E-ASSOCIATIVE RINGS

SHALOM FEIGELSTOCK

Abstract

A ring R is E-associative if $\varphi(x y)=\varphi(x) y$ for all endomorphisms φ of the additive group of R, and all $x, y \in R$. Unital E-associative rings are E-rings. The structure of the torsion ideal of an E-associative ring is described completely. The E associative rings with completely decomposable torsion free additive groups are also classified. Conditions under which E-associative rings are E-rings, and other miscellaneous results are obtained.

Introduction. Rings considered in this article are not necessarily associative, and need not possess a unity. All groups (except S_{n}) are abelian with addition the group operation. A ring R is associative if and only if $a_{\ell}(x y)=a_{\ell}(x) y$ for all $a, x, y \in R$, where the mapping a_{ℓ} is left multiplication by a. If the ring R satisfies a condition stronger than associativity, namely that $\varphi(x y)=\varphi(x) y$ for all $x, y \in R$, and all endomorphisms φ of the additive group of G, then R will be said to be E-associative (endomorphism associative). Unital E-associative rings are called E-rings, and have been studied fairly extensively.

The class of E-associative rings is considerably larger than the class of E-rings. The main goal of this note is to describe E-associative rings. The torsion part of an E associative ring is described completely, and so a classification of torsion E-associative rings is obtained. A description of E-associative rings with a completely decomposable torsion free additive group is also obtained. It will be shown that a unital ring R is an E-ring if and only if R satisfies any one of an infinite set of ring properties which will be defined. E-associativity is one of these properties.

For R a ring, and $a \in R$, right multiplication by a will be denoted by a_{r}, and the pure subgroup of R^{+}generated by a will be denoted by $(a)_{*}$. Let $X \subseteq R$. Then the right annihilator of X is $r . \operatorname{ann}(X)=\{a \in R \mid X a=0\}$.

The reader is referred to [2] and [3] for definitions of terms and facts concerning abelian groups.

General results.

LEmmA 1. Let R be an E-associative ring, and let A be a direct summand of R^{+}. Then A is a right ideal in R, and A is E-associative.

Proof. Let $R^{+}=A \oplus B$, and let π_{B} be the natural projection of R^{+}onto B along A. For all $a \in A$, and $x \in R, \pi_{B}(a x)=\pi_{B}(a) \cdot x=0$, and so $a x \in A$. Let $a, b \in A$, and let $\varphi \in E(A)$. Clearly φ can be extended to an endomorphism of R^{+}, and so $\varphi(a b)=\varphi(a) b$, i.e., A is E-associative.

LEMMA 2. Let R be an E-associative ring. If there exists $a \in R$ such that r. $\operatorname{ann}(a)=$ 0 , then R is commutative.

Proof. Let $x, y \in R$. Then $a x y=y_{r}(a x)=y_{r}(a) x=a y x$. Therefore $a(x y-y x)=0$, and so $x y=y x$.

It is easy to verify the following:
LEmmA 3. Let $\left\{R_{i} \mid i \in I\right\}$ be a collection of E-associative rings. If $\operatorname{Hom}\left(R_{i}^{+}, R_{j}^{+}\right)=$ 0 for all $i \neq j$, then $R=\oplus_{i \in I} R_{i}$, and $S=\prod_{i \in I} R_{i}$ are E-associative rings.

An immediate consequence of Lemma 3 is:
Corollary 4. Let $\left\{R_{p} \mid p\right.$ a prime $\}$ be E-associative p-rings. Then $R_{=} \Pi_{p \text { prime }} R_{p}$ is E-associative.

EXAMPLE 5. $Z / p Z$ is a field and so is E-associative for every prime p. Therefore $\Pi_{p \text { prime }} Z / p Z$ is E-associative, and is in fact an E-ring. The ring $\oplus_{p \text { prime }} Z / p Z$ is E associative, but is not an E-ring.

Lemma 6. Let R be an E-associative ring with $R^{+}=(a) \oplus B$.
(1) If a is torsion free, then there exists an integer m such that $x a=m x$ for all $x \in R$.
(2) If $|a|=n$ then there exists an integer m, with $0 \leq m \leq n-1$, such that $x a=m x$ for all $x \in R$ satisifying $|x| \mid n$.

Proof. Since (a) is a right ideal in R by Lemma 1, there exists an integer m such that $a^{2}=m a$. If $|a|=n$, then $0 \leq m \leq n-1$. Suppose that either a is torsion free and $x \in R$, or that $|a|=n$, and $x \in R$, with $|x| \mid n$. There exists $\varphi \in E\left(R^{+}\right)$satisfying $\varphi(a)=x$. Therefore $x a=\varphi(a) a=\varphi\left(a^{2}\right)=m \varphi(a)=m x$.

Lemma 7. Let $R=\oplus_{i<\omega} A_{i}$. If $R_{n}=\oplus_{i=1}^{n} A_{i}$ is E-associative for every positive integer n, then R is E-associative.

PROOF. Suppose that R_{n} is E-associative for every positive integer n; let $\varphi \in E\left(R^{+}\right)$ and let $a, b \in R$. There exists a positive integer n such that $a, b, a b, \varphi(a)$, and $\varphi(a b)$ all belong to R_{n}. Let π be the natural projection of R^{+}onto R_{n}^{+}along $\oplus_{i>n} A_{i}$. The restriction of $\psi=\pi \varphi$ to R_{n}^{+}belongs to $E\left(R_{n}^{+}\right)$, and so $\psi(a b)=\psi(a) b$. Since $\varphi(a b)$ and $\varphi(a)$ belong to R_{n}, it follows that $\psi(a b)=\varphi(a b)$, and $\psi(a)=\varphi(a)$, i.e., $\varphi(a b)=\varphi(a) b$.

Lemma 8. Let R be an E-associative ring, D the maximal divisible subgroup of R^{+}, and let $R^{+}=B \oplus D$. Then $B D=R D_{t}=0$. If B is not a torsion group then $R D=0$.

Proof. $B D \subseteq B$ by Lemma 1, but $(b D)^{+}$is divisible for all $b \in B$, and so $B D \subseteq$ $B \cap D=0$. Since $B D_{t} \subseteq B D=0$, and $D D_{t}=0$ by [1, 1.4.7], it follows that $R D_{t}=0$. Suppose there exists $b \in B, b \neq 0$, and b is torsion free. Let $d, d^{\prime} \in D$. There exists a homomorphism $\varphi:(b) \rightarrow D$ satisfying $\varphi(b)=d$. Since D is injective in the category of abelian groups, φ can be extended to a homomorphism $\varphi: R^{+} \rightarrow D$. Hence $d d^{\prime}=$ $\varphi(b) d^{\prime}=\varphi\left(b d^{\prime}\right)$. However $b d^{\prime} \in B D=0$, and so $D^{2}=0$.

Lemma 9. Let R be an E-associative ring, and let $a \in R$ such that $a R=R a=R$. Then R is an E-ring.

Proof. There exists $e \in R$ such that $a e=a$. Clearly e is a right unity for R. Similarly there exists $f \in R$ such that $f a=a$, and f is a left unity for R. Therefore $f=f e=e$ is a unity for R, and R is an E-ring.

Lemma 2 and Lemma 9 yield:
Corollary 10. Let R be an E-associative ring. If there exist $a, b \in R$ such that $a R=R$, and $r . \operatorname{ann}(b)=0$, then R is an E-ring.

By employing Lemma 1, and the argument used to prove Lemma 7, one can easily prove the following two results:

Lemma 11. Let $R=\prod_{i \in I} R_{i}$ be an E-associative ring. Then $T=\oplus_{i \in I} R_{i}$ is E associative.

The torsion case.

Corollary 12. A torsion ring R is E-associative if and only if R_{p} is E-associative for every prime p.

Proof. A simple consequence of Lemmas 1 and 3.
Clearly, every zero-ring is E-associative, so the E-associative rings R of interest are those satisfying $R^{2} \neq 0$. By Corollary 4 , the problem of classifying E-associative torsion rings reduces to the case of E-associative p-rings, p a prime.

Lemma 13. Let R be an E-associative p-ring, p a prime, such that $R^{2} \neq 0$. Then R^{+} is reduced.

Proof. Suppose that $R^{+}=A \oplus D$ with D divisible. It is well known that $D R=$ $R D=0,[1,1.4 .7],[3$, Theorem 120.5]. It therefore suffices to show that if $D \neq 0$, then $A^{2}=0$. Suppose there exist $a, b \in A$ such that $a b \neq 0$. There exists a homomorphism $\varphi:(a b) \rightarrow D$, with $\varphi(a b) \neq 0$. Since D is injective in the category of abelian groups, φ can be extended to a homomorphism $\varphi: R^{+} \rightarrow D$. Hence $\varphi(a b)=\varphi(a) b \in D R=0$, a contradiction.

Theorem 14. Let G be a p-group, p a prime. G is the additive of an E-associative ring R satisfying $R^{2} \neq 0$ if and only if G is bounded.

Proof. Let R be an E-associative ring with $R^{+}=G$, and suppose that G is not bounded. Let B be a basic subgroup of G. Lemma 13 implies that B is not bounded. Every p-ring R with B a basic subgroup of R^{+}satisfies $R^{2}=B^{2},[1,1.4 .6]$, [3, Theorem 120.1]. It therefore suffices to show that $B^{2}=0$. Let $B=\oplus_{i \in I}\left(b_{i}\right)$, and let $i \in I$. Since (b_{i}) is a direct summand of R^{+}, Lemma 6 yields that there exists an integer m_{i}, with $0 \leq m_{i}<\left|b_{i}\right|$ such that $x b_{i}=m_{i} x$ for all $x \in R$ with $|x| \leq\left|b_{i}\right|$. Let $\left|b_{i}\right|=p^{n}$, and let $j \in I$ such that $\left|b_{j}\right|=p^{m}$ with $m \geq 2 n$. Since $\left|p^{m-n} b_{j}\right|=\left|b_{i}\right|$, it follows that $p^{m-n} b_{j} \cdot b_{i}=m_{i} p^{m-n} b_{j}$.

However $m-n \geq n$, and so $p^{m-n} b_{j} \cdot b_{i}=b_{j}\left(p^{m-n} b_{i}\right)=b_{j} \cdot 0=0$. Therefore $m_{i}=0$, i.e.,

$$
\begin{equation*}
x b_{i}=0 \text { for all } x \in R \text { with }|x| \leq\left|b_{i}\right|, \text { and for all } i \in I . \tag{*}
\end{equation*}
$$

Let $k \in I$ such that $\left|b_{k}\right|>\left|b_{i}\right|$. For every $j \in I$ put

$$
c_{j}= \begin{cases}b_{j}, & \text { for } j \neq k \\ b_{i}+b_{k} & \text { for } j=k\end{cases}
$$

Then $B=\oplus_{j \in I}\left(c_{j}\right)$. By the above argument $c_{k}^{2}=0$, and so $b_{i}^{2}+b_{k}^{2}+b_{i} b_{k}+b_{k} b_{i}=0$. The first 3 summands in the left hand side of the last inequality are zero by equality ($*$), and so $b_{k} b_{i}=0$. Therefore $b_{j} b_{i}=0$ for all $i, j \in I$, and so $B^{2}=0$.

Conversely, let G be a bounded p-group. Then $G=\oplus_{i \in I}\left(a_{i}\right)$. Choose $k \in I$ such that $\left|a_{k}\right|$ is maximal. Let R be the ring with $R^{+}=G$, and multiplication induced by the following products:

$$
a_{i} a_{j}= \begin{cases}a_{i}, & j=k \\ 0, & j \neq k\end{cases}
$$

It is readily seen that R is E-associative.
Observe that the E-associative ring just constructed in the proof of Theorem 14 is not commutative as opposed to E-rings, which are all commutative, [6, Lemma 6]. The element a_{k} is a right unity in R, so an E-associative ring with right unity need not be an E-ring.

COROLLARY 15. Let R be an E-associative ring. Then R_{p} is E-associative for every prime p. If $R_{p}^{2} \neq 0$, then R_{p} is a direct summand of R^{+}.

PROOF. Let B be a basic subgroup of R_{p}. Then $B=\oplus_{i<\omega} A_{i}$, with $A_{i}=\oplus Z\left(p^{i}\right)$. For every positive integer n, let $B_{n}=\oplus_{i=1}^{n} A_{i}$. Since B_{n} is a direct summand of R^{+}, Lemma 1 yields that B_{n} is an E-associative ring for every positive integer n, so B is E-associative by Lemma 7. If $B^{2}=0$, then $R_{p}^{2}=0,[1,1.4 .6]$, and so R_{p} is E-associative. If $B^{2} \neq 0$, then B is bounded by Theorem 14, and $R_{p}=B \oplus D$ with D a divisible group. Since B is a pure bounded subgroup of R^{+}, and D is divisible, it follows that R_{p} is a direct summand of R^{+}, [3, Theorem 27.5 and Theorem 21.2]. Therefore R_{p} is E-associative by Lemma 1. Actually, $D=0$, by Lemma 13 .

Corollary 12 and Theorem 14 yield a complete description of the additive groups of torsion E-associative rings, which by Corollary 15 is a description of the torsion part of an arbitrary E-associative ring. To determine the multiplicative structure of the torsion part of an E-associative ring R, it suffices to consider R a bounded p-ring. The bounded p-case is settled as follows:

ThEOREM 16. Let $G=\oplus_{i \in I}\left(a_{i}\right)$ be a bounded p-group, with $\left|a_{i}\right|=p^{k_{i}}$ for each $i \in I$, and let n be the greatest positive integer such that there exists $i \in I$ with $k_{i}=n$. For each $i \in I$ let m_{i} be an arbitrary integer satisfying $0 \leq m_{i}<p^{k_{i}}$ if $k_{i}>\frac{n}{2}$, and let
$m_{i}=0$ if $k_{i} \leq \frac{n}{2}$. A ring R with $R^{+}=G$ is E-associative if and only if multiplication in R is determined by the following products:

$$
a_{i} a_{j}= \begin{cases}m_{j} a_{i} & \text { if } k_{i} \leq k_{j} \\ n_{i} a_{i} & \text { if } k_{i}>k_{j}, \text { with } n_{i} \text { any integer satisfying } n_{i} \equiv m_{j}\left(\bmod p^{k_{j}}\right) \text { and } \\ & n_{i} \equiv n_{i^{\prime}}\left(\bmod p^{k_{i}^{\prime}}\right) \text { for all } i^{\prime} \in I \text { satisfying } k_{i} \geq k_{i^{\prime}}>k_{j}\end{cases}
$$

for all $i, j \in I$.
Proof. Let R be an E-associative ring with $R^{+}=G$, and let $i, j \in I$. There exists an integer m_{j} satisfying $0 \leq m_{j}<p^{k_{j}}$ such that $a_{i} a_{j}=m_{j} a_{i}$ if $k_{i} \leq k_{j}$ by Lemma 6 . Suppose that $k_{i}>k_{j}$; Lemma 1 yields that $a_{i} a_{j}=n_{i} a_{i}$ for some integer n_{i}. Since $\left|p^{k_{i}-k_{j}} a_{i}\right|=\left|a_{j}\right|$, it follows from Lemma 6 that $p^{k_{i}-k_{j}} a_{i} \cdot a_{j}=m_{j} p^{k_{i}-k_{j}} a_{i}$. However $p^{k_{i}-k_{j}} a_{i} a_{j}=n_{i} p^{k_{i}-k_{j}} a_{i}$, and so $\left(n_{i}-m_{j}\right) p^{k_{i}-k_{j}} a_{i}=0$, which implies that $n_{i} \equiv m_{j}\left(\bmod p^{k_{j}}\right)$. Let $i^{\prime} \in I$ such that $k_{i} \geq k_{i^{\prime}}>k_{j}$. As above $a_{i^{\prime}} a_{j}=n_{i^{\prime}} a_{i^{\prime}}$. There exists $\varphi \in E(G)$ such that $\varphi\left(a_{i}\right)=a_{i^{\prime}}$. Therefore $n_{i^{\prime}} a_{i^{\prime}}=a_{i^{\prime}} a_{j}=\varphi\left(a_{i}\right) a_{j}=\varphi\left(a_{i} a_{j}\right)=\varphi\left(n_{i} a_{i}\right)=n_{i} \varphi\left(a_{i}\right)=n_{i} a_{i}^{\prime}$. Hence $\left(n_{i}-n_{i^{\prime}}\right) a_{i^{\prime}}=0$, and so $n_{i} \equiv n_{i^{\prime}}\left(\bmod p^{k_{i}^{\prime}}\right)$.

Conversely, let R be a ring with $R^{+}=G$, and multiplication induced by the above products. Let $\varphi \in E(G)$, and let $i, j \in I$. If $k_{i} \leq k_{j}$ then $\varphi\left(a_{i} a_{j}\right)=\varphi\left(m_{j} a_{i}\right)=m_{j} \varphi\left(a_{i}\right)$. Since $\left|\varphi\left(a_{i}\right)\right| \leq\left|a_{i}\right| \leq p^{k_{j}}$, it follows from Lemma 7 that $\varphi\left(a_{i}\right) a_{j}=m_{j} \varphi\left(a_{i}\right)$, and so $\varphi\left(a_{i} a_{j}\right)=\varphi\left(a_{i}\right) a_{j}$. If $k_{i}>k_{j}$ then $\varphi\left(a_{i} a_{j}\right)=n_{i} \varphi\left(a_{i}\right)$. If $\left|\varphi\left(a_{i}\right)\right| \leq\left|a_{j}\right|$, then $\varphi\left(a_{i}\right) a_{j}=$ $m_{j} \varphi\left(a_{i}\right)$ by Lemma 7. Since $n_{i} \equiv m_{j}\left(\bmod p^{k_{j}}\right)$, it follows that $\varphi\left(a_{i}\right) a_{j}=n_{i} \varphi\left(a_{i}\right)=$ $\varphi\left(a_{i} a_{j}\right)$. It remains to consider $p^{k_{i}} \geq\left|\varphi\left(a_{i}\right)\right|>p^{k_{j}}$. In this case $\varphi\left(a_{i}\right)=\sum_{t=1}^{m} s_{t} a_{t}$, with $\left|a_{t}\right| \leq p^{k_{i}}$, and s_{t} an integer for all $1 \leq t \leq m$. Since $\varphi\left(a_{i}\right) a_{j}=\sum_{t=1}^{m} s_{t}\left(a_{t} a_{j}\right)=$ $\sum_{t=1}^{m} s_{t} n_{t} a_{t}$, and $\varphi\left(a_{i} a_{j}\right)=n_{i}\left(\sum_{t=1}^{m} s_{t} a_{t}\right)$, it suffices to show that $n_{i} a_{t}=n_{t} a_{t}$ for all $1 \leq t \leq m$. This follows from the fact that $n_{i} \equiv n_{t}\left(\bmod p^{k_{1}}\right)$.

The torsion free case. The E-associative rings with completely decomposable torsion free additive groups will now be determined. First some notation will be introduced. Let $G=\oplus_{i \in I}\left(e_{i}\right)_{*}$ be a completely decomposable torsion free group. The elements e_{i} will be chosen so that $h\left(e_{i}\right)=t\left(e_{i}\right)$ for all $i \in I$. Let

$$
\begin{aligned}
& J=\{j \in I \mid \\
& \text { and for } i \in I \text { such that } t\left(e_{i}\right) \text { is incomparable with } t\left(e_{j}\right), \\
& \\
& \text { there does not exist } k \in I \text { such that } t\left(e_{k}\right) \geq t\left(e_{i}\right), \text { and } \\
& \\
& \left.t\left(e_{k}\right) \geq t\left(e_{j}\right)\right\} .
\end{aligned}
$$

Lemma 17. Let G be as above, let R be an E-associative ring with $R^{+}=G$, and let $j \in I$. There exists a rational number r_{j} such that $r_{j} e_{j} \in\left(e_{j}\right)_{*}$, and $e_{i} e_{j}=r_{j} e_{i}$ for all $i \in I$ for which $t\left(e_{i}\right) \geq t\left(e_{j}\right)$. If $t\left(e_{j}\right)$ is not idempotent, then $r_{j}=0$.

Proof. $e_{j}^{2} \in\left(e_{j}\right)_{*}$ by Lemma 1 , so $e_{j}^{2}=r_{j} e_{j}$, with r_{j} a rational number satisfying $r_{j} e_{j} \in\left(e_{j}\right)_{*}$. Let $i \in I$ such that $t\left(e_{i}\right) \geq t\left(e_{j}\right)$. There exists $\varphi \in E(G)$ such that $\varphi\left(e_{j}\right)=e_{i}$. Therefore $e_{i} e_{j}=\varphi\left(e_{j}\right) e_{j}=\varphi\left(e_{j}^{2}\right)=\varphi\left(r_{j} e_{j}\right)=r_{j} \varphi\left(e_{j}\right)=r_{j} e_{i}$. If $t\left(e_{j}\right)$ is not idempotent, then $t\left(r_{j} e_{j}\right)=t\left(e_{j}^{2}\right)>t\left(e_{j}\right)$ which implies that $r_{j}=0$.

Theorem 18. Let G and J be as above, and let R be a ring with $R^{+}=G$. For every $j \in J$ let r_{j} be a rational number such that $r_{j} e_{j} \in\left(e_{j}\right)_{*}$. Then R is E-associative if and only if multiplication in R is determined by the following products:

$$
e_{i} e_{j}= \begin{cases}r_{j} e_{i} & \text { if } j \in J, t\left(e_{i}\right) \geq t\left(e_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let R be an E-associative ring with $R^{+}=G$, and let $i, j \in I$. By Lemma 17, there exists a rational number r_{j} such that $r_{j} e_{j} \in\left(e_{j}\right)_{*}$ and $e_{i} e_{j}=r_{j} e_{i}$ if $t\left(e_{i}\right) \geq t\left(e_{j}\right)$. Since $e_{i} e_{j} \in\left(e_{i}\right)_{*}$ by Lemma 1, and $t\left(e_{i} e_{j}\right) \geq t\left(e_{j}\right)$, it follows that $e_{i} e_{j}=0$ if $t\left(e_{i}\right) \nsucceq t\left(e_{j}\right)$. It remains to show that $r_{j}=0$ for $j \notin J$. If $t\left(e_{j}\right)$ is not minimal in the type-set of G, then there exists $i \in I$ such that $t\left(e_{i}\right)<t\left(e_{j}\right)$, and so $e_{i} e_{j}=0$. There exists $\varphi \in E(G)$ such that $\varphi\left(e_{i}\right)=e_{j}$. Therefore $r_{j} e_{j}=e_{j}^{2}=\varphi\left(e_{i}\right) e_{j}=\varphi\left(e_{i} e_{j}\right)=0$, and so $r_{j}=0$. If $t\left(e_{j}\right)$ is not idempotent, then $r_{j}=0$ by Lemma 17. Suppose there exist $i, k \in I$ such that $t\left(e_{i}\right)$ and $t\left(e_{j}\right)$ are incomparable, but $t\left(e_{k}\right) \geq t\left(e_{i}\right)$, and $t\left(e_{k}\right) \geq t\left(e_{j}\right)$. Then $e_{k} e_{j}=r_{j} e_{k}$. Since $t\left(e_{i}\right) \nsupseteq t\left(e_{j}\right)$ it follows that $e_{i} e_{j}=0$. There exists $\varphi \in E(G)$ such that $\varphi\left(e_{i}\right)=e_{k}$. Therefore $r_{j} e_{k}=e_{k} e_{j}=\varphi\left(e_{i}\right) e_{j}=\varphi\left(e_{i} e_{j}\right)=0$, and so $r_{j}=0$.

Conversely, suppose that R is a ring with $R^{+}=G$, and multiplication in R is determined by the above products. Let $\varphi \in E(G)$, and let $i, j \in I$. If $j \in J$, and $t\left(e_{i}\right) \geq t\left(e_{j}\right)$, then $\varphi\left(e_{i} e_{j}\right)=r_{j} \varphi\left(e_{i}\right)$. Since $t\left[\varphi\left(e_{i}\right)\right] \geq t\left(e_{i}\right)$, it follows that $\varphi\left(e_{i}\right)=\sum_{k=1}^{m} s_{k} e_{k}$ with s_{k} a rational number, and $t\left(e_{k}\right) \geq t\left(e_{i}\right)$ for all $1 \leq k \leq m$. Hence $\varphi\left(e_{i}\right) e_{j}=\sum_{k=1}^{m} s_{k}\left(e_{k} e_{j}\right)=$ $r_{j}\left(\sum_{k=1}^{m} s_{k} e_{k}\right)=r_{j} \varphi\left(e_{i}\right)=\varphi\left(e_{i} e_{j}\right)$. If $j \in J$, and $t\left(e_{i}\right) \nsupseteq t\left(e_{j}\right)$ then $\varphi\left(e_{i} e_{j}\right)=\varphi(0)=0$. Since $t\left(e_{i}\right) \nless t\left(e_{j}\right)$ by the minimality of $t\left(e_{j}\right)$ it follows that $t\left(e_{i}\right)$ and $t\left(e_{j}\right)$ are incomparable. Since $t\left[\varphi\left(e_{i}\right)\right] \geq t\left(e_{i}\right)$, either $\varphi\left(e_{i}\right)=0$, or $t\left[\varphi\left(e_{i}\right)\right] \nsupseteq t\left(e_{j}\right)$. In either case, $\varphi\left(e_{i}\right) e_{j}=0=\varphi\left(e_{i} e_{j}\right)$.

If $j \notin J$, then $\varphi\left(e_{i} e_{j}\right)=\varphi\left(e_{i}\right) e_{j}=0$.
An argument similar to that used in the proof of Lemma 7 yields:
Lemma 19. Let R be a ring with R^{+}a separable torsion free group. Then R is E associative if and only if every (finite rank) completely decomposable direct summand of R^{+}is E-associative.

A generalization. E-associativity is just one of a set of ring properties which will now be defined.

DEFINITION. Let $n \geq 2$ be a positive integer, let i be a fixed integer, $1 \leq i \leq n$, and let $\sigma \in S_{n}$. A ring R is a (σ, i, n)-ring if $\varphi\left(x_{1} \cdots x_{n}\right)=x_{\sigma(1)} \cdots x_{\sigma(i-1)} \varphi\left(x_{\sigma(i)}\right) x_{\sigma(i+1)} \cdots x_{\sigma(n)}$ for all $\varphi \in E\left(R^{+}\right)$, and all $x_{1}, \ldots, x_{n} \in R$.

The E-associative rings are precisely the (1,1,2)-rings, where 1 is the identity in S_{2}.
THEOREM 20. Let R be a ring with unity. The following are equivalent:
(1) R is a (σ, i, n)-ring for all $n \geq 2$, all $1 \leq i \leq n$, and all $\sigma \in S_{n}$.
(2) There exists a positive integer $n \geq 2$, an integer $1 \leq i \leq n$, and $\sigma \in S_{n}$ such that R is a (σ, i, n)-ring.

(3) R is an E-ring.

Proof. Clearly 1$) \Rightarrow 2$).
$2) \Rightarrow 3$): Let R be a (σ, i, n)-ring, and let $\varphi \in E\left(R^{+}\right)$. It suffices to show that either $\varphi(x)=\varphi(1) x$ for all $x \in R$, or that $\varphi(x)=x \cdot \varphi(1)$ for all $x \in R,[6$, p. 65, Lemma 6 and Definition]. If $i=n$, then choose $x_{\sigma(1)}=x$, and $x_{j}=1$ for all $1 \leq j \leq n$ with $j \neq \sigma(1)$. Then $\varphi(x)=\varphi\left(x_{1} \cdots x_{n}\right)=x_{\sigma(1)} \cdots x_{\sigma(n-1)} \varphi\left(x_{\sigma(n)}\right)=x(\varphi(1))$. If $i \neq n$, then choose $x_{\sigma(n)}=x$, and $x_{j}=1$ for all $1 \leq j \leq n$ with $j \neq \sigma(n)$. Then $\varphi(x)=\varphi\left(x_{1} \cdots x_{n}\right)=$ $x_{\sigma(1)} \cdots \varphi\left(x_{\sigma(n)}\right)=\varphi(1) x$.
$3) \Rightarrow 1$): Let R be an E-ring. Then R is commutative, and $\varphi(x)=\varphi(1) x$ for all $\varphi \in E\left(R^{+}\right)$, and all $x \in R$, [6, Lemma 6]. This clearly implies that $\varphi\left(x_{1} \cdots x_{n}\right)=$ $x_{\sigma(1)} \cdots \varphi\left(x_{\sigma(i)}\right) \cdots x_{\sigma(n)}=\varphi(1) x_{1} \cdots x_{n}$ for every positive integer $n \geq 2$, all $1 \leq i \leq n$, all $\sigma \in S_{n}$, and all $x_{1}, \ldots, x_{n} \in R$.

References

1. S. Feigelstock, Additive Groups of Rings, Research Notes in Mathematics 83, Pitman, London, (1983).
2. L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York-London, 1971.
3. Infinite Abelian Groups, vol. II, Academic Press, New York-London, 1973.
4. R. Pierce, E-modules, Contemporary Math. 87(1989), 221-240.
5. P. Schultz, Periodic homomorphism sequences of abelian groups, Arch. Math. 21(1970), 132-135.
6. P. Schultz, The endomorphism ring of the additive groups of a ring, J. Austral. Math. Soc. 15(1973), 60-69.

Bar-Ilan University
Ramat-Gan
Israel

