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1. Introduction

In 1964 Frink [8] generalized Wallman's method [17] of compactification
and asked the question: "Is every Hausdorff compactification of a TychonofT
space a Wallman compactification?". This problem, which is as yet unsolved,
has led to the discovery of a number of necessary and/or sufficient conditions for
a Hausdorff compactification to be Wallman; (see A16 and Shapiro [2J, [3],
Banaschewski [6], Njastad [13] and Steiner [15]). Recently A16 and Shapiro [4], [5]
have generalized the Wallman procedure to discuss what they call Z*-realcompact
spaces and Z*-realcompactification r\{T) corresponding to a countably pro-
ductive (c.p.) normal base Z on X. Some further work has been done by Steiner
and Steiner [14].

In this paper we exploit the known results of proximity spaces (called EF-
proximity in this paper) introduced by Efremovic [7] and symmetric generalized
proximity spaces (called LO-proximity spaces in this paper) introduced by
Lodato [11]. We show how a normal base Z on a Tychonoff space X induces an
EF-proximity <5(Z) on X and that the Wallman compactification W(Z) is homeo-
morphic to the Smirnov compactification of X corresponding to 5{Z). This result
is implicitly contained in the work of Aarts [1] and Njastad [13], but our proof
is more direct. We then use this result to derive a necessary and sufficient con-
dition for a Hausdorff compactification to be Wallman and show that our result
includes the ones derived by Aloand Shapiro [2], Banaschewski [6], Njastad [13]
and Steiner [15].

We next consider a c.p. normal base Z on a Tychonoff space X and the space
t\(Z) of all real Z-ultrafilters on X (i.e. Z-ultrafilters with the c.i.p.) with
the Wallman topology (A16 and Shapiro [4]). We find necessary and sufficient
conditions for (a) rj(Z) to be realcompact and (b) a Z*-realcompactification Y
of X to be homeomorphic to r\(T). These results are motivated by the known
results concerning Wallman compactifications. We show that our results are an
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improvement over the sufficient conditions for (i) and (ii) obtained by A16 and
Shapiro [5], Steiner and Steiner [14].

2. Preliminaries

In this section we review the main definitions and results which are required
in the sequel. For terms not defined here see Gagrat and Naimpally [9].

Let X be a T^space and let Z be a ring of closed subsets of X. We say that
Z is a separating base iff (i) Z is a base for closed subsets of X and (ii) x$E,
E a closed subset of X implies the existence of LltL2eZ such that xeLt, E a L2

and L1 C\L2 = 0. Z is called a normal base iff Z is a separating base and
L1,L2eZ such that Llr\L2 = 0 implies the existence of LltL'2eZ such that
L1 <= X — Li,L2 a X - L'2 and L1 U L'2 = X. Z is called countably productive
(c.p.) iff it is closed under countable intersections. It was proved by Frink [8]
that X is Tychonoff iff it has a normal base. The above definition of a normal
base reminds us of the "Strong Axiom" of an EF-proximity 3 viz. A $ B implies
the existence of C, D such that A$C, B$D and CKJD = X, where $ replaces
"void intersection". This provides motivation for the following lemma.

LEMMA 2.1. If Z is a separating base on a Trspace (X,x), then 3 = <5(Z)
defined by "A$B iff there are L1,L2eZ such that A<=LL, B a L2 and
L1C\L2 = 0 " , is a compatible LO-proximity on X. Further, if Z is a normal
base then d(Z) is an EF-proximity.

PROOF. We verify only the axiom "A 5 B, b 3 C for each beB implies A 3 C",
since the other axioms of a LO-proximity follow easily. If Lc is an arbitrary
element of Z containing C, then b 3 C implies beLc for each b e B or B <= Lc.
But since A 3 B, A c LA for LA eZ implies that LAC\LC ^ 0 for every LC=>C.
Thus A3 C. To show that x = x(3), we note that x 3 A iff x e Lx e Z, A c LAeZ
implies LxC\LAi^ 0 iff xeLA for each LA => A iff xeA~ (where ~ denotes
the r-closure). Finally if Z is a normal base then the Strong Axiom follows from
the remarks preceeding the statement of this lemma. (We note here that a normal
base Z is an EF-proximity base for 3 = S(Z) in the sense of Njastad [13]).

Let (X, T) be a Tt -space and let Z be a separating base on X. Let £x be the
family of all bunches in (X,3) where 3 = 3(Z) and let Z* be assigned the absorp-
tion or ^4-topology. Let W(Z) be the family of all Z-ultrafilters with the Wallman
topology. Define a map b: W(Z) -> Zx by

the bunch generated by F. If Fu F2 are two Z-ultrafilters then clearly
b(Fi) # b(F2) i.e. b is one-to-one. Moreover, E~ eF for every FeP a W(Z)
iff E absorbs b(P) c £x- Hence b is a homeomorphism from W(Z) into T.x,
and we have the following result:
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THEOREM 2.2. Let (X,i:) be a T,-space and Z a separating base on X.
Then the Wallman compactification W(Z) is homeomorphic to the space of
bunches generated by all Z-ultrafilters in X with the A-topology.

LEMMA 2.3. Let Z be a separating base on a T^-space X and let 6 - b^Z)
be the corresponding LO-proximity on X. If F is a Z-ultraJilter in X then

o{F) = {A<=X: A5F for every Fc- F]

is a cluster, called the cluster generated by F.

PROOF. We need only prove: A,Bea(F) implies A 8 B, for the other axioms
follow easily. If A $B then there exist LA,LBeZ such that A c LA, B c LB and
LAC\LB = 0. But LAS F for every F e F implies LA n F ^ 0 for every F e F
and this in turn implies that LA e F. Similarly LBe F and so LA(~\LB # 0,
a contradiction.

LEMMA 2.4. Let Z be a normal base on a Tychonoff space X and let
8 = <5(Z). If F is a prime Z-filter then

a(F) = {Ac X: ASF for every FeF}

is a cluster in X. Conversely, given a cluster a in X, there exists a unique Z-ultra-
filter a C\Z in X which generates a.

PROOF. For the first part we need only prove that if A,Bea(F), then A 5 B.
If, on the contrary, A ? B then there exist LA,LB in Z such that A c LA, B c LB

and LAnLB = 0. Since Z is normal, there exist L'A, L'B in Z such that
LAcX-L'A, LBcX-L'B and L'AUL^ = X. Clearly L'A, L'B do not belong
to F which implies that X = L'A\JL'B$F (since F is prime), a contradiction.
To prove the converse, we note that a C\Z satisfies the conditions of Lemma 2.10
of Gagrat and Naimpally [9] and so there exists a prime Z-filter F c a. Clearly
F c a c o(F) and hence a = a{F). Let G be the unique Z-ultrafilter containing
F. Then a{F) = a(G) = a. Finally, since LuL2eanZ iff LlC\L2^0,
G = a C\Z and the uniqueness follows.

Let Z be a normal base on a Tychonoff space X and let 5 = S(Z) be the
induced EF-proximity as defined in Lemma 2.1. By Theorem 3.10 of Gagrat and
Naimpally [9], the map 0: b(W(F)) c S x -»• X (the Smirnov compactification
of X i.e. the family of all clusters in X with the ^-topology) given by 9(b(F))
= o{F) is continuous. From Lemma 2.4 it follows that 6 is one-to-one and
onto X. Hence we have the main result of this section.

THEOREM 2.5. Let X be a Tychonoff space with a normal base Z and
let 6 = <5(Z). Then the Wallman compactification W(Z) is homeomorphic to
the S-Smirnov compactification X of X.
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We note that the Wallman topology on W(Z) is the same as the 4-topology
on W(Z).

We now list some results concerning a normal base Z on a Tychonoff space X.
Most of the proofs, being routine, are omitted, (cf. Gillman and Jerison [10]).

LEMMA 2.6. (a) XeZ.

(b) Given a neighbourhood U ofxeX, there exists a neighbourhood LeZ
of x such that L c U.

(c) If peX is a cluster point of a Z-filter F on X, then there exists a Z-
ultrafilter U containing F which converges to p.

(d) If F is a prime Z-filter on X, then the following are equivalent:
(i) F converges to p,
(ii) p is a cluster point of F,
(iii) {p}= n{F:FeF}.

Hence every prime Z-filter has at most one cluster point.
(e) For peX define Ap = {LeZ: peL}. Then:
(i) p is a cluster point of a Z-filter F iff F c Ap,
(ii) Ap is the unique Z-ultrafilter converging to p,
(iii) Distinct Z-ultrafilters cannot have a common cluster point.

LEMMA 2.7. Let Z be a normal base on a Tychonoff space X and let
X c T <= W(Z). Then

(i) ClT(L)r\X = L for each LeZ
(ii) ClT(Lt CiL2) = C\T(LY) nClT(L2)for all LuL2eZ,
(iii) Every point ofT is the limit of a unique Z-ultrafilter on X.

LEMMA 2.8. Let X be a dense subspace of a Tychonoff space Y and let Z
be a normal base on X. If

(i) {ClY(L):LeZ} is a separating family of closed sets in Y such that
for J'i.J'2e Y, yt =£ y2 there exist Lt,L2 in Z satisfying j>; e C/y(Li), i = 1,2
and L±C\L2 = 0 and

( i i ) f l C 7 y ( L ; ) = C l J f l L ; ) L t e Z , l ^ i ^ n ,
i = 1 \ i = 1 /

then Y is homeomorphic to a subspace ofW(Z).

PROOF. For each yeY, define Uy = {LeZ: yeClY(L)}. Then, from (i)
and (ii) it easily follows that Uy is a Z-ultrafilter on Y. Define / : Y->W(Z) by
f(y) = Uy, for each yeY. Then / is clearly one-to-one. To show that / is con-
tinuous, we must show that if f(y)$f(A)~ then y£A~, yeY, A cz Y. If
f{y)$f{A)~, then there exists an LxeZ such that Lt absorbs f(A) but does
not belong to f(y). This shows that A~ cCl-fiL^) and y$ClY{L^) i.e. y£A~.
Finally we prove that / is closed. Suppose Uyef(X) C\f{A)~. Then every L
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which absorbs f(A) also belongs to Uy i.e. yeClY(L) for each LeZ such that
A c ClY(L). If y i A~, then from (i) there exists an L2 eZ such that yeY - ClY

(L2) <= 7 - A~. Hence v4 c: ClY (L2) and j £ ClY(L2), a contradiction. Hence / is
closed, showing that Y is homeomorphic to f{X) c W(Z).

From now onwards to the end of this section, we assume that Z is a countably
productive (c.p.) normal base on a Tychonoff space X. The following result
corresponds to Theorem 8.6, page 117 of Gillman and Jerison [10].

LEMMA 2.9. Let Z be a c.p. normal base on X and let X <=T a W(Z).
Then the following are equivalent:

(i) 0 Ln - 0 implies f\ ClT(Ln) = 0 , LneZ.

(ii) 0 ClT(Ln) = ClJ 0 Ln), LneZ.
n=l \ n = l /

(iii) Every point ofT is the limit of a unique real Z-ultrafilter on X {i.e. a
Z-ultrafilter with c.i.p.).

(iv) XcTc t ] (Z) .

PROOF. Obviously (iii) is equivalent to (iv) and (ii) implies (i). We now prove
that (i) implies (iii). By Lemma 2.7, every point t of T is the limit of a unique
Z-ultrafilter F. Fis real since if Ln e Fand nn°°= xLn = 0, then On°°= t ClT(Ln) = 0.
But t e n" = ! ClT(Ln), a contradiction. Finally (iv) implies (ii) follows from
Theorem 1 of Aid and Shapiro [4].

3. Hausdorff Wallman Compactifications

Let Z be a normal base on a Tychonoff space X and let S = <5(Z) be the
induced EF-proximity on X. We now use Theorem 2.5, in conjunction with the
well-known results in EF-proximity spaces, to obtain some of the recent results
in Wallman compactifications.

Let Z, Z' be two normal bases on X. Then Z is said to separate Z' iff
Li, L'2eZ', L\ C\L'2 = 0 implies that there are L1; L2eZ such that L\ c Lu

L'2 c L2 and LXC\L2 = 0. Clearly Z separates Z' iff <5(Z') < 5(Z). In the theory
of EF-proximity spaces it is known that there is a one-to-one order isomorphism
between EF-proximities on X and the corresponding Smirnov compactifications.
Theorem 2.5 together with this result, gives the following:

THEOREM 3.1. (Steiner and Steiner [16]). If Z, Z', are two normal bases
on X then W(Z') g W(Z) if and only ifZ separates Z'.

COROLLARY 3.2 (Steiner [15]) W(Z) = W(Z'), if and only ifZ, Z' mutually
separate each other.
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We now recall some of the known results (see A16 and Shapiro [2], Bana-
schewski [6]).

LEMMA 3.3. Let Z be a normal base on X. Then
(a) ClW(Z(Lx nL2) = Clmz(L{) r\ClW{Z){L2) for all LuL2eZ.
(b) {ClIViZ{L):LeZ} is a base for closed subsets of W(Z).
(c) For each yuy2eW(Z), yt =£ y2, there exist Lu L2 in Z such that

y; e C/,7f^(L,) i = 1,2, and L, C\L2 = 0.
(d) Cl,7(Z,(Ll UL2) = C/^Z)(L,) uClW(Z)(L2)for all LUL2 in Z.
(e) For each pe W(Z) and for each neighbourhood V of p, there exists an

L in Z such that p e C\W(X (L) <= V.

We now find necessary and sufficient conditions for a Hausdorff compacti-
fication Y of a space X to be Wallman.

THEOREM 3.4. A necessary and sufficient condition for a Hausdorff com-
pactification Y of X to be Wallman is that X has a normal base Z such that

(i) ClY(Lt OL2) = ClyiLJriClyiLJfor all LUL2 in Z, and
(ii) for y\,y2eY, yt # y2, there exist LUL2 in Z such that ^eC/yCL;)

i = 1,2 and Ll C\L2 = 0.

PROOF. Since the necessity is obvious from Lemma 3.3, we need prove only
the sufficiency. The Hausdorft compactification Y of X induces an EF-proximity
<50 on X given by: A 50 B iff ClY(A) n ClY(B) ^ 0 . Condition (i) implies that
<50 > 5(Z) and hence there is a continuous function / from Y onto W(Z) which is
the unique extension of the identity map. The proof is complete if we show that /
is one-to-one. This follows from (ii),since ylty2e Y, yt # y2 implies there exist
LUL2 in Z such that Lx ef(yj but not f(y2) and L2 ef(y2) but not

COROLLARY 3.5. (Banaschewski). Theorem 3.4 is true if (ii) is replaced
by: {ClY(L): LeZ} is a base for closed subsets ofX.

COROLLARY 3.6. (A16 and Shapiro). Theorem 3.4 is true if(ii) is replaced by.
for each peY and each neighbourhood V of p, there exists an L in Z such that
p e ClY(L) c V.

COROLLARY 3.7. (Njastad). A Hausdorff compactification Y of X is Wall-
man if and only if the corresponding EF-proximity has a productive base of
closed sets.

A family Z of closed sets in Y has the trace property w.r.t. X iff

fi {L;: LteZ}^0 implies that ( f] Lt nx) * 0.
i = i \ i = i /
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If Y is homeomorphic to W(Z), then Z — {C7y(L): LeZ} has the trace property
w.r.t. X and is a normal base in Y. Hence

COROLLARY 3.8. (Steiner) A Hausdorff compactification Y of X is Wallman
if and only ifY has a normal base Z with the trace property w.r.t. X.

4. Wail man Realcompactifications

Although the space W(Z) corresponding to a normal base Z on X is always
compact, in general, the space n(Z) corresponding to a c.p. normal base Z need
not be realcompact (see Steiner and Steiner [14]). A16 and Shapiro [4] have
however shown that n(Z) is Z*-realcompact (Z* = {C/,(Z)(L): LeZ}) i.e. every
real Z*-ultrafilter on n(Z) converges. They have also shown that in the special
case when Z = Z(X), n(Z) is the Hewitt realcompactification of X. This raises
the problem of finding necessary and sufficient conditions on a c.p. normal base
Z on X for n(Z) to be realcompact. In this section we solve this problem and show
that our result is an improvement of a result (sufficient conditions for n(Z) to be
realcompact) of A16 and Shapiro [5], Steiner and Steiner [14].

In this connection we shall find the notion of "Q-closure" due to Mrowka [12]
useful. The Q-closure of a nonempty subset A of X is the set of all p e X such
that every G5 set containing p intersects A. It is known that the Q-closure of a
subset is always realcompact. A16 and Shapiro [4] have shown that for a c.p.
normal base Z on X, if XQ denotes the Q-closure of X in W(Z), then

LEMMA 4.1. X c n(Z) c XQ <= W(Z).

(We are supposing X c n{Z) via the homeomorphism).

LEMMA 4.2. n{Z) is realcompact if and only ifn(Z) = XQ.
We now prove the main result of this section.

THEOREM 4.3. n(Z) is realcompact if and only if (R) C\^=1Clxo(Ln)

PROOF. If Z satisfies (R), then from Lemma 2.9, XQ c n{Z). Hence Lemmas
4.1, 4.2 together show that n(Z) is realcompact. Conversely, if n{Z) is realcompact
then n(Z) = XQ (4.2) and hence by Lemma 2.9 the condition (R) holds.

We now show that the above theorem implies a result of Steiner and
Steiner [14]; a similar result has been obtained by A16 and Shapiro [5]. A sequence
of sets {Ln} in Z is a nest iff there is a sequence {!/„} in Z such that

X-L;tlcL,+ 1cI-L;cL,, neN.

Z is nest generated iff for each LeZ, there is a nest {Ln} such that L = H"= I Ln.
We note here that the concept of a "strong delta normal base" Z introduced by
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A16 and Shapiro in [5] is the same as that of a "nest generated c.p. normal base" Z.
In [5] and [14] it is shown that if Z is a nest generated c.p. normal base on X,
then r\{T) is realcompact. Theorem 4.3, together with the following lemma
implies this result.

LEMMA 4.4. IfZ is a nest generated c.p. normal base on X, then

n aXQ{Ln) = axQ n Ln
n = l n=l

for all LneZ.

PROOF. In view of Lemma 2.9, it is sufficient to prove that

II Ln = 0 implies H ClxQ(Ln) = 0.
n = l n = l

If, on the contrary, pe fl™=i Clx<i(Ln), then from Theorem 2.2 of Steiner and
Steiner [14], each L, = Z , n l and ClmZ)(Ln) c Zn for some ZneZ(W(Z)).
Then Z = C\™=lZn is a Gd set in W(Z) and belongs to Z(W(Z)). (Gillman and
Jerison [10]). For each n e N,

pe n aXQ(Ln) cz n z n = z.
« = 1 n = l

Since p e XQ, Z n X # 0 which implies that nn
M= i K * 0-

Corollary 3.2 provides a motivation for the next result.

THEOREM 4.5. Suppose Z and Z' are two c.p. normal bases on a Tychonoff
space X. Then r\{Z) is homeomorphic to rj(Z') if and only if

(i) T = r,(Z),FneZ', and

(ii) T = r,(Z'),FneZ.

PROOF. Necessity is trivial and we need prove only sufficiency. We first note
that by Theorem 3.2 the given conditions imply that W{Z) is homeomorphic
to W(Z') and so n(Z) (resp. ri(Z'J) is homeomorphic to a subspace of W(Z')
(resp. W(Z)). Hence by Theorem 2.9, for each p e rj(Z), there exists a qen(Z')
which converges to p. But this means that p also converges to q as the following
argument shows. If p does not converge to q, then q is not a cluster point of p.
Then there exists an Lx e p such that q $ Ci^z^Lj) and hence there exists a
Gj eZ' such that Lx <= Gx and Gt $q i.e. Gt => Lt and Glr\G2 = 0 for some
CJ2 e #. But Li e p implies
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and also p e Cln(Z)(G2) since q converges to p and G2 e q. Hence

C/,(Z)(Gi) n C/,(Z)(G2) = C / ^ G , nG2)*0

a contradiction. So we define / : n(Z)-^n(Z') by /(/?) = q for each per\{Z) iff
4 converges to p. Then / is well defined, one-to-one and onto n(Z'). In view of
symmetry, the proof is complete if we show that / is continuous. Suppose
pen(Z), A<=tj(Z), f(p) = q$Cl,iz.)f(A). Then there is a GeZ' such that G
absorbs f(A) but G $ q. Then A c C/,(Z)(G) and p £ C/,(Z)(G) and hence
/?£ C/,,(Z)(Y4), showing that / is continuous.

COROLLARY 4.6. >/(Z) is homeomorphic to vX, the Hewitt realcompactifica-
tion ofX if and only if

00 \ 00

r\Fn) = n
n = l / n=l

for (i) T = n(Z),FneZ(X)
(ii) T = vX,FneZ.

We next consider the problem: if Y is a Z*-realcompactification of X, then
what are the necessary and sufficient conditions for Y to be homeomorphic to
f/(Z)? Motivation for the solution of this problem is provided by the results
(proved in Section 3) of Banaschewski (Corollary 3.5), Njastad (Corollary 3.7) and
Steiner (Corollary 3.8) concerning Wallman compactifications.

THEOREM 4.7. (cf 3.5). For a c.p. normal base Z on X let Y be a Z*-
realcompactification ofX. Then Y is homeomorphic to n(Z) if and only if

(i) C/y(nn
M=iLJ= n?=1Cl,(L.),for all L.eZ and

(ii) {ClY(L): LeZ} is a separating family of closed sets in Y such that for
yi,y2 in Y, yt # y2, there exist L( in Z satisfying yteClY(Li), i = 1,2 and
LtnL2 = 0 .

PROOF. Necessity follows easily from Lemma 2.9. To prove the sufficiency we
first note that by Lemma 2.8, Y is homeomorphic to a subspace of W(Z). Hence
from Lemma 2.9, each ye Y is a limit of a unique real Z-ultrafilter Fyen(Z).
Also for each Fen(Z), {ClY(F): Fe F} is a real Z*-ultrafilter in Y in view of(i),
and as Y is Z*-realcompact, it must converge to some point in Y. Hence the map
/ : Y^>n(Z) defined by f(y) = Fy, where Fy is the real Z-ultrafilter converging
to y, is well defined, one-to-one and onto. Continuity of / is proved as in the
proof of Theorem 4.5. Finally, we prove that / is closed. If y e Y,
f(y) = FyeClv(Z)f(A), A<=Y then every LeZ which absorbs f(A) belongs
to Fy i.e. yeCly(L) for each LeZ such that A <= ClY(L) and hence from (ii),
y e ClY(A) i.e. / is closed.
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COROLLARY 4.8 (cf. 3.7). A Z*-realcompactification Y ofX is homeomorphic
to n{Z) if and only if

(i) ClY(C) „"= i Ln) = n r=! ClY(Ln), Ln eZ,and
(ii) there exists a c.p. normal base A for closed sets in Y such that

z = Anx.

Let 7 be called a Wallman realcompactification of Xiff Y is homeomorphic
to n(Z) for some c.p. normal base Z on X. We now prove an analogue of Steiner's
result.

THEOREM 4.9. (cf. 3.8). Y is a Wallman realcompactification of X if and
only if

(i) Y possesses a c.p. normal base A with the trace property w.r.t. X and
(ii) Y is (A n X)*-realcompact. IfY has such an A, then Y is homeomorphic

to n{A n X).

PROOF. If Y is homeomorphic to n(T) then setting A = {ClY{L)\ LeZ) the
necessity follows from Lemma 2.9. Conversely, if such an A exists, we set
Z = A n X. Obviously Z is a separating base. We prove that Z is normal. For
AuA2eA, (Ax n l ) (~\(A2 C\X) = 0 implies AlC\A2 = 0. Since A is normal
there are Bt,B2 in A such that Ax c Y -Bt, i = 1,2, Bt UB2 = Y. Hence
A{ n X c X - (Bt n X), i = 1,2 and ( ^ n l ) u (B2 n l ) = I Finally as A
is closed under countable intersections so is Z and since ClY(A nX) = A for all
A in A, conditions of Theorem 4.7 are satisfied. Thus Y is homeomorphic to n(Z).

The following is an analogue of Steiner's Theorem 4 in |15] and follows
easily from the above theorem. See also A16 and Shapiro [3], [5].

THEOREM 4.10. IfY possesses a c.p. normal base A of regular closed sets,
then Y is a Wallman realcompactification of each of its dense subspace, X for
which Y is (A n X)*-realcompact.

In conclusion, we would like to mention that we have not been able to
determine whether an analogue of Corollary 3.6 holds true for Wallman real-
compact ifications.
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