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In this paper, we use asymptotic theory and numerical methods to study resonant
triad interactions among discrete internal wave modes at a fixed frequency (w) in
a two-dimensional, uniformly stratified shear flow. Motivated by linear internal wave
generation mechanisms in the ocean, we assume the primary wave field as a linear
superposition of various horizontally propagating vertical modes at a fixed frequency
. The weakly nonlinear solution associated with the primary wave field is shown to
comprise superharmonic (frequency 2w) and zero frequency wave fields, with the focus
of this study being on the former. When two interacting primary modes m and n are
in triadic resonance with a superharmonic mode ¢, it results in the divergence of the
corresponding superharmonic secondary wave amplitude. For a given modal interaction
(m, n), the superharmonic wave amplitude is plotted on the plane of primary wave
frequency w and Richardson number Ri, and the locus of divergence locations shows
how the resonance locations are influenced by background shear. In the limit of weak
background shear (Ri — o0), using an asymptotic theory, we show that the horizontal
wavenumber condition k, + k, = k, is sufficient for triadic resonance, in contrast to the
requirement of an additional vertical mode number condition (¢ = |m — n|) in the case of
no shear. As a result, the number of resonances for an arbitrarily weak shear is significantly
larger than that for no shear. The new resonances that occur in the presence of shear
include the possibilities of resonance due to self-interaction and resonances that occur
at the seemingly trivial limit of w =~ 0, both of which are not possible in the no shear
limit. Our weak shear limit conclusions are relevant for other inhomogeneities such as
non-uniformity in stratification as well, thus providing an understanding of several recent
studies that have highlighted superharmonic generation in non-uniform stratifications.
Extending our study to finite shear (finite Ri) in an ocean-like exponential shear flow
profile, we show that for cograde—cograde interactions, a significant number of divergence
curves that start at Ri — oo will not extend below a cutoff Ri ~ O(1). In contrast, for
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retrograde—retrograde interactions, the divergence curves extend all the way from Ri — oo
to Ri = 0.5. For mixed interactions, new divergence curves appear at w = 0 for Ri ~ O(10)
and extend to other primary wave frequencies for smaller Ri. Consequently, the total
(cograde + retrograde 4+ mixed) number of resonant triads is of the same order for small
Ri~ 0.5 as in the limit of weak shear (Ri — c0), although it attains a maximum at
Ri ~ O(10).

Key words: internal waves, stratified flows

1. Introduction

Internal waves generated by tides and winds can cause intense mixing in the deep ocean
(Alford 2003; Garrett 2003). Dissipation of these internal waves plays a crucial role in
meridional overturning circulation (Munk & Wunsch 1998) and processes such as nutrient
and plankton transport (Garrett & Munk 1979).

Triadic resonance is one of the important mechanisms leading to internal wave
dissipation (Staquet & Sommeria 2002). A well-studied manifestation of triadic resonance
is parametric subharmonic instability (PSI), where a primary internal wave of frequency
w and wave vector k is unstable to perturbations of two secondary waves with frequencies
w12 = w/2 and wave vectors ky and kz such that ky 4+ k3 = k. (Hasselmann 1967;
Koudella & Staquet 2006). Field observations (Alford et al. 2007; MacKinnon et al. 2013),
however, show much less energy transfer from internal tides to subharmonic waves than
what is predicted by the theory of PSI. The effects of various realistic ocean settings such
as non-uniform stratification (Young, Tsang & Balmforth 2008; Gayen & Sarkar 2013;
Gururaj & Guha 2020), finite width of the wave beam (Bourget er al. 2014; Dauxois
et al. 2018) and background flow (Fan & Akylas 2019, 2021) are potential reasons for
the discrepancy between theory and observations of PSI. The effects of a background flow
is the focus of the current study, albeit on a different manifestation of triadic resonance as
described below.

Another manifestation of triadic resonance occurs when two monochromatic (frequency
) primary internal waves resonantly excite a secondary wave at superharmonic frequency
2w. Resonant generation of superharmonic internal waves has been studied in the context
of interacting internal wave beams (Teoh, Ivey & Imberger 1997; Tabaei, Akylas & Lamb
2005; Jiang & Marcus 2009). Tide—topography interaction (Lamb 2004; Korobov & Lamb
2008), internal wave beam reflection from a solid boundary (Javam, Imberger & Armfield
1999; Peacock & Tabaei 2005; Gerkema, Staquet & Bouruet-Aubertot 2006; Rodenborn
et al. 2011) or a pycnocline (Thorpe 1998; Gayen & Sarkar 2013; Diamessis et al. 2014;
Wunsch et al. 2014; Mercier et al. 2015) are example scenarios where interacting internal
wave beams generate superharmonic internal waves. Higher harmonic generation due to
surface reflection of internal tides has been observed in the ocean too (Xie et al. 2013). In
a fixed-depth domain like the region between the ocean floor and surface, only discretized
wavenumbers are possible and linear internal wave fields are a superposition of internal
wave modes. Superharmonic generation due to modal interactions, as summarized below,
has received much attention recently.

In a uniform stratification with no shear, interaction between two different internal
wave modes m and n at a given frequency o can resonantly excite a superharmonic 2w
internal wave mode |m — n| at specific values of w if m/3 < n < 3m (Thorpe 1966).
As shown in figure 1, only a fraction of the points where the horizontal resonance
condition is satisfied are actual triadic resonance locations. The amplitude evolution of
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Figure 1. (a) Dispersion curves (@ vs k;, grey lines) for mode numbers ¢ = 1,2,3,4,5 in a uniform
stratification with no shear. The black lines show 2w vs k,, + k, for m +n = 2 to 10, with modes m and n
being at frequency w. Horizontal resonance condition kj, + k, = k4 is satisfied at the points of intersection
(filled and unfilled circles). Filled circles represent actual resonances. (b) Number (Ng, unfilled circles) of
modal interactions (between modes m and n at frequency w, 0 < @ < 0.5) for which the horizontal resonance
condition k,, + k, = k, (mode g being at 2w) is satisfied, plotted as a function of m + n. Number Ny (filled
circles) from the Ng modal interactions that are also resonances. The symbol | | refers to the floor operator.

such resonant triads in a uniform stratification with no shear has recently been studied
numerically (Varma, Chalamalla & Mathur 2020) and experimentally (Husseini et al.
2020). In contrast to a uniform stratification, several more triadic resonances occur in a
finite-depth non-uniform stratification (Varma & Mathur 2017), including the possibility
of self-interacting individual modes exciting superharmonic wave fields (Thorpe 1968;
Sutherland 2016; Wunsch 2017). Varma et al. (2020) and Baker & Sutherland (2020) have
studied amplitude evolution in self-interacting modes at and off resonance, respectively.
In an inviscid, stratified shear flow, if the gradient Richardson number is greater
than 1/4 throughout the domain, Booker & Bretherton (1967) showed that significant
momentum is transferred from internal waves to the mean flow at the critical layer (where
internal wave phase velocity matches the local background horizontal velocity), and strong
nonlinear effects ensue. As a result, numerous studies have considered nonlinear resonant
interactions near the critical layer (Brown & Stewartson 1980; Grimshaw 1988, 1994) in
infinite-depth media. To complement the studies of Brown & Stewartson (1980, 1982a,b),
Grimshaw (1988, 1994) derived amplitude evolution equations for primary (i.e. three
interacting first-order waves) and secondary (i.e. a second-order wave interacting with
two first-order waves) interactions, respectively, in a slowly varying background shear
and stratification in infinite depth. While Grimshaw (1988) focused on ‘weak resonance’
(resonance conditions satisfied only on certain surfaces in space and time) near the
critical layer, he pointed out that triadic resonance in the homogeneous flow represents the
leading-order ‘strong resonance’ conditions in weakly inhomogeneous flow. In the specific
case of stratified, anti-symmetric shear layer, Kelly (1968) analysed the second-order
resonant interactions of two specific interacting singular neutral modes at constant
frequency and numerically showed how the amplitude of different waves is modulated.
In a finite-depth stratified shear flow, the necessary condition for an explosive interaction
(i.e. finite time blow-up in the amplitude evolution) of internal wave modes is the existence
of a critical layer (Becker & Grimshaw 1993; Vanneste & Vial 1994). Considering a
sinusoidal background velocity profile in a uniform stratification and fixed horizontal
wavenumbers (ki, kp, k3) that satisfy the triadic resonance condition k; + ko + k3 = 0,
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Vanneste & Vial (1994) numerically showed how different interaction coefficients vary
with wave amplitudes, and thereby lead to resonance.

Realistic ocean settings include factors such as non-uniform stratification, background
rotation, background shear, finite depth, excitation of a wide range of wavenumbers
etc. An earlier study (Varma & Mathur 2017) has shown modal interactions, including
self-interaction, can lead to resonant generation of superharmonic internal waves in a
finite-depth ocean-like non-uniform stratification with background rotation. Here, we
consider the effects of inhomogeneity introduced by a background flow, thus building
towards a generalization of the effects of inhomogeneities on finite-depth internal
wave triadic resonances. Specifically, we consider triadic resonances in a finite-depth
uniform stratification in the presence of an ocean-like nonlinear background shear flow
(corresponding to the wind drift layer) that monotonically increases from zero at the ocean
floor to a finite value at the ocean surface. With no critical layers being present for discrete
modes in a continuous shear flow (Banks, Drazin & Zaturska 1976), and motivated by
forcing mechanisms being at specific frequencies in the ocean (the semi-diurnal frequency,
for example), we consider triadic resonances resulting from interaction between two
discrete modes at the same frequency. An analytical treatment of the weak shear limit is
presented, providing insights into why inhomogeneity significantly increases the number
of possible resonances. A systematic study on the effects of Richardson number, spanning
weak to strong shear limits, on the occurrence of triadic resonances is then performed.
Owing to the loss of symmetry about the w = 0 axis in the dispersion curves when
background flow is present, both cograde (modes that travel faster than the maximum
background flow velocity) and retrograde (modes that travel slower than the minimum
background flow velocity) modes are considered.

The governing equations, and weakly nonlinear solutions resulting from modal
interactions, are presented in § 2.1. An analytical treatment of the weak shear limit in given
in § 2.2. Section 3 discusses the results and compares the solutions from asymptotics and
numerics. In § 3, a systematic study of the effects of Richardson number, including weak
and strong shear limits, is presented. A brief discussion and a summary of our conclusions
are provided in § 4.

2. Theory
2.1. Governing equations

We consider an inviscid, two-dimensional flow in a uniformly stratified fluid of depth H
in the Boussinesq approximation. The base flow state is described by a stably stratified,
linear density profile p(z) and a vertically varying steady horizontal shear flow U(z)e,.
The corresponding constant Brunt—Viisélid frequency is N = /—(g/p*)(dp/dz), where
g = —ge; is gravitational acceleration and p* a reference density. The non-dimensional
governing equations for the perturbation flow field are (Tsutahara 1984)

9 3\> U [ o 3\ 9 32
C—+U—)V2 ( +U—)Jﬁ+—£

ar | ox a2 \ar T ax) ax | a2
__<3+U3>ﬂ 20y — L wb) 2.1)
=5 T/ V) = /WD), '
3 3 oy

(a—t + Ua> bt ——=—JW,b). (2.2)
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All quantities (including U) in (2.1) and (2.2) are non-dimensional, using H, 1/N
and p* as the length, time and density scales, respectively. Here, f, x and z are
time, horizontal and vertical coordinates, respectively and the Jacobian is defined as
J(A, B) = (0A/0dx)(0B/dz) — (0A/9z)(0B/dx). The non-dimensional perturbation flow
field is described by (u, w) = (—0vy/dz, 0¥/dx), where ¥ (x, z,t) is the perturbation
stream function. The buoyancy perturbation is b = —gp/ (N*H), where p(x, z, 1) is the
non-dimensional perturbation density. The no-penetration boundary condition is given by
wx,z=0,7) =wx,z=1,1) =0, with z = 0 and z = 1 denoting the ocean bottom and
top (rigid lid), respectively.

Assuming a regular perturbation expansion in €, a small parameter that quantifies the
relative magnitude of the nonlinear terms in the governing equations, we seek solutions
for the perturbation wave field in the following form:

W, b) = €Y1, b1) + € (Yo, ba) + -+ (2.3)

The O(e) wave field (1, b1), governed by linear internal wave equations, is assumed to
comprise a superposition of several modes at a frequency w

=1
Vi = Z EAjd’j(Z) exp(ikj(x — ¢;jt)) + c.c.,
:O:_oo 2.4)
b = Z IA]( ¢](Z;]) exp(ikj(x - Cjt)) +c.c.,
J

j=—00
where A;, k; and ¢j(= w/k;) are the complex amplitude, horizontal wavenumber and phase
velocity, respectively of mode j, with c.c. denoting complex conjugate. The vertical mode
shape, ¢;(z) is governed by the Taylor-Goldstein-Haurwitz equation (Kundu & Cohen
2001)

2 2
[(U — )’ ( d k?) t1-w-tl U} $i(2) = (2.5)

along with the no-penetration boundary conditions given by ¢;(z = 0) = ¢;(z=1) = 0.
The wave field in (2.4) could represent a linear wave field generated by forcing at a specific
frequency, internal tides generated by barotropic forcing on topography (Garrett & Kunze
2007) for example.

At O(€?), the governing equations (2.1)—(2.2) give

] 9 d’U [ o d\ d 92
( +U— )vzwz——(—+Ua)ﬂ+ﬂ

ot ox dz2 \ ot ox ax?
0 0
= <8t+U—>J(1/f1,V 1/’1)——1(1/f1,b1) (2.6)
SR 0y
(3t+U8_x> b2+8—— J(Y1, by). 2.7)

Substituting (Y1, b1) from (2.4) in (2.6), the right-hand side of (2.6) can be written as

Z Z [( Poun(2) exp(i(O + 6)) + c. c) + (%an(z) exp(i(Om — 6)) + c.c.)] ,

(2.8)
929 A10-5
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2
Pun(2) = AmAn (km + kn) [(U — Con) (kmd)mdiz - knd(ﬂ) (d— - k2> ®n

dz dzz2 "
2P A d on
((cn —~U) dz ~ Pnkng ((cn — U)))] &9
On(2) = A% (ky — ( -+ d¢'") < _e
mn\Z) = Am n( m n) m¢m n dz d_Zz n On
wOn Ao d bn
+(<cn—U) gz Tk (( n—wm 210

thus comprising superharmonic (frequency 2w) and time-independent mean-flow terms.
Here, 6; = kj(x — ¢jt), Cyuy = 2w/ (ks + k) and Ay, is the complex conjugate of amplitude
Aj. The particular solution of (2.6) can now be sought in the form

Z Z [ (3 (2) exp(i(6, +6) + c.c.)

+ (38m @ exp(i@, — 6)) +c.c.) | @.11)

where h,,(z) and g,,,(z) are vertical structures of the superharmonic and mean-flow
terms, respectively, resulting from the interaction between modes m and n. They satisfy
the following equations, obtained from (2.6):

2 2 B
{(U Comn)? (d— — (ki + k) ) +1-(U- cm,,)d_lzj} (@) = —mn ¥ Pam)
dz? dz

Wom +k)?
2.12)
d2 dzU - mn nm
|:U2 (d_z2 (e — kn)2> . Ud—zz} B0 = %, @.13)

where /1, (2) = hn(2) + hpm(2) and - gy (2) = gmn(2) + gum(z). The no-penetration
boundary conditions are: /1, (z = 0) = hyp(z = 1) = gun(z = 0) = Zun(z = 1) = 0. The
magnitude of the mean-flow term in (2.11) could potentially be influenced by a class
of resonances considered by Phillips (1968), who studied the interaction between an
upward and a downward propagating plane internal wave in the presence of a steady
(zero frequency) shear flow with twice the vertical wavenumber of the plane waves. The
focus of the current study, however, is the superharmonic part of the O(e?) wave field, to
specifically identify the role of the background shear flow U(z). Before proceeding with a
fully numerical solution of (2.12), it is instructive to analyse the asymptotic limit of weak
shear.

2.2. Weak shear limit

To perform an asymptotic analysis in the weak shear limit, we define a small parameter
6 = &/+/Ri, where Ri = NZL? / Us2 is the Richardson number and & = L;/H is the ratio of
shear flow length scale to the ocean depth; U, and L, are dimensional velocity and length
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scales of the background shear flow. In the weak shear limit (§ < 1), we write
U(z) = év(z), (2.14)

where v(z) is an O(1) function describing the vertical structure of U(z) (recall that U(z) is
non-dimensional, with NH being the velocity scale used for the non-dimensionalization).
We will make the reasonable assumption of L;/H < 1. This implies, in conjunction with
8 < 1, that the shear flow time scale L;/U; is much larger than the stratification time
scale 1/N (Ri > 1, in other words). We proceed to analytically solve the O(¢) and O(e?)
equations presented in § 2.1, up to O(8'), with the assumption that 8% <« € < 6.

2.2.1. The O(¢) equation
We begin by seeking a regular perturbation series (in §) solutions for the vertical mode
shapes (2.5) upon substituting U(z) = dv(z). For a fixed frequency w, we write

(@, k) = (.0, kj.0) + 8(j.1, k1) + 82(pj2, ki) + -+, (2.15)
where ¢; and k; are the mode shape and horizontal wavenumber of mode j, respectively.
At 0(8%), (2.5) reduces to the linear internal wave equation in quiescent fluid

Ligj0(z) =0, (2.16)
where, L; = (dz/dz2 +kj%0(l — w?)/w?), and the boundary conditions are ¢;o(z =
0) = ¢j0(z=1) = 0. The solutions of (2.16) are given by ¢;0(z) = sin(jnz), kjo =
jnw/~1 — w?, with j being the mode number. In this subsection, we assume o < 1, i.e.

propagating internal waves in the zero shear limit.
At O(8"), (2.5) reduces to

1 K k:
Ljgj1(2) = Ri(2) = [ij,lkj,o (1 - —2) —22u(@) - ’—’Ov”(z)} $j0(), (2.17)
w w w

where (¢ 1, kj1) are the unknowns, with ¢;1(z =0) = ¢ 1(z = 1) = 0. Multiplying
(2.17) by ¢ 0(2), and integration (from z = 0 to 1) by parts gives

2k.20 1 w v
ki = a)(a)z—]—l) (/0 U(Z)¢]~2,O(Z) dz) + o (/0 v (z)d)jz,o(z) dz) , (2.18)

where (2.16) and the boundary conditions have been used. The solution of (2.17) can now

be written as
TR1(Z)sin (jr(z — 7
912 = / 1) ,(’ ¢ Z))dz/. (2.19)
0 JTT

Similarly, at 0(8%), (2.5) is given by
Ligj2(z) = R2(2)j,0(z) + R3(2);,1(2), (2.20)

1
Ra(2) = |:(kj2,1 + 2kj.2kj.0) (1 - E)

k? ki k2 k:
~ o) (61—’1 +32u@) + v”(z)) ~ 2Ly |, 2.21)
w w w w
1 K3 ks
Rs(2) = [ij,lkj,o (1 - _2> —22500() - ’—’Ou”(z)} , (2.22)
w w w
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where (¢ 2, kj2) are the unknowns, with ¢;2(z = 0) = ¢;2(z = 1) = 0. Multiplying
(2.20) by ¢;,0(2), and integrating (from z = 0 to 1), we obtain k; > as

kio [! 1
ki = jzj—j’Toz A [(Rz(z) — 2k;j 2kj 0 (1 - E)) ¢j2,o(Z) + R3(Z)¢j,1(Z)¢j,0(Z):| dz,

(2.23)
where (2.20) and the boundary conditions have been used. A similar solution form as (2.19)
can be written for ¢;2(z) by replacing R(z) with the right-hand side of (2.20). This
0(8?) solution of the mode shape will, however, only appear in the governing equation
corresponding to the O(8%) solution of the superharmonic wave. As the present work
concerns only with the O(8!) solution of the superharmonic wave, the O(82) solution
of the mode shape is not presented here.

2.2.2. The O(¢?) equation
Similar to § 2.2.1, we seek a solution for (2.12) of the form

ljlmn = ilmn,O + Silmn,l + 62}_lmn,Z +--, (224)

while substituting the solutions obtained up to O(5) in § 2.2.1 for ky,, ks, ¢ and ¢,,. The
boundary conditions are /i, 0(z =0) = hypoz=1) = hyp1(2=0) = hpp1(z=1) =
0. At 0(8Y), (2.12) can be written as

- _(Pmn,O + an,())

Lmnhmn,o = 80)2 s (225)

where L, = (d2/dz? + y2), 2 = (km.o + kn0)>(1 — 40?) /(4w?) and P, g is the O(5°)
term in P, (defined in (2.9)). For two different modes (m # n), the particular solution of
(2.25) is

hynn,0(2) = Iy sin ((m — n)7z), (2.26)

B 3Am.04n.0 mnt(m* — n?)

mn — 271 — w? ((m + n)z(] _ 4602) _ 4(1’}1 _ I’l)z(l — a)z)) . (227)

For self-interaction (m = n), the right-hand side of (2.25) vanishes and a homogeneous
solution exists if and only if (k;; 0 + ky,0) and 2w satisfy the linear internal wave dispersion
relation with no shear. B

Equation (2.26) indicates that A, ¢ diverges if the denominator of /,,, goes to zero, i.e.
if k, + k;, is the horizontal wavenumber of superharmonic mode |m — n|. In other words,
modes m and n at frequency w are in triadic resonance with mode |m — n| at frequency
2w if its horizontal wavenumber is k,, + k,. This result based on the O(8%) solution is
consistent with the study of Thorpe (1966) for a uniform stratification with no shear.
The requirement of the superharmonic mode number being |m — n| is the reason why
only a fraction of the intersections in figure 1(a) actually represent triadic resonances in a
uniform stratification. It has to be noted here that, at these resonance locations, the regular
perturbation expansion with constant amplitudes breaks down, and multiple-scale analysis
should be used to study the amplitude variations. Our objective in this work is to identify
the resonance locations and not to study the amplitude evolution.
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At 0@8h, (2.12) is

*Cmnl_lmn,l = Ru(2), (2.28)
Ri(2) = A@R) + Bu(2) + C(@)v' () + D2)v" (2) + E@)v" (2), (2.29)

where A(z), B(z), C(2), D(z) and £(z) are given in Appendix B. As pointed out in the

beginning of this section, we have assumed that §> <« € < 8, so that O(8€?) terms are
larger than O(e?) terms in the perturbation expansion. The solution of (2.28) is

. 1 o ; / 7o ;o /
o1 (2) = sin(yz) (/ sin (y(z 1)) Ru(z )dz/> B (/ sin (y (2 Z)) Rz )dz/) .
0 0

sin y y y

(2.30)

Assuming fol sin(y (z — 1)Ru(Z)dz #0, (2.30) suggests that the O(e?) wave field
diverges if siny = 0, i.e. y = g7, where ¢ is an integer (y is defined soon after (2.25)).
It is noteworthy that this condition for the non-existence of a solution to (2.28) also
follows from the alternative theorem for the linear differential equation of the second
order (Stakgold & Holst 2011). In other words, (k.0 + kn.0, 2w) satisfying the linear
internal wave dispersion relation with no shear is a sufficient condition for the O(€?)
superharmonic wave field to diverge in the presence of weak shear. Unlike the requirement
for triadic resonance based on the O(8°) solution, the condition for the divergence of the
O(€?) wave field based on the O(8') solution does not pose any requirement on the mode
number of the superharmonic internal wave, which is consistent with what is reported by
Vanneste & Vial (1994). As a result, for any v(z) considered (with v”(z) # 0 somewhere
in the domain), an important implication is that all the intersections in figure 1(a),
irrespective of the superharmonic wave’s mode number, represent triadic resonances if
a weak shear is present. Specifically, in a uniform stratification, the 2w vs (k,,, + k,) curve
has [ (m +n — 1)/2] intersections with the dispersion curves (figure 1(a), intersections
at w = 0 not considered; |x] refers to the floor operator representing the greatest integer
less than or equal to x), out of which only those with ¢ = |m — n| are triadic resonances
if there is no shear (see plot of N in figure 10). In the presence of shear, however, all the
intersections (see plot of Ny in figure 1b) represent triadic resonances, which include the
possibility of self-interaction (m = n) too.

A seemingly trivial limit of the horizontal resonance condition ky, o + kn,0 = kg0 18
o = 0. In this limit, all the frequencies (primary and superharmonic) and wavenumbers
are zero, although that does not guarantee y = g7 being satisfied. Requiring y = g7 in
the limit of @ = O results in the additional condition of m + n = 2¢, which, when satisfied,
results in the divergence of £,,,,1(z), and hence corresponds to triadic resonance at w = 0.
As a result of these additional resonances at w = O for even m + n, the number of triadic
resonances in the weak shear limit increases to | (m + n)/2 | Zfora given m + n (note that
the expression Ng = |[(m + n) /2] (m +n — 1)/2] in figure 1(b) is for w > 0).

In summary, the addition of a weak shear substantially increases the number of triadic
resonance interactions in finite-depth uniform stratifications. In the following section, we
evaluate the solutions derived in the weak shear limit for an idealized background shear
flow in the ocean and subsequently validate the same with numerical solutions. Finite
shear regimes (finite Ri) are then explored numerically, with a focus on the dependence of
the number of triadic resonances on the Richardson number Ri.
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Figure 2. Dispersion curves for different mode numbers in a uniform stratification for (a) Ri = oo and
(b) Ri = 1. In each panel, the black, blue and red colours correspond to mode numbers n = 1, 2 and 3,
respectively.
3. Results

The ocean surface boundary layer is characterized by intense mixing and homogenized
properties. Formed by processes such as wind stress, oceanic circulation and wave
breaking, it can extend to large depths by convection, and interaction between surface
waves and ocean currents (D’ Asaro 2014). The generation of surface waves was analysed
initially by Miles (1957), who considered a shear flow in the air layer, overlying a
quiescent water layer. Subsequent studies by Valenzuela (1976), Kawai (1979) and van
Gastel, Janssen & Komen (1985) have incorporated a shear flow in the water layer also,
assuming it to be setup by wind stress. This wind drift velocity profile is observed to
be logarithmic in field measurements (Bye 1965; Churchill & Csanady 1983) and is
characterized by the wind drift layer depth, A, (typically much smaller than the depth
of the ocean) and the surface velocity, U, (~3 %—4 % of wind speed). In the current study,
we investigate the effects of the wind drift velocity profile on superharmonic generation by
internal wave triadic resonances. Specifically, we consider an exponential velocity profile
(Zeisel, Stiassnie & Agnon 2008; Young & Wolfe 2014); it is both amenable to analytical
calculations and provides results qualitatively similar to more realistic velocity profiles
(Morland, Saffman & Yuen 1991; Young & Wolfe 2014). The exponential background
velocity profile in the ocean is assumed to be,

U(z) = Sexp (Z;—l) 0<z<1, 3.1)

where 6 = Uy/(NH) and £ = Lg/H are as defined in §2.2. Here, U(z) is maximum at
the free surface (z = 1) and negligible at the ocean bottom (z = 0). Unlike in §2.2, §
is not necessarily assumed small in this section. As a result, the Richardson number
Ri = NZLE/ Uf is allowed to assume arbitrary values. As shown in Appendix A, the
dispersion curves and vertical mode shapes (governed by (2.5)) in the presence of the
background flow in (3.1) can be analytically obtained. The dispersion curves in the
presence of background flow are not symmetric about w = 0 (figure 2), and the cograde
(modes that travel faster than the maximum background flow velocity) and retrograde
(modes that travel slower than the minimum background flow velocity) modes have to
be treated separately. For the cograde modes, the phase velocity rapidly approaches the
asymptotic value of U(1) as the mode number is increased, while the approach to U(0) for
retrograde modes is relatively slower (figure 2b). With respect to mode shapes, weak shear
has a weak influence (figure 3a), while finite shear tends to accumulate zero crossings
close to the boundaries (upper boundary for cograde modes and lower boundary for
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Figure 3. Mode shapes in a uniform stratification with an exponential background velocity profile (3.1) for
(@) Ri = oo (continuous lines, no shear), Ri = 10° (hollow circles, weak shear), (b) Ri = 1 (finite shear, cograde
modes) and (¢) Ri = 1 (finite shear, retrograde modes). In each panel, mode numbers n =1 (black), 2 (blue)
and 3 (red) are shown.

retrograde modes, see figure 3b,c). Owing to this accumulation, different mode shapes
tend to look similar over most of the domain except near the boundaries (cograde modes 2
and 3 in figure 3(b), for example), with similar phase speeds (figure 2b). Consequently, the
difference in the vertical structures of various high modes is not significant in most part of
the domain, and resonant interaction between such modes is crucial to consider (Tung, Ko
& Chang 1981).

In addition to the discrete modes shown in figure 3, there exists a singular continuous
spectrum of modes whose phase speed matches with the background flow velocity at some
z, namely the critical layer (Banks et al. 1976; Jose et al. 2015). In this study, we will not
consider such continuous spectrum solutions, for either the primary modes at frequency w
or the superharmonic modes at frequency 2w. Hence, owing to the non-interaction theorem
(Eliassen & Palm 1961), no energy or momentum exchange between internal waves and
the background flow can occur, up to at least O(e?) (Tung et al. 1981).

3.1. Weak shear limit

We start by evaluating the asymptotic weak shear limit solutions of § 2.2 for representative
modal combinations, verify if the predicted new resonances occur in the presence of shear
and finally compare the asymptotic theory with numerical solutions. The conditions for
divergence of the O(e?) superharmonic wave field give the triadic resonance criteria for the
interaction between modes m, n at frequency w and the superharmonic wave at frequency
2w. The weak shear asymptotic theory in § 2.2 suggests that modes m and n at frequency
and mode g at frequency 2w are in triadic resonance if and only if k;,, + k,, = k,, where g =
|m — n| if there is no shear, and ¢ being any integer less than or equal to |[(m +n — 1)/2]
in the presence of a weak shear with v”(z) #0 somewhere in the domain. While such
triadic resonances can occur only for m/3 < n < 3m with no shear (Thorpe 1966), no
such restrictions exist in the presence of a shear flow. In other words, all the intersection
points in figure 1(a) for a uniform stratification become triadic resonances in the presence
of a weak shear.
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Figure 4. Superharmonic wave amplitude logm[l_z%"] (2.12) plotted as a function of primary wave frequency
w at Ri = 0o (no shear, shown in blue) and Ri = 107 (asymptotics, numerics), for representative modal
interactions specified by (m, n) = (a) (2, 3), (b) (2,5). The insets show a zoomed-in view of the additional
divergences that occur in the presence of weak shear.

Figure 4 shows the amplitude of the superharmonic wave (maximum value of My (2),
which is governed by (2.12)) for representative modal interactions of (m, n) = (2, 3) and
(2,5), plotted as a function of the primary wave frequency w. For (m, n) = (2, 3), hje*
becomes infinitely large only at @ & 0.468 for Ri = oo (no shear), with the superharmonic
internal wave being of mode number g = |m —n| =1 (blue curve in figure 4a). In
the presence of weak shear (Ri = 107), an additional divergence of /#"%* appears at
w ~ 0.327, which is the location where k; = ky, + k;, is satisfied with ¢ = 2. Both the
weak shear asymptotic theory (§ 2.2) and fully numerical solution of (2.12) confirm that
triadic resonance occurs at both w & 0.468 and 0.327. For (m, n) = (2,5), while only
one resonance location exists (w = 0.285) with no shear (blue curve in figure 4b), two
additional divergence locations appear with weak shear (grey dashed curve in figure 4b0).
The weak shear asymptotic theory is again shown to faithfully recover the new divergences
(and hence triadic resonances) in the presence of weak shear for (m, n) being equal to (2, 5)
(black dotted curve in figure 4b). In summary, figure 4 confirms the main conclusion from
the weak shear asymptotic theory for two representative modal interactions: in the presence
of arbitrarily weak shear, additional triadic resonance locations emerge at all the locations
where the horizontal wavenumber condition is satisfied. In addition, we also verified that
divergence of A" due to triadic resonances resulting from self-interaction is also possible

m
in the presence of weak shear.

3.2. Finite shear

At finite shear, while it is possible to take a semi-analytical approach to solve (2.5) and
(2.12) for the exponential background velocity profile (Appendix A), we present fully
numerical solutions of (2.12) in this subsection owing to the simplicity in obtaining them.
Using the shooting method alongside the fourth-order Runge—Kutta scheme to march
from z =0 to z =1, (2.5) is numerically solved to obtain the horizontal wavenumbers
and the vertical mode shapes of different modes at a given primary wave frequency
. The boundary-value problem in (2.12) is then solved using a second-order finite
difference scheme to obtain the superharmonic vertical structure Ay, (z) for different (m, n)
interactions. In the parameter space of (w, Ri) € [0.01, 0.99] x [0.50, 1071, we calculate
the amplitude of the superharmonic wave (A}:+") and identify divergences via peaks in h)'%*
which become stronger with finer resolution in w. The superharmonic wave mode number
(g) is calculated throughout the parameter space using the number of zero crossings in

the vertical structure of f,,(z). It is worth pointing out that for w > 0.50, while the
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Figure 5. Contour plot of loglo[ﬁﬁﬁ"] for (m,n) = (a) (1, 2), (b) (2,3), (¢) (2,2), plotted on the plane of
primary wave frequency w on the x-axis and Richardson number Ri on the y-axis. Hollow circles at Ri = 107
indicate the locations of divergence calculated from weak shear asymptotic theory. The mode number of the
superharmonic internal wave at the divergence locations is indicated by the encircled numbers next to the
corresponding divergence curves. Panels (d—f) are zoomed-in views of (a—c), respectively, in the regions of
small Ri.

superharmonic frequency is evanescent for Ri = oo, propagating superharmonic internal
wave modes exist for finite Ri (Bell 1974).

The distributions of log;, [hm“x] on the (w, Ri) plane for three representative cograde
modal interactions (m,n) = (1,2), (2,3) and (2,2) are shown in figure 5(a—c). The
divergence locations in the log;[2"%*] vs w plot (like in figure 4) from different Ri form
the ‘divergence curves’ in figure 5. All the points along these divergence curves represent
triadic resonance locations. In the limit of very large Ri, the divergence curves occur at
locations predicted by the weak shear asymptotic theory (see hollow circles in figure Sa—c).
For (m,n) = (1, 2), the triadic resonance between modes 1 and 2 at frequency @ and
mode-1 at frequency 2w occurs at all values of Ri, with @ being at 0.395 at large Ri
and increasing towards 0.482 at Ri = 0.50 (figure 5a). For (m, n) = (2, 3), two different
divergence locations are predicted in the weak shear limit, and they are observed to
extend as divergence curves over a wide range of Ri. Similar to what was observed for
(m, n) = (1, 2), the divergence curve corresponding to a mode-2 superharmonic internal
wave deviates slightly from its weak shear limit location when Ri reaches small values.
In contrast, the divergence curve corresponding to the mode-1 superharmonic internal
wave departs significantly from its w value in the weak shear limit as Ri becomes small.
Interestingly, it does not even seem to extend all the way to Ri = 0.50. A similar behaviour
is observed in the self-interaction case presented in figure 5(c), where the divergence curve
associated with a mode-1 superharmonic internal wave goes from w = 0.447 at weak
shear and towards large w at Ri &~ 1.50 (w ~ 0.719). It is worth recalling from § 2.2 that
resonance due to self-interaction is not possible at all if there is no shear.

Figure 5(a—c) shows that the primary wave frequency at the triadic resonance locations
deviates very little from its weak shear limit value if Ri is larger than approximately 10%.

For Ri < 102, the divergence curves explore a larger range of primary wave frequencies,
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even extending to values for which the superharmonic frequency would be evanescent
if there was no shear. To closely investigate the small Ri region (0.50 < Ri < 5),
figure 5(d—f) shows zoomed-in views of figure 5(a—c), respectively. For (m, n) = (1, 2),
triadic resonance of the primary waves with the mode-1 superharmonic wave occurs at
around w ~ 0.482 for small Ri close to 0.50, which is not far from the resonant value
of w ~ 0.395 for Ri — oo. Similarly, the triadic resonance associated with the mode-2
superharmonic wave for (m, n) = (2, 3) occurs at similar w for Ri = 0.50 and Ri — oo. In
contrast, the triadic resonance associated with the mode-1 superharmonic wave ceases to
exist below a cutoff Ri of 2.94 (figure Se). Interestingly, for a given Ri larger than (but in the
vicinity of) 2.94, resonant generation of a mode-1 superharmonic internal wave occurs at
two different values of w. For example, triadic resonance with the mode-1 superharmonic
internal wave occurs at w ~ 0.743 and 0.816 for Ri ~ 2.98, and at w ~ 0.587 and 0.982 for
Ri ~ 4.89. Thus, for a finite range of Ri € (2.94, 5.01), there exists two different w values
at which modes 2 and 3 at @ and mode-1 at 2w are in triadic resonance. A similar behaviour
is observed with the triadic resonance between a self-interacting mode-2 at @ and mode-1
at 2w (figure 5f), The corresponding finite range of Ri where two resonant o values exist
is Ri € (1.49, 2.38). Finally, it is worth highlighting that weakly nonlinear effects seem to
be stronger at smaller Ri in general (including the regions away from divergence curves),
as evidenced by the larger magnitudes of the superharmonic wave amplitude at small Ri in
figure S(e.f).

As pointed out in § 2.2, a triadic resonance in the vicinity of w = 0 appears for those
(m, n) for which m 4 n is even, if a weak shear is present. This weak shear limit is indicated
by the hollow circle at @ = 0 and large Ri in figure 5(c), where m + n = 4 is even. An
increase in the superharmonic amplitude as one approaches the w = 0 axis is evident at
all Ri, although we could not establish that a divergence curve exists in the neighbourhood
for w > 0. Upon further investigation, we found that the actual divergence curve occurs in
the @ < O region for all Ri, which still represents a continuous extension of what occurs
at w = 0 in the weak shear limit. An alternate view of this observation is that the (2, 2)
triadic resonance interaction at w = 0 for Ri — oo extends to the finite Ri region as a
(—2, —2) triadic resonance interaction at negative w values, i.e. a retrograde-retrograde
interaction. This aspect is further elucidated in figure 8.

In figure 6, we provide an interpretation of our observations for the (m, n) = (2, 3)
interaction (figure 5b,¢) in the context of internal wave dispersion relation in the presence
of shear. Like in figure 1(a), we plot the dispersion curves for the individual modes (shown
in grey) and the 2w vs (k,,, + k) curves obtained from the dispersion curves for modes m
and n at frequency o (shown in black) for various Ri in figure 6. At large Ri (Ri = 100 in
figure 6a), ky, + k, = k4 (¢ is the mode number of the superharmonic wave) is satisfied
at two different locations, each corresponding to ¢ = 1 (blue dot) and 2 (red dot). The
corresponding primary wave frequencies are where divergence locations occur at Ri = 100
in figure 5(b), and are very close to those values predicted by the weak shear asymptotic
theory. At Ri = 3, triadic resonance of the primary waves with the mode-1 superharmonic
wave occurs at two different values of 2w (blue dots in figure 6b), again being consistent
with the divergence locations at Ri = 5 in figure 5(b). As Ri is further decreased to the
previously identified cutoff value of 2.94 (figure 6¢), the two blue dots from figure 6(b)
converge to a single location, and the mode-1 dispersion curve is now tangential to the 2w
vs (ky, + ky) curve. At an even smaller value of Ri (=0.50 in figure 6d), triadic resonance
with the mode-1 superharmonic wave is absent (no blue dots), in line with the observation
from figure 5(e) that it ceases to exist below Ri &~ 2.94. Triadic resonance with the mode-2
superharmonic wave persists at all Ri, indicated by the red dots in each of figure 6(a—d).
In summary, figure 6 establishes that divergence of the superharmonic wave amplitude (as
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Figure 6. Dispersion curves for mode numbers ¢ =1 to 3 (grey lines) for (a) Ri = 100, (b) Ri =5,
(¢) Ri = 2.94 and (d) Ri = 0.50. The black solid lines represent 2w vs (k;, + k) with (m, n) = (2, 3). Points
of intersection with the mode-1 and mode-2 superharmonic dispersion curves are indicated by the blue and red
dots, respectively. In (d), the inset shows a zoomed-in view (with a modified quantity on the x-axis for better
clarity) around the intersection point denoted by the red dot.

shown in figure 5) occurs at the same locations where the horizontal wave numbers satisfy
km + kn = kg, and hence represent triadic resonances. In addition, figure 6 also establishes
that horizontal wavenumber condition is sufficient to ensure triadic resonance between the
primary and superharmonic waves for finite shear too (§ 3.1 showed the same result in the
weak shear limit).

Extending the investigations in figures 5 and 6, we find that features such as multiple
resonant « values at given Ri and superharmonic mode number, and disappearance
of some resonances below a cutoff Ri are common for higher mode interactions too.
These features can have significant implications for the total number of possible triadic
resonances at various Ri, which we proceed to discuss in § 3.3.

3.3. Number of resonance locations

In oceanic settings like internal tide generation or scattering by ocean floor topography,
a finite number of modes at the tidal frequency are excited, with the low modes often
containing the most energy (Garrett & Kunze 2007). In this subsection, we consider a
scenario where a finite amount of energy is present in the first few modes at a fixed
frequency, and investigate the total number of resonant interactions possible amongst
them. Specifically, we consider all possible cograde—cograde interactions with (m, n) <
(5,5), and plot all the corresponding divergence curves (obtained as locations where
km + kyn = kg is satisfied) on the w—Ri plane (figure 7a). All the divergence curves emerge
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Figure 7. Resonance locations for all the cograde modal interactions amongst (a) (m,n) < (5,5) and
(b) (m,n) < (10, 10), in the plane of primary wave frequency @ and Richardson number Ri. Number of
resonance locations (Ng) shown at different Richardson numbers (Ri) for all the cograde modal interactions
(¢) (m,n) < (5,5) and (d) (m, n) < (10, 10). In (a,b), blue dots indicate the resonance locations in the weak
shear limit (Ri — 00). In (¢,d), the red and blue dots indicate Ng in the weak shear and no shear limits,
respectively.

from the weak shear limit (blue dots at large Ri), and expand towards other frequencies as
Ri is decreased. While some of them extend all the way to Ri = 0.5, others have a cutoff Ri
below which the corresponding resonances do not exist. As pointed out in § 3.2, some of
the divergence curves occur at two different primary wave frequencies at a given Ri within
a particular range. In this range of Ri (roughly around 1 to 100), the divergence curves
extend over a large frequency range, which is in contrast with what happens at very large
and very small Ri. Accounting for primary modes up to 10 (figure 7b), it becomes evident
that almost every primary wave frequency corresponds to some resonant interaction for a
finite band of Ri. Owing to existence of a cutoff Ri for several of the interactions, only a
few interactions are possible as Ri approaches 0.5.

For a given Ri, the total number of resonant interactions (Ng) over the entire range of
w € [0, 1] is calculated from the plots in figure 7(a,b), and Ng is subsequently plotted as
a function of Ri in the bottom row of figure 7. As already pointed out, the number of
resonances in the weak shear limit (Ri — 00) is much larger than the no shear limit. In
figure 7(c), which corresponds to interactions amongst the first 5 modes, the weak shear
and no shear limits are shown by the red and blue dots, respectively. Considering primary
wave frequencies in the range [0, 1], Ng remains at 33 for 63 < Ri < oo, and starts to
increase with a further decrease in Ri. It attains a maximum of 35 in the interval of 16.26 <
Ri < 26.38, before decreasing towards 10 at Ri ~ 1.19. Ng then remains at 10 for 0.5 <
Ri < 1.19. Considering a larger range of w (w € [0, 1.5], shown in black), Ng increases
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Figure 8. Contour plot of loglo[fz%"] similar to figure 5 but for representative (a) retrograde modal interaction

(m, n) = (—2, —4), (b) mixed modal interaction (m, n) = (3, —5), and (c) mixed modal interaction (m, n) =
(—1,4), plotted on the plane of primary wave frequency w on the x-axis and Richardson number Ri on the
y-axis. Hollow circles at Ri = 107 indicate the locations of divergence calculated from weak shear asymptotic
theory. The mode number of the superharmonic internal wave at the divergence locations is indicated by
the encircled numbers next to the corresponding divergence curves. The negative sign before mode number
indicates that it is a retrograde mode.

from its weak shear limit at a larger Ri of 268.79, and also attains a larger peak of Np = 45
at Ri ~ 32.01. Increasing the maximum mode number considered to 10, a similar trend in
Nr vs Ri is observed, but with a larger value of Ri at which Nr deviates from its weak
shear limit (figure 7d).

In summary of figure 7, we have identified a finite range of Ri over which resonant
interactions occur at a significantly wider range of primary wave frequencies than for
large and small Ri. In addition, the total number of possible resonant interactions attains a
maximum for intermediate Ri of O(10), before decreasing towards relatively small values
at small Ri. Nr at small Ri, while being much smaller than the weak shear limit, is still
larger than the number of resonances in the no shear limit.

Due to symmetry breaking by the introduction of shear, retrograde—retrograde
and mixed (cograde-retrograde) interactions behave differently from cograde—cograde

interactions. To elucidate this, we show the contour plots of log;[4%] for representative
modal interactions of (m,n) = (-2, —4), (3,—5) and (—1,4) in figures 8(a)-8(c),
respectively. Here, a negative mode number —m indicates a retrograde mode with mode
number m. Unlike the dispersion curves of cograde modes (see figure 6, for example),
the dispersion curves of retrograde modes are bounded by a maximum frequency, whose
magnitude increases with Ri and approaches w = 1 in the limit of no shear (Bell 1974).
This restricts the maximum primary wave frequency at which divergence curves can occur
to w = 0.5, thus restricting the primary wave frequency axis to w € [0, 0.5] in figure 8.
In the retrograde-retrograde interaction of (m,n) = (—2, —4) (figure 8a), three
divergence curves emerge at Ri — oo from the resonance locations predicted by
the weak shear asymptotic theory (hollow circles), including one from w =0. It
is worth highlighting that the weak shear resonances occur at locations where the
horizontal resonance condition is satisfied with no shear (§2.2), thus giving rise to
the same resonance-emerging locations for cograde—cograde and retrograde-retrograde
interactions. All the three divergence curves extend all the way to Ri = 0.5, with noticeable
deviations from the weak shear limit. Interestingly, further investigations revealed that all
the retrograde—retrograde resonance interactions that occur in the weak shear limit extend
all the way to Ri = 0.5. This is in contrast to cograde—cograde interactions, some of which
were shown to have a cutoff Ri below which they do not exist. As was pointed out for even
m + n in cograde—cograde interactions (figure Sc), while a signature of the weak shear
resonance at w = 0 was present in the form of enhanced superharmonic amplitudes, no
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divergence curve was actually detected (figure 5¢). It turns out that the @ = 0 resonances
from the weak shear limit become retrograde—retrograde resonances for finite Ri, which
explains the occurrence of a divergence curve with a retrograde mode 3 superharmonic
wave in figure 8(a).

For the cograde-retrograde mixed interaction of (m,n) = (3, —5) (figure 8b), a
divergence curve (with the superharmonic wave being a retrograde mode 1) appears in
the vicinity of w = 0 at large Ri, emerging from the weak shear limit of @ = 0 that is
possible due to even m 4 n. While the resonance at Ri = 10 is not very close to w = 0, we
confirmed with further investigations for Ri > 107 that the resonance location approaches
w = 0 as Ri is made even larger. This divergence curve extends all the way to Ri = 0.5,
with its location being at w ~ 0.416 at Ri = 0.5. In addition, a new divergence curve (with
the superharmonic wave being a retrograde mode 2) emerges from (w, Ri) = (0, 2.42);
the corresponding resonance has no weak shear counterpart. Such an occurrence of a
new resonance at finite Ri and @ = 0 is observed only for mixed interactions. This new
divergence curve is present at all Ri < 2.42, occurring at w =~ 0.304 for Ri = 0.5. Finally,
for the mixed interaction case of (m, n) = (—1, 4) (figure 8c), a single divergence curve is
observed, and it emerges from the weak shear limit of @ ~ 0.395. Unlike for the examples
in figure 8(a,b), the resonance in figure 8(c) has a cutoff Ri of 5.01 below which it does
not occur.

Having investigated representative retrograde—retrograde and mixed interactions in
figure 8, and recognizing that they are quite different from cograde—cograde interactions,
we proceed to reproduce the calculations in figures 7(a) and 7(c) in the presence of
all interactions. Specifically, considering all possible interactions between cograde and
retrograde mode numbers up to 5, we plot all the divergence curves on the w—Ri plane,
with the colour indicating the type of interaction (figure 9a). The divergence curves
corresponding to cograde—cograde interactions are reproduced from figure 7(a). All
the divergence curves associated with retrograde—retrograde interactions extend all the
way from their weak shear limit to Ri = 0.5, with quite a few of them emerging from
w =0 at Ri — oo. Interestingly, the w = 0 resonances expand towards larger values
of w as Ri is decreased, thus making a significant range of w € [0, 0.5] susceptible to
retrograde—retrograde resonances at small Ri. Mixed interactions are fewer in number
compared with other interactions at large Ri, but new resonances emerge at finite Ri, a
feature that is absent for cograde—cograde and retrograde—retrograde interactions.

As in figure 7(c), we plot the total number of resonances (Ngr) as a function of
Ri, including the contributions from all types of interactions (figure 95). While the
cograde—cograde contribution is reproduced (and already discussed) from figure 7(c),
the retrograde—retrograde contribution is observed to be significant and invariant with
Ri (blue markers in figure 9b). The latter feature can be understood from figure 9(a),
where all the retrograde—retrograde resonances extended all the way from Ri — oo to
Ri = 0.5. The number of mixed interactions is relatively small at large Ri, but increases
noticeably once Ri is decreased below a value of around 23.95. At small Ri of O(1), the
retrograde—retrograde contribution dominates, while the number of mixed interactions has
overtaken the number of cograde—cograde interactions. In terms of the total number of
resonances, Ng remains more or less constant at its weak shear limit value of 85 for
Ri > 63, which is much larger than the no-shear value of 14. Upon a decrease in Ri
below 63, Np increases, as already observed for cograde—cograde interactions in 7(c).
At small Ri, owing to the new resonances from mixed interactions, Ng does not drop
as significantly as the number of cograde—cograde interactions, and has a value of 73 at
Ri = 0.5. Finally, increasing the considered range of primary wave frequencies to w < 1.5

929 A10-18


https://doi.org/10.1017/jfm.2021.847

https://doi.org/10.1017/jfm.2021.847 Published online by Cambridge University Press

Triadic resonances of internal wave modes in a shear flow

a - p) 100 . : :
@ , o Cograde ®) ﬂ'-"'h\
10 o Ny 35
o Retrograde 80 | .."f:‘:f =, ¢ o Cograde (w < 1)
o Mixed ) o Retrograde
102 60 - o Mixed
Ri NR o Total (w < 1)
¢ Total (w < 1.5)
1 40 F b
10 o I
20 P, = ]
100 mﬁ"-m_ 14
0 0.5 1.0 1.5 100 10! 102 103
w Ri

Figure 9. (a) Resonance locations for all the modal interactions amongst (|m/|, |n]) < (5, 5) i.e. for cograde,
retrograde and mixed interactions, in the primary wave frequency w and Richardson number Ri plane. The blue
dots indicate resonance locations in the weak shear limit. (b) Number of resonance locations (Ng) plotted as a
function of Richardson number(Ri) for all the modal interactions amongst (|m|, |n|) < (5, 5). The red and blue
dots indicate the total number of resonance locations in the weak shear and no shear limits, respectively.

noticeably increases the maximum value of Ny due to its influence on the cograde—cograde
interactions at finite Ri, but has little effect on Ng at small Ri.

In summary, the total number of resonances with shear is significantly larger than that
without shear, and attains a maximum at a Ri &~ 17.91, Its value at small Ri is comparable
to its weak shear limit owing to the emergence of new mixed interaction resonances at
finite Ri. Furthermore, it is noteworthy that the range of primary wave frequencies that
are susceptible to resonances becomes very large at finite Ri due to cograde—cograde
interactions, and also occupies a significant range of w € [0, 0.5] at small Ri mainly due
to retrograde—retrograde interactions.

4. Discussion and conclusions

In this study, triadic resonance resulting from interaction between discrete internal wave
modes at the same frequency in a two-dimensional, uniformly stratified shear flow
were considered. For a linear (primary) wave field comprising a series of modes at
the same frequency w, superharmonic (frequency 2w) and mean-flow (frequency zero)
terms constitute the weakly nonlinear solutions. At certain primary wave frequencies, the
amplitude of the superharmonic term diverges as a result of triadic resonance between
two primary modes and a superharmonic secondary mode. In the no shear limit, primary
modes m and n at frequency o are in triadic resonance with mode ¢ at frequency 2w if
ki + ky = kg and g = |m — n| are satisfied, where k; denotes the horizontal wavenumber
of mode i at the corresponding frequency (Thorpe 1966). Here, we developed an
asymptotic theory to investigate the influence of weak shear on the aforementioned triadic
resonances. We find that, unlike in the no shear limit, the horizontal wavenumber condition
of ky, + ky = k4 alone is sufficient to ensure a resonant interaction, independent of the
superharmonic wave mode number g. As a result, several more resonances, which include
self interactions, occur in the presence of an arbitrarily weak shear when compared with
the no shear limit. The locations of these resonances can be traced back to those primary
wave frequencies at which &, + k, = k; is satisfied in the no shear limit, including some
at the seemingly trivial case of w = 0.

In §3, we extended our investigations to finite shear by numerically solving the
equations governing the weakly nonlinear superharmonic wave field. Specifically, an
ocean-like exponential velocity profile was considered, and a systematic study on the
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effects of Richardson number Ri was performed. Here, Ri — oo corresponds to the weak
shear limit, and our study spans a wide range of Ri all the way to Ri = 0.5. On the (w, Ri)
plane, the superharmonic wave amplitude diverges at locations of resonance, and the locus
of all such points corresponding to a particular superharmonic internal wave of mode
number ¢, is termed as a divergence curve of mode number g. For cograde—cograde
interactions, a cutoff Ri exists for a large number of divergence curves and only a few
among all the divergence curves extend from Ri — oo to Ri = 0.5. In addition, for a
finite range of Ri (roughly around 1-100) above the cutoff Ri for a particular modal
interaction, resonance occurs at two different primary wave frequencies at a given Ri.
For retrograde-retrograde interactions, all the resonances that occur for Ri — oo extend
all the way to Ri = 0.5 without the occurrence of any cutoff Ri. Further, all the resonances
that occur at zero primary wave frequency for Ri — oo appear in retrograde—retrograde
interactions at finite w for finite Ri. For mixed interactions, a new feature of the emergence
of new resonances at finite Ri ~ O(10) is observed, thus contributing to an increase in the
number of mixed interaction resonances at small Ri. The total (from cograde, retrograde
and mixed interactions) number of resonance locations has a dramatic increase from the no
shear limit to the weak shear limit (Ri — 00), attains a maximum at moderate Ri (~0O(10))
and approaches a value that is not far from the weak shear limit value, at Ri = 0.5. This
trend, particularly at small Ri, is understood as a consequence of a decrease and increase
of the cograde—cograde and mixed resonant interactions, respectively, with Ri.

Our conclusions based on the weak shear limit are potentially relevant for other
inhomogeneous background conditions as well. Specifically, we showed that all the
locations where the horizontal wavenumbers satisfy the triadic resonance condition in the
absence of shear represent actual triadic resonances in the presence of an arbitrarily weak
shear. A similar conclusion will hold if, instead of a weak shear, a weak non-uniformity
in the stratification is introduced. This also explains why the previous study by Varma &
Mathur (2017) identified several more resonances in non-uniform stratifications compared
with a uniform stratification. While Varma & Mathur (2017) attributed the sufficiency of
the horizontal resonance condition k,, + k, = k4 to a non-orthogonality condition being
satisfied by modal pairs in a non-uniform stratification, an equivalent perspective in our
weak shear limit theory is that the coefficient of ‘sin(yz)/siny’ in (2.29) is non-zero. In
summary, a weak inhomogeneity either in terms of shear or non-uniformity in stratification
reduces the dimension of the spatial triadic resonance condition, and hence substantially
increases the number of resonances compared with the case of uniform stratification with
no shear.

A recent study by Biswas & Shukla (2021) directly used the sufficiency of frequency and
horizontal wavenumber conditions to identify internal wave resonant triads in a uniformly
stratified uniform shear flow. Considering primary modes (m, n) at the same frequency
w, Biswas & Shukla (2021) investigated the stability of a few resonant triads (specifically
five different (m, n) combinations at a few arbitrarily chosen values of moderate Ri) that
contained the superharmonic wave. In contrast to Biswas & Shukla (2021), we consider a
realistic ocean-like background shear flow, and identify all possible low-mode interactions
over a continuous range of Ri spanning from weak to moderate to strong shear. An analysis
of the amplitude evolution associated with all the resonant triads we identified in this study
would be useful in determining their relative importance in a realistic internal wave field
comprised of different modes.

Our study indicates that superharmonic generation due to triadic resonance is likely for a
large range of primary wave frequencies, particularly at Ri ~ O(1-100), if a few different
primary modes are simultaneously excited. In the future, it is important to consider the
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parameter values (Richardson number, frequency and mode numbers) for representative
oceanic regimes (internal tides in the presence of wind forced shear flow or surface
gravity wave-induced mean flow, wave—mean-flow interaction etc.) to study the extent to
which superharmonic generation gets modified by background shear. It would further be
interesting to study if the new resonances that occur due to shear can result in stronger
secondary wave growth than those that are associated with the resonances in uniform
stratification with no shear. This would require the derivation of amplitude evolution
equations associated with the triadic resonances identified in this study. Additionally,
incorporating the presence of background shear along with one or more of non-uniform
stratification, background rotation, viscous and three-dimensional effects will take us a
step closer to realistic oceanic settings. In a three-dimensional domain, additional classes
of resonances (wave—vortex and vortex—vortex) analysed by Lelong & Riley (1991) would
also be relevant. The ideas in this paper may be relevant for triadic resonance with
subharmonic waves too, including PSI i.e. apart from the effects of background shear
on the already known subharmonic resonances (such as PSI), it is important to study if
additional resonances occur due to background shear. Finally, it would also be interesting
to study the effects of background shear on triadic resonances when critical layers, and
hence the possibility of a continuous spectrum of modes, are present.
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Appendix A. Analytical solution for an exponential velocity profile

To solve the governing equation for mode shapes, we transform (2.5) with an exponential
background shear into a hypergeometric differential equation using the transformation
given by Thorpe (1969). The general solution is then given by

6@ = w1 — W (GF(p,g;ri ) + G F(p—r+1,qg—r+1;2—r; ),
(A1)
where

8
wu(z) = — exp
.

1= H -1, o=,/1 —452/CJ.2, (A3a,b)
¢
p=Fa+3(1+0)+,/1+kE2

g=+1+ (1 +£0) F JI+KE, r=1£24 (Ada—c)
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Here, 41 and %, are integration constants. This solution above is valid in the
neighbourhood of the regular singular point u = 0, with radius of convergence || < 1.

Applying the boundary conditions at z =0 and z =1, we can write the dispersion
relation as

w( TF(p, g; r; pODF(p —r+1,q—r+ 1,2 — r; (1))
— w(O)'"F(p, g rs p(O)F(p—r+1,g—r+1;2 —r; 1£(0)) = 0. (AS)

At a particular primary wave frequency, evaluating the wavenumber analytically from
(A5) is only possible in certain limiting cases. In general, various numerical root finding
techniques such as the Newton—Raphson method can be easily employed to solve (AS).

Equation (2.12) is similar to the mode shape equation (2.5) but is inhomogeneous. The
inhomogeneous part is obtained by substituting the wavenumber, found from (AS), and
the mode shape from (A1) on the right-hand side of (2.12). Hence, the analytical solution
of (2.12) includes integrals over the products of hypergeometric functions (i.e. nonlinear
terms). These integrals can be evaluated or can be solved by numerical quadrature.

In summary, solving (2.5) and (2.12) can be carried out analytically but, in general,
numerical methods are the only resort for finding the eigenvalues from (AS).

Appendix B. Coefficients of right-hand side terms in (2.24)
The coefficients of different terms on the right-hand side of (2.24) are as follows:

(1 —40?) .
Az) = _m (Gn(2) + Gy (2)) — T ((km,l + kn,l) (km,O + kn,O)) hinn,0(2)
(BI)
— (% B k k kim0 — kn.0)? _
B(Z) _ ( mn(Z)‘Z m(2)) _ ( m,0 + n,O) (( m,0 . n,O) +4km,0kn,0) hmn,O(Z)v
2w w w
(B2)
C) = — 00 (1 o (ko + Kino) + koo (K g + 2 @)bn0(2)
2) = S m,0Kn,0 (Km,0 + Kn,0) + 4Km,0Kn,0 m,0 + n,0 ¢m,0 < ¢n,0 <),
(B3)
kim0 — kn,0 (kim,0 + kn,0) -
D(z) = —Am,oAn,oM (kn.0. 08,0 = kin.0bm.00.0) — ————hpmn.0(2)
4w ' ’ 2w
(B4)
km.ok
g(Z) = Am,OAn,OL;,Od)m,O‘Pn,O, (BS)
2w
where,
(K0 =5.0) , o
Ln(2) = f [Am,OAn,O (kn,0¢m,1¢n,0 - km,0¢m,l¢n’() + kn,1¢m,()¢n,0)
+ (Am,lAn,O + Am,OAn,l) kn,()ﬁb;/n,od)n,O]
+ Am,04An,0kn,0 (km, 1kim,0 = kn,1kn,0) @y 0Pn.0- (B6)
and
B (2) = Am,0An,0kn.0(3, 0 — K3 )b 0Pn.0- (B7)
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