• If c > η̂ then x1 < c = x2 and g′(x1) > 0.

• If c < η̂ then x1 = c < x2 and g′(x2) > 0.

Proof. For (i) we look at the representation

g(x) = 1

x(1 − x)R1

{
(λ− R1x)− (λ− R1c)

(
c(1 − x)

x(1 − c)

)2η̂−1}
.

The claim follows because R1 > 0, λ > R1x for all x ∈ (0, 1), 2η̂ − 1 > 0, and

lim
x↘0

1 − x

x
= ∞, lim

x↗1

1 − x

x
= 0.

For (ii) and (iii) we have to look at the behaviour of

f (x) := (λ− R1x)

(
x

1 − x

)2η̂−1

− (λ− R1c)

(
c

1 − c

)2η̂−1

, x ∈ (0, 1).

By (7.1), the signs of g and f are the same. The derivative is

f ′(x) = 1

x(1 − x)

(
x

1 − x

)2η̂−1

((λ− R1x)(2η̂ − 1)− R1x(1 − x))

= 2R1

σ 2x(1 − x)

(
x

1 − x

)2η̂−1

(λ− ϕ(x)).
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Since ϕ is a polynomial of degree two, f ′ has at most two roots; hence, f has at most two
extrema. By (7.4), f has two extrema if and only if λ ∈ (R1, R̂). Furthermore, for λ > R1,

lim
x→0

f (x) = −(λ− R1c)

(
c

1 − c

)2η̂−1

< 0, lim
x→1

f (x) = ∞.

This shows that g has at most three roots. In the case λ < ϕ(c), we have g′(c) < 0 and g thus
has exactly three roots. The other claims in (ii) follow easily from this. In the case λ = ϕ(c),
we have f ′(c) = 0. Inspection of the second derivative,

f ′′(x) = 2R1

σ 2x2(1 − x)2

(
x

1 − x

)2η̂−1

(2(λ− ϕ(x))(η̂ − 1 + x)− σ 2x(1 − x)(η̂ − x)),

shows that in this case we have a minimum at c if c > η̂ and a maximum at c if c < η̂, which
proves (iii).

For the moment we keep c fixed and consider g on [c, 1). For λ < ϕ(c), according to
Lemma 7.2 g will possibly have the right behaviour to satisfy conditions (6.10)–(6.15). So in
the following we shall assume that λ ∈ (R1, ϕ(c)). Then the condition λ > R1 can only be
satisfied if ϕ(c) > R1. Since ϕ(c) > R1 if and only if c ∈ (2η̂ − 1, 1), we are led to consider

c ∈ (2η̂ − 1, 1), λ ∈ (R1, ϕ(c)).

By Lemma 7.1(ii), g is strictly increasing in λ on [c, 1), and the following lemma will show
that

λ̄1 ≡ λ̄1(c) = sup

{
λ > R1 : inf

x∈[c,1) g(x; c, λ) ≤ − γ

1 − δ − γ x

}
is well defined. Note that g ≥ 0 for λ ≥ R̂.

Lemma 7.3. (i) limλ→R1 minx∈(c,1) g(x; c, λ) = −∞; hence, λ̄1 > R1.

(ii) For λ ∈ (R1, λ̄1), unique b and β exist satisfying c < β < b < 1,

g(β) = − γ

1 − γβ
, g(b) = − γ

1 − δ − γ b
,

and

g′(β)+ γ 2

(1 − γβ)2
< 0, g′(b)+ γ 2

(1 − δ − γβ)2
> 0.

(iii) As functions of λ, β ≡ β(λ) is strictly increasing and b ≡ b(λ) is strictly decreasing, and
both are continuous and differentiable on (R1, λ̄1).

(iv) For λ = λ̄1, unique b̄ and β̄ with c < β̄ < b̄ < 1 exist such that (6.10) and (6.11) hold;

g′(β̄)+ γ 2

(1 − γ β̄)2
< 0, g′(b̄)+ γ 2

(1 − δ − γ b̄)2
= 0;

− γ

1 − δ − γ b̄
≤ g(x; c, λ̄(c)) ≤ − γ

1 − γ β̄

for x ∈ (β̄, b̄); and

λ̄1 = R̂ − σ 2

2

(
γ

1 − δ − γ b̄
b̄(1 − b̄)+ η̂ − b̄

)2

.
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Proof. We write

g(x, c, R1 + ε) = f0(x)(εf1(x)+ R1f2(x)),

where

f0(x) = ((1 − x)/x)2η̂−1

x(1 − x)R1
,

f1(x) =
(

x

1 − x

)2η̂−1

−
(

c

1 − c

)2η̂−1

,

f2(x) = (1 − x)

(
x

1 − x

)2η̂−1

− (1 − c)

(
c

1 − c

)2η̂−1

.

Now observe that f0(x) → ∞, f1(x) → ∞, and f2(x) → −(1 − c)(c/(1 − c))2η̂−1 < 0 as
x → 1. Hence, for any k < 0 we can choose an ε > 0 such that minx∈(c,1) g(x, c, R1 +ε) < k.
So (i) follows.

From (i), Lemma 7.1(i), and Lemma 7.2(i), we know that g(x) = −γ /(1 − γ x) has at least
two solutions, β1 and β2, β1 < β2, in (c, 1) with

g′(β1)+ γ 2

(1 − γβ1)2
≤ 0, g′(β2)+ γ 2

(1 − γβ2)2
≥ 0,

and at least one solution, β0, in (0, c)where the derivative is positive. Now consider the function

f̄ : x �→ −xσ
2(2η̂ − x)− 2x(1 − x)σ 2(η̂ − x)γ /(1 − γ x)− 2λ

x2(1 − x)2σ 2 + γ 2

(1 − γ x)2
,

which coincides at x = β0, β1, β2, and at any other solution, with the derivative of g(x) +
γ /(1 − γ x); see (7.2). A simple computation shows that

f̄ (x) = p2(x)

x2(1 − x)2σ 2(1 − γ x)2
,

where p2 is a polynomial of degree two. Note that the terms of degree three and degree four
cancel. By arguments similar to those in the proof of Lemma 7.2, this shows that g(x) =
−γ /(1 − γ x) has no other solutions, and that the inequalities for the derivatives are strict. So
β = β1 has the desired properties. The same argument applies to b, only we have to take the
biggest of the three roots. This proves (ii).

The argument in (ii) also shows that b and β are uniquely determined. By the implicit
function theorem, for β ≡ β(λ) and b ≡ b(λ) we hence obtain

d

dλ
β(λ) = −gλ(β)

g′(β)+ γ 2/(1 − γβ)2
> 0,

d

dλ
b(λ) = −gλ(b)

g′(b)+ γ 2/(1 − δ − γ b)2
< 0.

The first part of (iv) follows similarly to (ii), when we observe that g only touches x �→
−γ /(1 − δ − γ x) and, hence, that the two possible roots greater than c coincide. So we have

g′(b̄) = − γ 2

(1 − δ − γ b̄)2
= −g2(b̄).

Using representation (7.2) of g′, 2R1 = σ 2(2η̂−1), and R̂ = 1
2µ

2/σ 2, we solve for λ̄ to obtain
the final equation in (iv).
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For fixed c we have to solve ψ(c, λ) = 0, where

ψ(c, λ) :=
∫ b(λ)

β(λ)

g(x; c, λ) dx − log
1 − δ − γ b(λ)

1 − γβ(λ)
.

Lemma 7.4. There exists a unique c1 ∈ (2η̂−1, η̂) such that, for each c ∈ [c1, 1), the equation
ψ(c, λ) = 0 has a unique solution, λ1(c) ∈ (R1, λ̄1(c)), with λ1(c) < ϕ(c) for c > c1 and
λ1(c1) = ϕ(c1). As a function of c, λ1 is continuous and strictly decreasing on (c1, 1).

Proof. From Lemma 7.3(i), ψ(c, λ) → −∞ as λ → R1, and, from Lemma 7.3(iv),

ψ(c, λ) → ψ(c, λ̄1) =
∫ b̄

β̄

g(x; c, λ̄1) dx − log
1 − δ − γ b̄

1 − γ β̄

as λ → λ̄1. However, −γ /(1 − δ − γ x) ≤ g(x; c, λ̄1) ≤ −γ /(1 − γ x) on (β̄, b̄); hence,

log
1 − δ − γ b̄

1 − δ − γ β̄
≤

∫ b̄

β̄

g(x; c, λ̄1) dx ≤ log
1 − γ b̄

1 − γ β̄
.

Therefore,

ψ(c, λ̄1) ≥ − log
1 − δ − γ β̄

1 − γ β̄
> 0.

So a solution λ1 ≡ λ1(c) exists. For some x0 ∈ (0, 1), write

G(x, c, λ) =
∫ x

x0

g(y; c, λ) dy,

and for its derivatives write Gx , Gc, and Gλ. Then

ψ(c, λ) = G(b(λ), c, λ)−G(β(λ), c, λ)− log
1 − δ − γ b(λ)

1 − γβ(λ)

and, using Lemma 7.3(iii),

ψλ(c, λ) := ∂

∂λ
ψ(c, λ) =

(
g(b(λ); c, λ)− γ

1 − δ − γ b(λ)

)
b′(λ)

−
(
g(β(λ); c, λ)− γ

1 − γβ(λ)

)
β ′(λ)

+Gλ(b(λ), c, λ)−Gλ(β(λ), c, λ)

=
∫ b(λ)

β(λ)

gλ(x; c, λ) dx > 0,

the latter due to Lemma 7.1(ii). Hence,ψ is strictly increasing in λ, so the solution λ1 is unique.
Let us now consider b and β also to be functions of c. Suppose that some c and λ are given

with λ < ϕ(c). As in the proof of Lemma 7.3, we can show that β ≡ β(c, λ) and b ≡ b(c, λ)

are differentiable, with

βc(c, λ) = −gc(β; c, λ)
g′(β; c, λ)+ γ 2/(1 − γβ(c, λ))2

> 0,

bc(c, λ) = −gc(b; c, λ)
g′(b; c, λ)+ γ 2/(1 − δ − γ b(c, λ))2

< 0,
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since, by Lemma 7.1(iii), gc(x; c, λ) > 0 if λ < ϕ(c). Therefore,

ψc(c, λ) := ∂

∂c
ψ(c, λ) =

(
g(b(c, λ); c, λ)− γ

1 − δ − γ b(c, λ)

)
bc(c, λ)

−
(
g(β(c, λ); c, λ)− γ

1 − γβ(c, λ)

)
βc(c, λ)

+Gc(b(c, λ), c, λ)−Gc(β(c, λ), c, λ)

=
∫ b(c,λ)

β(c,λ)

gc(x; c, λ) dx > 0.

Thus,
d

dc
λ1(c) = −ψc(c, λ)

ψλ(c, λ)
< 0

if λ1(c) < ϕ(c). By uniqueness, λ1 is also continuous in c. So we have shown that λ1 is
strictly decreasing on {c : λ1(c) < ϕ(c)}. However, by Lemma 7.2(iii), we know that for c > η̂

no solution to (6.12) exists for λ = ϕ(c); hence, λ̄1(c) < ϕ(c), implying that λ1(c) < ϕ(c).
Furthermore, for c = η̂, the expression for λ̄1 in Lemma 7.3 shows that λ̄1(η̂) < R̂. So in
this case λ1(η̂) < ϕ(η̂) also, since ϕ(η̂) = R̂. Thus, [η̂, 1) ⊂ {c : λ1(c) < ϕ(c)}. We proved
above that λ1(c) is strictly decreasing as long as λ1(c) < ϕ(c). On the other hand, ϕ is
strictly increasing on (2η̂ − 1, η̂], with ϕ(2η̂ − 1) = R1. Hence, λ1 and ϕ intersect at some
c1 ∈ (2η̂ − 1, η̂).

Bringing together Lemma 7.3 and Lemma 7.4, we see that for c ∈ (c1, 1) we have found a
λ1 ≡ λ1(c) such that conditions (6.10)–(6.12) hold for β = β(c, λ1(c)) and b = b(c, λ1(c)).

We can now proceed in the same way to find α and a such that (6.13)–(6.15) hold. We thus
consider the interval (0, c) and define

λ̄2(c) = sup

{
λ > 0 : max

x∈(0,c] g(x; c, λ) ≥ γ

1 − δ + γ x

}
.

We obtain the following result.

Lemma 7.5. (i) For each c ∈ (2η̂ − 1, 1) and λ ∈ (0, λ̄2(c)), there exist unique a ≡ a(c, λ)

and α ≡ α(c, λ) satisfying 2η̂ − 1 < a < α < c and

g(α) = γ

1 + γα
, g(a) = γ

1 − δ + γ a
.

(ii) There exists a unique c2 ∈ (η̂, 1) such that, for each c ∈ (2η̂ − 1, c2], the equation

ψ̃(c, λ) :=
∫ α(c,λ)

a(c,λ)

g(x; c, λ) dx + �(a(c, λ), α(c, λ)) = 0

has a unique solution λ2(c) ∈ (0, λ̄2(c)) with λ2(c) < ϕ(c) for c < c2 and λ2(c2) = ϕ(c2).
As a function of c, λ2 is continuous and strictly increasing on (2η̂ − 1, c2). Furthermore,
λ2(c2) > R1.

To prove Lemma 7.5, we can proceed exactly as in Lemmas 7.3 and 7.4; we omit the details.

Proposition 7.1. There exist unique λ, a, α, b, and β which satisfy (6.10)–(6.15).
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Proof. We have a solution to (6.10)–(6.15) as soon as we find a c∗ with λ1(c
∗) = λ2(c

∗).
By Lemmas 7.4 and 7.5(ii), there exist c1 ∈ (2η̂−1, η̂) and c2 ∈ (η̂, 1)with λ1(c1) = ϕ(c1)

andλ2(c2) = ϕ(c2). Furthermore, λ1 is strictly decreasing on (c1, 1) andλ2 is strictly increasing
on (2η̂ − 1, c2). Since λ2(c1) < ϕ(c1) = λ1(c1) and λ1(c2) < ϕ(c2) = λ2(c2), there exists a
unique c∗ ∈ (c1, c2) satisfying λ1(c

∗) = λ2(c
∗). Uniqueness of c∗ follows from uniqueness in

each step.

We shall denote the optimal values corresponding to c∗ simply by λ, a, α, b, and β. They
provide our solutions to (6.10)–(6.15).

We define v by choosing a constant k freely and setting

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k + �(x, α), x ≤ a,

v(a)+
∫ x

a

g(y; c∗, λ) dy, a < x ≤ b,

v(β)+ �(x, β), x > b.

By (6.15), we have k = v(α). Obviously v′(x) is greater than, equal to, or less than 0 for x less
than, equal to, or greater than c∗, respectively. Furthermore, this defines a bounded function in
H 2(0, 1) with bounded derivatives. Hence, (A3) and the finiteness and martingale conditions
in Theorem 4.1 are fulfilled.

To derive the conditions (6.10)–(6.15) we used some local arguments. To prove optimality
we have to show that the inequalities (A1) and (A2) hold globally.

Theorem 7.1. For the parameters λ, a, α, b, and β in Proposition 7.1, the CB strategy with
parameters a, α, b, and β is an optimal impulse control strategy with asymptotic growth rate λ
for the costs �. If α > a/(1 − δ) then the solution is optimal for the original problem with
costs �̄.

Proof. To prove optimality it only remains to show that

Lv(x)+ h(x)− λ ≤ 0, x < a,

Lv(x)+ h(x)− λ ≤ 0, x > b, (7.7)

v(y)− v(x)+ �(x, y) ≤ 0, y ≤ x, (7.8)

v(y)− v(x)+ �(x, y) ≤ 0, y > x.

We shall only show (7.7) and (7.8), the other two following similarly.
According to our construction,

g′(b) = − 2

(1 − b)2b2 [h(b)+ µ(b)g(b)− λ] > 0,

which implies that
h(x)+ µ(x)v′(x)− λ < 0 for x > b

and, thus, that
1
2σ

2(x)v′′(x)+ µ(x)v′(x)+ h(x)− λ < 0 for x > b

(which is (7.7)), since

v′′(x) = − γ 2

(1 − δ − γ x)2
< 0, x > b.
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We write (7.8) equivalently as

∫ x

y

(
v′(z)− −γ

1 − δ − γ z

)
dz+ log

1 − γy

1 − δ − γy
≥ 0

for y ≤ x. Note that, by the discussion in Lemma 7.2,

v′(x)− −γ
1 − δ − γ x

⎧⎪⎨
⎪⎩

= 0, x ≥ b,

< 0, b1 < x < b,

≥ 0, x ≤ b1,

and that log[(1 − γ x)/(1 − δ − γ x)] is increasing in x. Here b1 denotes the first root of
g(x) = −γ /(1 − δ − γ x) greater than c; cf. the proof of Lemma 7.3. Thus, it is sufficient to
show that

f̃ (x) :=
∫ b

x

(
g(z)− −γ

1 − δ − γ z

)
dz+ log

1 − γ x

1 − δ − γ x
≥ 0

for all x, a ≤ x ≤ b. We compute

f̃ ′(x) = −
(
g(x)− −γ

1 − δ − γ x

)
+

(
γ

1 − δ − γ x
− γ

1 − γ x

)

= −
(
g(x)− −γ

1 − γ x

)
.

Hence, f̃ ′(x) < 0 for x < β and f̃ ′(x) > 0 for x > β. Since f̃ (β) = 0 due to our construction,
the above inequality follows.

Remark 7.1. The case η̂ < 1
2 can be solved analogously using the same scale function as in

the case η̂ > 1
2 . In the case η̂ = 1

2 , we have

µ(x) = x(1 − x)( 1
2 − x)σ 2, σ (x) = x(1 − x)σ, h(x) = 1

2x(1 − x)σ 2.

We can use the scale function

ρ(x) = log
x

1 − x
with ρ′(x) = 1

x(1 − x)

and, hence, consider the function

g(x) = 1

x(1 − x)

∫ x

c

(
λ

σ 2 − 1

2
y(1 − y)

)
2

y(1 − y)
dy

with derivative

g′(x) = − 2

x2(1 − x)2

(
1

2
x(1 − x)+ x(1 − x)

(
1

2
− x

)
g(x)− λ

σ 2

)
.

From this point, this case can be treated in a manner similar to the case n > 1
2 .

https://doi.org/10.1017/S0001867800001397 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001397


Optimal portfolios under transaction costs 937

8. Short selling and borrowing

We shall now look at the cases η̂ < 0 and η̂ > 1, respectively corresponding to µ < 0 (short
selling) and µ > σ 2 (borrowing). As pointed out in Remark 3.1, in the first case we consider
strategies with πt < 0, to be compared with the pure-bond strategy, and in the second case we
consider strategies with πt > 1, to be compared with the pure-stock strategy.

Looking at the costs �̄ in (3.10), we see that these costs are well defined and that we can
always liquidate the position in the stock with strictly positive new wealth as long as the risky
fraction process (πt )t≥0 stays in the solvency region

S =
(

−1 − δ

γ
,

1 − δ

γ

)
.

For an admissible NRF strategy (τn, ηn)n∈N0 , we now require ηn ∈ S and, for the controlled
processes, Vt > 0 and πt ∈ S for all t ≥ 0, the latter translating to a condition on the stopping
times.

As noted in Remark 3.1, the uncontrolled risky fraction process is explosive, which leads to
the necessity of some minor modifications in the arguments corresponding to those in Section 4.
This section is structured as follows. First, we present these modifications, in Remark 8.1. Then
we show that the results of Section 7 may be carried over to the respective cases of short selling
and borrowing, the first case being treated in some detail and the second in condensed form, in
Remark 8.2.

Remark 8.1. Consider the general situation of Section 4, but allow for an explosion. Fix an
open interval J of the state space such that, for any starting point in J , the first exit time from J

is strictly less than the explosion time. We consider control strategies (Zt )t≥0 as in Section 4,
but for an admissible control strategy we additionally require that the controlled process not
leave J . Hence, Xt + �Zt ∈ J for all t ≥ 0. So such a control strategy has to satisfy
Xτn +�Zτn ∈ J , and the next control has to take place before the processXt, t > τn, leaves J .

With I replaced by J in (A1)–(A3) of Section 4, Theorem 4.1 remains valid for admissible
control strategies, as does Remark 4.2. We may thus use these results to derive optimal
admissible strategies.

8.1. Short selling

We now consider the case η̂ < 0 in some detail. Starting with π0 < 0, the uncontrolled
diffusion (5.1) stays in (−∞, 0) up to its explosion time and we require that the controlled
diffusion stay in (−(1 − δ)/γ, 0). We thus follow the procedure in Remark 8.1 with

J =
(

−1 − δ

γ
, 0

)
.

A good candidate for an optimal admissible strategy is a CB strategy with parameters satisfying

−1 − δ

γ
< a < α < β < b < 0,

and we now show that this may be verified using arguments similar to those in the earlier
sections.

As in Section 5, we may use the modification � of the cost function. The corresponding
inequality, �̄(x, y) ≤ �(x, y), holds for all x, y ∈ J . For the uncontrolled diffusion before
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explosion, the coefficients µ̃ and σ̃ , the operator L, and the function h are respectively the same
as in (5.2), (5.3), and (5.4). These functions are now considered on (−∞, 0). As in Section 6,
we use the approach of (6.1)–(6.5) with a suitable v of the form in (6.6), constructed via the
speed measure and the scale function, whose derivative equals 0 at c < 0. Again, g denotes
this derivative. Since the variable x is less than 0 we write g(x) ≡ g(x; c, λ) (see (7.1)) in the
form

g(x) = 1

R1x(1 − x)

(
1 − x

−x
)2η̂−1

f̃ (x), (8.1)

where

f̃ (x) = (λ− R1x)

( −x
1 − x

)2η̂−1

− (λ− R1c)

( −c
1 − c

)2η̂−1

and R1, 2η̂ − 1 < −1. The representations of g in the proof of Lemma 7.2 and those of the
derivatives g′, gλ, and gc in (7.2), (7.5), and (7.6), respectively, are still valid. Again it is
convenient to use ϕ as defined in (7.3). Since ϕ(0) = ϕ(2η̂) = 0 = R0 and ϕ(c) > 0
for c ∈ (2η̂, 0), we expect from the argument in Section 7 that we can find a solution with
c ∈ (2η̂, 0) and λ ∈ (0, ϕ(c)).
Lemma 8.1. Suppose that c ∈ (2η̂, 0).

(i) limx→−∞ g(x) = 0 and

lim
x↗0

g(x) =

⎧⎪⎨
⎪⎩

∞ if λ > 0,

−1 if λ = 0,

−∞ if λ < 0.

(ii) If λ ∈ (0, ϕ(c)) then g has three roots, x1, c, and x2, x1 < c < x2 < 0, satisfying
g′(x1) > 0, g′(c) < 0, and g′(x2) > 0.

(iii) If λ ∈ (0, ϕ(c)) then g(x) has two extrema: a maximum attained at x̄ ∈ (2η̂, c) and a
minimum attained at x ∈ (c, 0).

(iv) For each c ∈ (2η̂, 0), we have infλ∈(0,ϕ(c)) minx∈(c,0) g(x; c, λ) ≤ −1.

(v) For each x < 0, we have limc↗0 g(x; c, 0) = ∞.

Proof. Most of the properties can be verified as in Lemmas 7.1 and 7.2. One difference is
that g(x) → 0 as x → −∞. By looking at the derivative of f̃ (see (8.1)), we can again show
that f̃ has three roots, yielding (ii), and two extrema. The main difference in the argument is
that we have to show that the maximum is attained at x̄ > 2η̂. From the properties of g derived
above we know that a unique x̄ ∈ (x1, c) exists. Furthermore, from (7.2), we obtain

g′(2η̂) = −4η̂(1 − 2η̂)(−η̂)g(2η̂)+ 2λ

4η̂2(1 − 2η̂)2σ 2 .

In the case g(2η̂) ≥ 0, we have g′(2η̂) > 0 since λ > 0. Therefore, x1 ≤ 2η̂ < x̄. In the case
g(2η̂) < 0, it follows that 2η̂ < x1 < x̄ from (ii) and (iii).

The results of Lemma 8.1 allow us to proceed essentially as in Section 7. From Lemma 8.1(iv)
and −γ /(1−δ) > −1, we can find a c1 ∈ (2η̂, η̂) such that, for all c ∈ (c1, 0), unique solutions
λ1(c) ∈ (0, ϕ(c1)), b = b(c, λ1(c)), and β = β(c, λ1(c)) exist to (6.10), (6.11), and (6.12).
Furthermore, λ1 is strictly decreasing with λ1(c1) = ϕ(c1). On the other hand, mainly owing
to Lemma 8.1(v), we can find c2 ∈ (η̂, 0) and c ∈ (2η̂, c2) such that, for c ∈ (c, c2), solutions
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λ2(c) ∈ (0, ϕ(c2)), a = a(c, λ2(c)), and α = α(c, λ2(c)) can be found to (6.13), (6.14),
and (6.15). Here λ2 is strictly increasing with λ2(c2) = ϕ(c2) > 0. The main difference
from Section 7 is that, for the existence of a, we need the condition 2η̂ > −(1 − δ)/γ . In
Lemma 8.1(iii) we proved that the maximum lies at x̄ > 2η̂. Therefore, a solution to (6.13)
with a > −(1 − δ)/γ exists since γ /(1 − δ + γ x) → ∞ as x ↘ −(1 − δ)/γ .

Thus, a unique solution, c∗, can be found such that λ = λ1(c
∗) = λ2(c

∗) and the corre-
sponding parameters, a, α, β, and b, solve (6.10)–(6.15). This implies the existence of c, λ, a,
α, β, and b in part (i) of Theorem 8.1, below.

Remark 8.2. We briefly comment on the case η̂ > 1. Starting with π0 > 1, the uncontrolled
diffusion (5.1) stays in (1,∞) up to its explosion time, and we require that the controlled
diffusion stay in (1, (1 − δ)/γ ). Thus, Remark 8.1 applies with

J =
(

1,
1 − δ

γ

)
.

Our candidate for an optimal admissible strategy here is a CB strategy with parameters satisfying

1 < a < α < β < b <
1 − δ

γ
.

Again we may use the modification � of the cost function, and, for the uncontrolled diffusion
before explosion, the coefficients µ̃ and σ̃ , the operator L, and the function h are the same
as before. The same derivations as for η̂ < 0 can be carried out, now working on (1,∞) and
considering c ∈ (1, 2η̂ − 1) and λ ∈ (R1, ϕ(c)). As the upper bound of the solvency region is
given by (1 − δ)/γ , we can find a solution if 2η̂ − 1 < (1 − δ)/γ . This leads to the existence
of c, λ, a, α, β, and b in part (ii) of Theorem 8.1.

From the preceding comments, it follows that the optimality in parts (i) and (ii) of the
following theorem can be proved as in Theorem 7.1, the corresponding result.

Theorem 8.1. (i) Suppose that µ < 0 and 2η̂ > −(1 − δ)/γ . Then unique parameters
satisfying −(1 − δ)/γ < a < α < c < β < b < 0, λ ∈ (0, ϕ(c)), and (6.10)–(6.15) exist.
The CB strategy with parameters a, α, b, and β is an optimal impulse control strategy with
asymptotic growth rate λ for the costs �, and is optimal for the original problem with costs �̄
if β < b/(1 − δ).

(ii) Suppose that µ > σ 2 and 2η̂ − 1 < (1 − δ)/γ . Then unique parameters satisfying
1 < a < α < c < β < b < (1 − δ)/γ , λ ∈ (0, ϕ(c)), and (6.10)–(6.15) exist. The CB strategy
with parameters a, α, b, and β is an optimal impulse control strategy with asymptotic growth
rate λ for the costs �, and is optimal for the original problem if α > a/(1 − δ).

Recall that in the cases η̂ = 0 and η̂ = 1, the pure-bond strategy (πt = 0) and the pure-stock
strategy (πt = 1) are optimal, respectively. Thus, by Theorems 7.1 and 8.1, and formulating
the conditions in terms of µ, we have found optimal strategies for all

µ ∈
(

−σ
2

2

1 − δ

γ
,
σ 2

2

1 − δ + γ

γ

)
.

Note that, for reasonable costs and parameters µ and σ , this condition will be fulfilled.
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9. Numerical results

We first give numerical examples for fixed and proportional costs and then compare our
results with purely fixed costs and purely proportional costs.

Example 9.1. For volatility parameter σ = 0.4, we look at different scenarios depending on
the choice of µ and the transaction cost parameters δ and γ . In Table 1 we gather the results.
For each scenario, we give the optimal risky fraction and the optimal growth rate without costs,
respectively η̂ and R̂, and we compute the optimal parameters â, α̂, β̂, b̂, and λ̂. They are
computed with the auxiliary parameter c as roots of (6.10)–(6.15).

The first three scenarios use realistic costs given by δ = 0.0001 and γ = 0.003. Scenario I
is the same as that in Example 1 of [6], where renewal-theoretic arguments were used to
evaluate the performance of CB strategies. We obtain the same solution. For graphs showing
the dependency of the boundaries on the transaction cost parameters, we refer the reader to
Figure 2 of [6]. Here we shall look at some more extreme settings.

Scenarios II and III provide cases where the optimal risky fraction without costs lies close to
the boundaries 0 and 1, respectively. However, we can still determine the optimal parameters.
We note that scenario III gives the correct answer to Example 2 of [6], where, based on numerical
results which were not sufficiently precise, it was concluded that a solution might not exist. In
our computations for Table 1 we used a working precision of 64 digits. Furthermore, a good
choice of the initial parameters is vital, in particular to compute the boundaries for the extreme
costs in scenario IV, where γ = 0.99, and scenario V, where δ = 0.65. These costs are of
course unreasonably high, but they show that the optimal solutions can still be computed in
extreme cases, which is quite surprising; cf. [10]. That we cannot use much higher values of δ
in scenario V is only due to the fact that the computer algebra system we used identified 10−17

with 0, which for δ > 0.7 yields approximately b̂ = 1 and, thus, leads to a singular Jacobian in
the algorithm. Nevertheless, a solution should still exist.

We point out that all solutions in Table 1 indeed satisfy the condition α ≥ a/(1 − δ) (see
Theorem 7.1); hence, all solutions provide optimal CB strategies for the original problem.

Example 9.2. For the costs of scenario I in Table 1 and using σ = 0.4, in Table 2 we present
some examples for short selling (µ < 0) and borrowing (µ > σ 2 = 0.16), based on the results
of Section 8.

Table 1: Optimal parameters for Example 9.1.

Scenario µ δ γ η̂ â

I 0.096 0.0001 0.003 0.6 0.4876
II 0.01 0.0001 0.003 0.0625 0.0213
III 0.159 0.0001 0.003 0.9938 0.9610
IV 0.0001 0.99 0.096 0.6 0.1136
V 0.096 0.65 0.003 0.6 0.0091

Scenario α̂ β̂ b̂ R̂ λ̂

I 0.5680 0.6338 0.708 1 0.028 8 0.028 4
II 0.0498 0.0691 0.121 1 0.000 3 0.000 2
III 0.9932 0.9987 0.999 999 97 0.079 003 0.079 000 0004
IV 0.1356 0.9995 0.999 9 0.028 8 0.017 3
V 0.6702 0.6721 0.999 999 99 0.028 8 0.016 2
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Table 2: Optimal parameters for Example 9.2.

µ λ̂ â α̂ β̂ b̂ η̂ R̂

−0.100 0.029 −0.899 −0.708 −0.513 −0.399 −0.625 0.031
0.200 0.124 1.138 1.204 1.281 1.393 1.25 0.125

26.0 1096.0 56.4 60.6 145.3 156.7 162.5 2113.0

Table 3: Optimal parameters as δ → 0 (see Remark 9.2).

δ λ̂ â α̂ β̂ b̂

10−8 0.028 479 0.534 000 0.537 882 0.662 176 0.665 790
10−12 0.028 479 0.535 870 0.536 049 0.663 882 0.664 050

0 0.028 5 — 0.535 960 0.663 971 —

The last example in Table 2 shows that we can find a solution even in extreme cases as long as
2η̂−1 < (1− δ)/γ , as proved in Theorem 8.1. We have 2η̂ − 1 = 324 and (1− δ)/γ = 333.3
in this example, which of course is of a theoretical nature due to the large size ofµ. However, it
shows that for large µ the Merton fraction η̂ might no longer lie in the no-trading region (a, b);
for a similar effect see, e.g. [16].

Remark 9.1. The special case of purely fixed costs (γ = 0) can be included in the model. In
that case we still have to look at impulse control strategies, so the argument is still valid but
on the right-hand side of each of the equations (6.10), (6.11), (6.13), and (6.14) we have a 0.
This shows that the optimal parameters coincide with the roots x1, c, and x2, x1 < c < x2, of
g: in fact a = x1, α = c = β, and b = x2. For parameters σ = 0.4, µ = 0.175, γ = 0, and
δ = 0.001, a computation yields the optimal values

λ̂ = 0.0386, a = 0.540, b = 0.837, α = β = 0.702,

compared to η̂ = 0.700 and R̂ = 0.392 without costs. These are the same values as in [13] if
we add the interest rate of 0.07 used there.

Remark 9.2. The case of purely proportional costs (δ = 0) cannot be included since the optimal
strategies are no longer of impulsive form. Following an approach like that in, e.g. [2], it can
be shown that the Hamilton–Jacobi–Bellman equation for the maximization of the asymptotic
growth rate for purely proportional costs is of the form

max

{
Lv(x)+

(
µ− σ 2

2
x

)
x − λ, v′(x)− γ

1 + γ x
,−v′(x)− γ

1 − γ x

}
= 0, (9.1)

where the equality holds for the first argument if no trading is optimal, for the second argument
if buying is optimal, and for the third argument if selling is optimal. Note that the authors of [2],
[17], and [18] used risky fractions adjusted for the liquidation costs. However, (9.1) is the same
as the expression provided after, e.g. [17, Equation (3.4)], if we apply a change of variables to
our risky fractions.

For µ = 0.096, σ = 0.4, and γ = 0.003, in Table 3 we look at different fixed costs δ and do
a comparison with the solution to (9.1). For δ = 10−4, the parameters correspond to scenario I
of Table 1.
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The solution for δ = 0 is obtained by an approach to solving (9.1), as in (6.6), depending
on the four parameters λ, c, α = a, and β = b. This leads to (6.11), (6.14), and two further
equations which guarantee that (6.1) holds with equality at the boundaries α and β. In fact,
the results in Table 3 show that we can expect convergence of the parameters. Furthermore,
the condition α ≥ a/(1 − δ) is always satisfied in the numerical examples. The case of
purely proportional costs may thus be obtained as a limiting case of our model. To make these
arguments rigorous, including the rather technical analysis of the convergence of the optimal
strategies, will be the objective of a future publication.
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