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Abstract
Type I/II interferons (IFNα,β/IFNɣ) are cytokines that activate signal-transducer-and-activator-of-
transcription-1 (STAT1). The STAT1 N-terminal domain (NTD) mediates dimerization and cooperative
DNA-binding. The STAT1 DNA-binding domain (DBD) confers sequence-specific DNA-recognition.
STAT1 has been connected to growth inhibition, replication stress and DNA-damage. We investigated
how STAT1 and NTD/DBDmutants thereof affect fibrosarcoma cells. STAT1 and indicated mutants do not
affect proliferation of resting and IFNα-treated cells as well as checkpoint kinase signaling, and phosphor-
ylation of the tumor-suppressive transcription factor p53 ensuing ɣ-irradiation. Of the STAT1 reconstituted
U3A cells those with STAT1 NTD mutants accumulate the highest levels of the replication stress/DNA-
damage marker S139-phosphorylated histone H2AX (ɣH2AX). This is similarly seen with a STAT1
NTD/DBD double mutant, indicating transcription-independent effects. Furthermore, U3A cells with
STAT1 NTD mutants are most susceptible to apoptotic DNA fragmentation and cleavage of the DNA
repair protein PARP1. These data provide novel insights into the relevance of the STAT1 NTD.
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Highlights:

• STAT1 and NTD mutants can be stably expressed in U3A cells
• Similar effects of wild-type and mutant STAT1 on proliferation � IFNα
• STAT1FA accentuates ɣH2AX accumulation and apoptosis upon ɣ-irradiation

Introduction

Binding of cytokines and growth hormones to cognate receptors activates the inducible transcription
factors STAT1,-2,-3,-4,-5A,-5B,-6. STATs have a modular structure (NTD, coiled-coil, DBD, linker,
SH2-domain, p-tyrosine site, C-terminal activation domain) (Khodarev et al., 2012; Wieczorek et al.,
2012). STAT1 phosphorylation at Y701 leads to high affinity interactions with other STATs. The NTD
allows cooperative STAT1-STAT1/STAT1-STAT2 DNA-binding of pre-formed dimers and enables
STAT1 dephosphorylation (Mertens et al., 2006; Wieczorek et al., 2012).
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IFN-/STAT1-related signatures promote resistance to chemotherapy and ɣ-irradiation in cancer cells
(Ah-Koon et al., 2016; Kaowinn et al., 2017; Khodarev et al., 2012; Malilas et al., 2013). Intriguingly,
STAT1 can though promote sensitivity to DNA crosslinking agents (Prieto-Remon et al., 2013) and pro-
apoptotic gene expression (Khodarev et al., 2012; Wieczorek et al., 2012). Hence, modulators of STAT1
may be novel and innovative context-dependent anti-cancer drugs (Khodarev et al., 2012).

Objective

It is unclear whether the STAT1 NTD and DBDmodulate cellular responses to fibrosarcoma cell growth
and their responses to IFNα and ɣ-irradiation. We set out to answer these questions. We reconstituted
STAT1 negative U3A fibrosarcoma cells with wild-type STAT1 and NTD/DBD mutants thereof. We
investigated cellular responses and molecular parameters.

Material and Methods
Cell lines

Cells were cultured as described (Ginter et al., 2012) and table 1:. See figure legends for ɣ-irradiation.

Plasmids

We refer to HA-tagged STAT1α as STAT1. STAT1AA has moieties phenylalanine-77 and leucine-78
replaced by alaninemoieties (mutagenic primers 5-GCTTTTCTTTGGAGAATAACGCCGCGCTACAG-
CATAACATAAGG-3/5-CCTTATGTTATGCTG TAGCGCGGCGTTATTCTCCAAAGAAAA GCG-3).
STAT1AAQQ carries these mutations and additional lysine-410 and lysine-413 exchanges to glutamine
residues (Ginter et al., 2012).

Western blot, immunoprecipitation, antibodies, drugs, chemicals, cytokines

For Western blot technique see (Beyer et al., 2017). Antibodies: Santa-Cruz-Biotechnology (β-actin/sc-
47,778;p53/sc-81,168;IFNAR/sc-845; STAT1/sc-346/sc-417; p-STAT1/sc-7,988-R); Sigma (tubulin-α/
T5168); Abgent (UBCH8/AP2118b); BD-Pharmingen (cleaved PARP1/552596); Abcam
(ATM/ab32420;p-S1981-ATM/ab81292); Cell-Signalling (ATR/2790;CHK1/2360;p-S317-CHK1/2344;
CHK2/2662;p-T68-CHK2/2661;p-S15-p53/9284;γH2AX/9718); Millipore (53BP1/NAB3802). For
immunoprecipitation, drugs, chemicals, and cytokines see (Ginter et al., 2012). Immunoblot data show
results from at least two independent experiments.

Cell cycle and apoptotic DNA fragmentation analyses

Cells were incubated with 103 U/ml IFNα or 10Gy using a Gammacell 2000 irradiator. Adherent and
floating cells were collected. Single-cell suspensions in PBS were centrifuged (5min, 700xg, RT). Pellets

Table 1.

U3A reconstituted with Resistance STAT1

GFP Neomycin (G418) Null

STAT1 Neomycin (G418) Wild-type

STAT1AA Neomycin (G418) NTD mutant

STAT1QQ Neomycin (G418) DBD mutant

STAT1AAQQ Neomycin (G418) NTD/DBD mutant
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were fixed (1ml ice cold 70% ethanol), stored at �20 °C overnight, and washed in 1ml PBS (5min at
700xg, RT). Per sample, 390μl PBS, 5μl RNase A (10mg/ml), and 5μl PI (2.5mg/ml) were added (20
min, 37 °C). Samples were analyzed by flow cytometry.

Results
STAT1 and NTD/DBD mutants do not impair growth

We investigated if IFNα-activated STAT1 has anti-proliferative effects in U3A cells. STAT1 (WT) and
STAT1AA (lacks NTD for dimerization and cooperative DNA binding (Mertens et al., 2006)) bound to

Figure 1. IFNs do not restrict the growth of fibrosarcoma cells� STAT1. (A) HA-tagged STAT1 or STAT1AAwere transfected into
HEK 293 T cells. 24 h later, the cells were stimulated with 1,000U IFNα for 1 h. Lysates were collected and subjected to
immunoprecipitation against IFNAR. Western blots were probed for immunoprecipitated IFNAR and bound HA-tagged STAT1
variants; * non-specific band resulting from IgG. (B) Detection of wild-type STAT1 and mutants thereof in reconstituted U3A
fibrosarcoma cells. Equal amounts of lysates from untreated and IFNɣ-treated (10 ng/ml, 24 h) U3A cells were probed for
STAT1 by Western blot. HEK 293 T cells served as controls expressing the endogenous STAT1 gene (encoding STAT1α and
STAT1β) which is induced upon IFN treatment. (C) U3A cells stably expressing STAT1 (WT, wild-type), STAT1 GFP,
STAT1K410/413Q (QQ) and/or STAT1F77A/L78A (AA) were treated with 1,000U IFNα (+, red lines) or were kept untreated
(�, black lines) for 96 h. Cell cycle analysis was performed using propidium iodide (PI) staining on fixed cells. The cell cycle
phases are marked for GFP-transfected cells as an example (G1, G1 phase; S, S phase; G2, G2/M phase). Graphs are
representative for n = 3.(D) Same as in (C), bar graphs show the average percentages of cells in G1, S and G2/M cell cycle
phase. Data represent three independent experiments, of which one is shown as (C). Error bars indicate standard deviations.
No statistically significant differences were seen (t-test).
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the IFNα-receptor (IFNAR) (Fig. 1A). However, IFNα did not affect the cell cycle of U3A cells
reconstituted with STAT1 or NTD (AA)/DBD (QQ) mutants (Table 1: and Fig. 1B-D).

ɣ-irradiation differentially affects U3A cells with STAT1 and its mutants

γ-irradiation evoked the accumulation of a subG1 fraction (Fig. 2A) and of cleaved PARP1 more
pronouncedly in cells with STAT1AA and STAT1AAQQ (Fig. 2B). Apparently, ɣ-irradiation causes
apoptosis and STAT1 accentuates this.

STAT1 NTD affects ɣH2AX accumulation upon ɣ-irradiation

Next, we analyzed DNA damage sensors. 53BP1 levels were not correlated with STAT1 per se (Fig. 3A).
Apical (ATM/ATR) and downstream checkpoint kinases (CHK1/CHK2) and their target p53 were
phosphorylated after ɣ-irradiation irrespective of STAT1 (Fig. 3B, C). In contrast, the checkpoint kinase
target ɣH2AX accumulated most pronouncedly in U3A cells with STAT1AA/STAT1AAQQ (Fig. 3C).
Hence, NTD mutant STAT1 expression correlates with irradiation-induced ɣH2AX.

Discussion

STAT1 sensitizes fibrosarcoma cells to DNA damage and apoptosis upon ɣ-irradiation. Cooperativity
through the STAT1 NTD seems to attenuate this. Thus, STAT1 signaling could be analyzed further as a
target in fibrosarcoma and potentially other cancers. Fibrosarcoma is a clinically unmet problem with
poor survival due to resistance to chemotherapy and irradiation as well as tumor recurrence after surgery.
Novel treatments and the identification of mechanisms that regulate the therapeutic sensitivity of

Figure 2. STAT1 sensitizes fibrosarcoma cells to cytotoxic effects of γ-irradiation. (A) U3A cells stably expressing STAT1, GFP,
STAT1K410/413Q (QQ) and/or STAT1F77A/L78A (AA) were irradiated with 10Gy ionizing radiation (+) or kept untreated (�).
This was followed by an incubation at 37 °C for 48 h or 72 h. SubG1 fractions were assessed via flow cytometry and PI staining.
Data represent three (48 h) or four (72 h) independent experiments. Two-way ANOVA, Šidák multiple comparisons test, error
bars indicate standard deviations; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.(B) U3A cells were treated as described in
(A) for 72 h. Whole cell extracts were prepared and indicated proteins were detected by SDS-PAGE and Western blot analysis.
Both adherent and floating cells were harvested for immunoblot and flow cytometry (n = 2).
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fibrosarcoma could solve the clinical problem (Augsburger et al., 2017). Perhaps, STAT1 is both a
clinically applicable marker and novel agents targeting the STAT1 NTDmight give therapeutic benefits.

Conclusion

Our work provides fresh information on the relevance of STAT1 and a limited number of NTD/DBD
mutants thereof for cellular responses to IFNα and ɣ-irradiation. We speculate that the higher levels of

Figure 3. STAT1 does not alter checkpoint kinase signaling after ɣ-irradiation. (A) 53BP1 is a key regulator of DNA double-
strand breaks processing and their repair by the non-homologous end-joining DNA repair pathway. U3A cells stably
expressing STAT1, GFP, STAT1K410/413Q (QQ) and/or STAT1F77A/L78A (AA) were analyzed for 53BP1; HSP90 as loading
control. 2fTGH cells (STAT1 positive parental cells for U3A cells) and HEK 293 T cells served as controls with endogenous
STAT1. (B) U3A cells stably expressing STAT1, GFP, STAT1K410,413Q (QQ) and/or STAT1F77A, L78A (AA) and HEK293T cells
were irradiated with 10Gy ionizing radiation (+) or kept untreated (�). After 2 h, cells were harvested, lysed and samples
were analyzed via Western blot for checkpoint kinase phosphorylation (pS1981-ATM, pT68-CHK2, pS317-CHK1) and total
levels (n = 4). (C) Same as in (B), but analysis of S15-phosphorylated and total p53 and ɣH2AX; β-actin as loading control. Both
adherent and floating cells were harvested for immunoblot (n = 3).
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ɣH2AX in U3A cells with STAT1AA/AAQQ result from attenuated DNA repair and/or apoptosis. It is
plausible that the non-cooperative STAT1 NTDmutants have binding partners that are not engaged by
the dimerization-competent wild-type STAT1. Future studies are needed to reveal if such proteins might
be DNA repair proteins and/or transcription factors.
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