E-ASSOCIATIVE RINGS

SHALOM FEIGELSTOCK

ABSTRACT. A ring *R* is *E*-associative if $\varphi(xy) = \varphi(x)y$ for all endomorphisms φ of the additive group of *R*, and all $x, y \in R$. Unital *E*-associative rings are *E*-rings. The structure of the torsion ideal of an *E*-associative ring is described completely. The *E*-associative rings with completely decomposable torsion free additive groups are also classified. Conditions under which *E*-associative rings are *E*-rings, and other miscellaneous results are obtained.

Introduction. Rings considered in this article are not necessarily associative, and need not possess a unity. All groups (except S_n) are abelian with addition the group operation. A ring R is associative if and only if $a_\ell(xy) = a_\ell(x)y$ for all $a, x, y \in R$, where the mapping a_ℓ is left multiplication by a. If the ring R satisfies a condition stronger than associativity, namely that $\varphi(xy) = \varphi(x)y$ for all $x, y \in R$, and all endomorphisms φ of the additive group of G, then R will be said to be E-associative (endomorphism associative). Unital E-associative rings are called E-rings, and have been studied fairly extensively.

The class of *E*-associative rings is considerably larger than the class of *E*-rings. The main goal of this note is to describe *E*-associative rings. The torsion part of an *E*-associative ring is described completely, and so a classification of torsion *E*-associative rings is obtained. A description of *E*-associative rings with a completely decomposable torsion free additive group is also obtained. It will be shown that a unital ring *R* is an *E*-ring if and only if *R* satisfies any one of an infinite set of ring properties which will be defined. *E*-associativity is one of these properties.

For *R* a ring, and $a \in R$, right multiplication by *a* will be denoted by a_r , and the pure subgroup of R^+ generated by *a* will be denoted by $(a)_*$. Let $X \subseteq R$. Then the right annihilator of *X* is *r*. ann $(X) = \{a \in R \mid Xa = 0\}$.

The reader is referred to [2] and [3] for definitions of terms and facts concerning abelian groups.

General results.

LEMMA 1. Let R be an E-associative ring, and let A be a direct summand of R^+ . Then A is a right ideal in R, and A is E-associative.

PROOF. Let $R^+ = A \oplus B$, and let π_B be the natural projection of R^+ onto *B* along *A*. For all $a \in A$, and $x \in R$, $\pi_B(ax) = \pi_B(a) \cdot x = 0$, and so $ax \in A$. Let $a, b \in A$, and let $\varphi \in E(A)$. Clearly φ can be extended to an endomorphism of R^+ , and so $\varphi(ab) = \varphi(a)b$, *i.e.*, *A* is *E*-associative.

Received by the editors November 4, 1991; revised November 5, 1992.

AMS subject classification: 20K99.

[©] Canadian Mathematical Society 1993.

LEMMA 2. Let R be an E-associative ring. If there exists $a \in R$ such that r. ann(a) = 0, then R is commutative.

PROOF. Let $x, y \in R$. Then $axy = y_r(ax) = y_r(a)x = ayx$. Therefore a(xy - yx) = 0, and so xy = yx.

It is easy to verify the following:

LEMMA 3. Let $\{R_i \mid i \in I\}$ be a collection of *E*-associative rings. If Hom $(R_i^+, R_j^+) = 0$ for all $i \neq j$, then $R = \bigoplus_{i \in I} R_i$, and $S = \prod_{i \in I} R_i$ are *E*-associative rings.

An immediate consequence of Lemma 3 is:

COROLLARY 4. Let $\{R_p \mid p \text{ a prime}\}$ be *E*-associative *p*-rings. Then $R_{=} \prod_{p \text{ prime}} R_p$ is *E*-associative.

EXAMPLE 5. Z/pZ is a field and so is *E*-associative for every prime *p*. Therefore $\prod_{p \text{ prime}} Z/pZ$ is *E*-associative, and is in fact an *E*-ring. The ring $\bigoplus_{p \text{ prime}} Z/pZ$ is *E*-associative, but is not an *E*-ring.

LEMMA 6. Let R be an E-associative ring with $R^+ = (a) \oplus B$.

- (1) If a is torsion free, then there exists an integer m such that xa = mx for all $x \in R$.
- (2) If |a| = n then there exists an integer m, with $0 \le m \le n 1$, such that xa = mx for all $x \in R$ satisifying $|x| \mid n$.

PROOF. Since (a) is a right ideal in R by Lemma 1, there exists an integer m such that $a^2 = ma$. If |a| = n, then $0 \le m \le n - 1$. Suppose that either a is torsion free and $x \in R$, or that |a| = n, and $x \in R$, with $|x| \mid n$. There exists $\varphi \in E(R^+)$ satisfying $\varphi(a) = x$. Therefore $xa = \varphi(a)a = \varphi(a^2) = m\varphi(a) = mx$.

LEMMA 7. Let $R = \bigoplus_{i < \omega} A_i$. If $R_n = \bigoplus_{i=1}^n A_i$ is *E*-associative for every positive integer *n*, then *R* is *E*-associative.

PROOF. Suppose that R_n is *E*-associative for every positive integer *n*; let $\varphi \in E(R^+)$ and let $a, b \in R$. There exists a positive integer *n* such that $a, b, ab, \varphi(a)$, and $\varphi(ab)$ all belong to R_n . Let π be the natural projection of R^+ onto R_n^+ along $\bigoplus_{i>n} A_i$. The restriction of $\psi = \pi \varphi$ to R_n^+ belongs to $E(R_n^+)$, and so $\psi(ab) = \psi(a)b$. Since $\varphi(ab)$ and $\varphi(a)$ belong to R_n , it follows that $\psi(ab) = \varphi(ab)$, and $\psi(a) = \varphi(a)$, *i.e.*, $\varphi(ab) = \varphi(a)b$.

LEMMA 8. Let R be an E-associative ring, D the maximal divisible subgroup of R^+ , and let $R^+ = B \oplus D$. Then $BD = RD_t = 0$. If B is not a torsion group then RD = 0.

PROOF. $BD \subseteq B$ by Lemma 1, but $(bD)^+$ is divisible for all $b \in B$, and so $BD \subseteq B \cap D = 0$. Since $BD_t \subseteq BD = 0$, and $DD_t = 0$ by [1, 1.4.7], it follows that $RD_t = 0$. Suppose there exists $b \in B$, $b \neq 0$, and b is torsion free. Let $d, d' \in D$. There exists a homomorphism φ : $(b) \rightarrow D$ satisfying $\varphi(b) = d$. Since D is injective in the category of abelian groups, φ can be extended to a homomorphism φ : $R^+ \rightarrow D$. Hence $dd' = \varphi(b)d' = \varphi(bd')$. However $bd' \in BD = 0$, and so $D^2 = 0$. LEMMA 9. Let R be an E-associative ring, and let $a \in R$ such that aR = Ra = R. Then R is an E-ring.

PROOF. There exists $e \in R$ such that ae = a. Clearly e is a right unity for R. Similarly there exists $f \in R$ such that fa = a, and f is a left unity for R. Therefore f = fe = e is a unity for R, and R is an E-ring.

Lemma 2 and Lemma 9 yield:

COROLLARY 10. Let R be an E-associative ring. If there exist $a, b \in R$ such that aR = R, and r. ann(b) = 0, then R is an E-ring.

By employing Lemma 1, and the argument used to prove Lemma 7, one can easily prove the following two results:

LEMMA 11. Let $R = \prod_{i \in I} R_i$ be an *E*-associative ring. Then $T = \bigoplus_{i \in I} R_i$ is *E*-associative.

The torsion case.

COROLLARY 12. A torsion ring R is E-associative if and only if R_p is E-associative for every prime p.

PROOF. A simple consequence of Lemmas 1 and 3.

Clearly, every zero-ring is *E*-associative, so the *E*-associative rings *R* of interest are those satisfying $R^2 \neq 0$. By Corollary 4, the problem of classifying *E*-associative torsion rings reduces to the case of *E*-associative *p*-rings, *p* a prime.

LEMMA 13. Let R be an E-associative p-ring, p a prime, such that $R^2 \neq 0$. Then R^+ is reduced.

PROOF. Suppose that $R^+ = A \oplus D$ with D divisible. It is well known that DR = RD = 0, [1, 1.4.7], [3, Theorem 120.5]. It therefore suffices to show that if $D \neq 0$, then $A^2 = 0$. Suppose there exist $a, b \in A$ such that $ab \neq 0$. There exists a homomorphism $\varphi: (ab) \to D$, with $\varphi(ab) \neq 0$. Since D is injective in the category of abelian groups, φ can be extended to a homomorphism $\varphi: R^+ \to D$. Hence $\varphi(ab) = \varphi(a)b \in DR = 0$, a contradiction.

THEOREM 14. Let G be a p-group, p a prime. G is the additive of an E-associative ring R satisfying $R^2 \neq 0$ if and only if G is bounded.

PROOF. Let *R* be an *E*-associative ring with $R^+ = G$, and suppose that *G* is not bounded. Let *B* be a basic subgroup of *G*. Lemma 13 implies that *B* is not bounded. Every *p*-ring *R* with *B* a basic subgroup of R^+ satisfies $R^2 = B^2$, [1, 1.4.6], [3, Theorem 120.1]. It therefore suffices to show that $B^2 = 0$. Let $B = \bigoplus_{i \in I} (b_i)$, and let $i \in I$. Since (b_i) is a direct summand of R^+ , Lemma 6 yields that there exists an integer m_i , with $0 \le m_i < |b_i|$ such that $xb_i = m_i x$ for all $x \in R$ with $|x| \le |b_i|$. Let $|b_i| = p^n$, and let $j \in I$ such that $|b_j| = p^m$ with $m \ge 2n$. Since $|p^{m-n}b_j| = |b_i|$, it follows that $p^{m-n}b_j \cdot b_i = m_i p^{m-n}b_j$.

https://doi.org/10.4153/CMB-1993-022-4 Published online by Cambridge University Press

However $m - n \ge n$, and so $p^{m-n}b_j \cdot b_i = b_j(p^{m-n}b_i) = b_j \cdot 0 = 0$. Therefore $m_i = 0$, *i.e.*,

(*)
$$xb_i = 0$$
 for all $x \in R$ with $|x| \le |b_i|$, and for all $i \in I$

Let $k \in I$ such that $|b_k| > |b_i|$. For every $j \in I$ put

$$c_j = \begin{cases} b_j, & \text{for } j \neq k \\ b_i + b_k & \text{for } j = k \end{cases}$$

Then $B = \bigoplus_{i \in I} (c_i)$. By the above argument $c_k^2 = 0$, and so $b_i^2 + b_k^2 + b_i b_k + b_k b_i = 0$. The first 3 summands in the left hand side of the last inequality are zero by equality (*), and so $b_k b_i = 0$. Therefore $b_i b_i = 0$ for all $i, j \in I$, and so $B^2 = 0$.

Conversely, let G be a bounded p-group. Then $G = \bigoplus_{i \in I} (a_i)$. Choose $k \in I$ such that $|a_k|$ is maximal. Let R be the ring with $R^+ = G$, and multiplication induced by the following products:

$$a_i a_j = \begin{cases} a_i, & j = k \\ 0, & j \neq k \end{cases}$$

It is readily seen that *R* is *E*-associative.

Observe that the *E*-associative ring just constructed in the proof of Theorem 14 is not commutative as opposed to *E*-rings, which are all commutative, [6, Lemma 6]. The element a_k is a right unity in *R*, so an *E*-associative ring with right unity need not be an *E*-ring.

COROLLARY 15. Let R be an E-associative ring. Then R_p is E-associative for every prime p. If $R_p^2 \neq 0$, then R_p is a direct summand of R^+ .

PROOF. Let *B* be a basic subgroup of R_p . Then $B = \bigoplus_{i < \omega} A_i$, with $A_i = \bigoplus Z(p^i)$. For every positive integer *n*, let $B_n = \bigoplus_{i=1}^n A_i$. Since B_n is a direct summand of R^+ , Lemma 1 yields that B_n is an *E*-associative ring for every positive integer *n*, so *B* is *E*-associative by Lemma 7. If $B^2 = 0$, then $R_p^2 = 0$, [1, 1.4.6], and so R_p is *E*-associative. If $B^2 \neq 0$, then *B* is bounded by Theorem 14, and $R_p = B \oplus D$ with *D* a divisible group. Since *B* is a pure bounded subgroup of R^+ , and *D* is divisible, it follows that R_p is a direct summand of R^+ , [3, Theorem 27.5 and Theorem 21.2]. Therefore R_p is *E*-associative by Lemma 1. Actually, D = 0, by Lemma 13.

Corollary 12 and Theorem 14 yield a complete description of the additive groups of torsion *E*-associative rings, which by Corollary 15 is a description of the torsion part of an arbitrary *E*-associative ring. To determine the multiplicative structure of the torsion part of an *E*-associative ring *R*, it suffices to consider *R* a bounded *p*-ring. The bounded *p*-case is settled as follows:

THEOREM 16. Let $G = \bigoplus_{i \in I}(a_i)$ be a bounded p-group, with $|a_i| = p^{k_i}$ for each $i \in I$, and let n be the greatest positive integer such that there exists $i \in I$ with $k_i = n$. For each $i \in I$ let m_i be an arbitrary integer satisfying $0 \le m_i < p^{k_i}$ if $k_i > \frac{n}{2}$, and let $m_i = 0$ if $k_i \leq \frac{n}{2}$. A ring R with $R^+ = G$ is E-associative if and only if multiplication in R is determined by the following products:

$$a_i a_j = \begin{cases} m_j a_i & \text{if } k_i \leq k_j \\ n_i a_i & \text{if } k_i > k_j, \text{ with } n_i \text{ any integer satisfying } n_i \equiv m_j \pmod{p^{k_j}} \text{ and} \\ n_i \equiv n_{i'} \pmod{p^{k'_i}} \text{ for all } i' \in I \text{ satisfying } k_i \geq k_{i'} > k_j \end{cases}$$

for all $i, j \in I$.

PROOF. Let *R* be an *E*-associative ring with $R^+ = G$, and let $i, j \in I$. There exists an integer m_j satisfying $0 \le m_j < p^{k_j}$ such that $a_i a_j = m_j a_i$ if $k_i \le k_j$ by Lemma 6. Suppose that $k_i > k_j$; Lemma 1 yields that $a_i a_j = n_i a_i$ for some integer n_i . Since $|p^{k_i - k_j} a_i| = |a_j|$, it follows from Lemma 6 that $p^{k_i - k_j} a_i \cdot a_j = m_j p^{k_i - k_j} a_i$. However $p^{k_i - k_j} a_i a_j = n_i p^{k_i - k_j} a_i$, and so $(n_i - m_j)p^{k_i - k_j} a_i = 0$, which implies that $n_i \equiv m_j \pmod{p^{k_j}}$. Let $i' \in I$ such that $k_i \ge k_{i'} > k_j$. As above $a_{i'}a_j = n_{i'}a_{i'}$. There exists $\varphi \in E(G)$ such that $\varphi(a_i) = a_{i'}$. Therefore $n_{i'}a_{i'} = a_{i'}a_j = \varphi(a_i)a_j = \varphi(a_ia_j) = \varphi(n_ia_i) = n_i\varphi(a_i) = n_ia'_i$. Hence $(n_i - n_{i'})a_{i'} = 0$, and so $n_i \equiv n_{i'} \pmod{p^{k'_i}}$.

Conversely, let *R* be a ring with $R^+ = G$, and multiplication induced by the above products. Let $\varphi \in E(G)$, and let $i, j \in I$. If $k_i \leq k_j$ then $\varphi(a_i a_j) = \varphi(m_j a_i) = m_j \varphi(a_i)$. Since $|\varphi(a_i)| \leq |a_i| \leq p^{k_j}$, it follows from Lemma 7 that $\varphi(a_i)a_j = m_j\varphi(a_i)$, and so $\varphi(a_i a_j) = \varphi(a_i)a_j$. If $k_i > k_j$ then $\varphi(a_i a_j) = n_i\varphi(a_i)$. If $|\varphi(a_i)| \leq |a_j|$, then $\varphi(a_i)a_j = m_j\varphi(a_i)$ by Lemma 7. Since $n_i \equiv m_j \pmod{p^{k_j}}$, it follows that $\varphi(a_i)a_j = n_i\varphi(a_i) = \varphi(a_i a_j)$. It remains to consider $p^{k_i} \geq |\varphi(a_i)| > p^{k_j}$. In this case $\varphi(a_i) = \sum_{t=1}^m s_t a_t$, with $|a_t| \leq p^{k_i}$, and s_t an integer for all $1 \leq t \leq m$. Since $\varphi(a_i)a_j = \sum_{t=1}^m s_t(a_t a_j) = \sum_{t=1}^m s_t n_t a_t$, and $\varphi(a_i a_j) = n_i(\sum_{t=1}^m s_t a_t)$, it suffices to show that $n_i a_t = n_t a_t$ for all $1 \leq t \leq m$. This follows from the fact that $n_i \equiv n_t \pmod{p^{k_t}}$.

The torsion free case. The *E*-associative rings with completely decomposable torsion free additive groups will now be determined. First some notation will be introduced. Let $G = \bigoplus_{i \in I} (e_i)_*$ be a completely decomposable torsion free group. The elements e_i will be chosen so that $h(e_i) = t(e_i)$ for all $i \in I$. Let

 $J = \{j \in I \mid t(e_j) \text{ is minimal in the type-set of } G, t(e_j) \text{ is idempotent,} \\ \text{and for } i \in I \text{ such that } t(e_i) \text{ is incomparable with } t(e_j), \\ \text{there does not exist } k \in I \text{ such that } t(e_k) \ge t(e_i), \text{ and} \\ t(e_k) \ge t(e_i)\}.$

LEMMA 17. Let G be as above, let R be an E-associative ring with $R^+ = G$, and let $j \in I$. There exists a rational number r_j such that $r_j e_j \in (e_j)_*$, and $e_i e_j = r_j e_i$ for all $i \in I$ for which $t(e_i) \ge t(e_j)$. If $t(e_j)$ is not idempotent, then $r_j = 0$.

PROOF. $e_j^2 \in (e_j)_*$ by Lemma 1, so $e_j^2 = r_j e_j$, with r_j a rational number satisfying $r_j e_j \in (e_j)_*$. Let $i \in I$ such that $t(e_i) \ge t(e_j)$. There exists $\varphi \in E(G)$ such that $\varphi(e_j) = e_i$. Therefore $e_i e_j = \varphi(e_j) e_j = \varphi(e_j^2) = \varphi(r_j e_j) = r_j \varphi(e_j) = r_j e_i$. If $t(e_j)$ is not idempotent, then $t(r_j e_j) = t(e_j^2) > t(e_j)$ which implies that $r_j = 0$.

SHALOM FEIGELSTOCK

THEOREM 18. Let G and J be as above, and let R be a ring with $R^+ = G$. For every $j \in J$ let r_j be a rational number such that $r_j e_j \in (e_j)_*$. Then R is E-associative if and only if multiplication in R is determined by the following products:

$$e_i e_j = \begin{cases} r_j e_i & \text{if } j \in J, \ t(e_i) \ge t(e_j) \\ 0 & \text{otherwise} \end{cases}$$

PROOF. Let *R* be an *E*-associative ring with $R^+ = G$, and let $i, j \in I$. By Lemma 17, there exists a rational number r_j such that $r_j e_j \in (e_j)_*$ and $e_i e_j = r_j e_i$ if $t(e_i) \ge t(e_j)$. Since $e_i e_j \in (e_i)_*$ by Lemma 1, and $t(e_i e_j) \ge t(e_j)$, it follows that $e_i e_j = 0$ if $t(e_i) \not\ge t(e_j)$. It remains to show that $r_j = 0$ for $j \notin J$. If $t(e_j)$ is not minimal in the type-set of *G*, then there exists $i \in I$ such that $t(e_i) < t(e_j)$, and so $e_i e_j = 0$. There exists $\varphi \in E(G)$ such that $\varphi(e_i) = e_j$. Therefore $r_j e_j = e_j^2 = \varphi(e_i)e_j = \varphi(e_i e_j) = 0$, and so $r_j = 0$. If $t(e_i)$ and $t(e_j)$ are incomparable, but $t(e_k) \ge t(e_i)$, and $t(e_k) \ge t(e_j)$. Then $e_k e_j = r_j e_k$. Since $t(e_i) \not\ge t(e_j)$ it follows that $e_i e_j = 0$. There exists $\varphi \in E(G)$ such that $\varphi(e_i) = e_k$. Therefore $r_j e_k = e_k e_j = \varphi(e_i)e_j = \varphi(e_i e_j) = 0$, and so $r_j = 0$.

Conversely, suppose that *R* is a ring with $R^+ = G$, and multiplication in *R* is determined by the above products. Let $\varphi \in E(G)$, and let $i, j \in I$. If $j \in J$, and $t(e_i) \ge t(e_j)$, then $\varphi(e_ie_j) = r_j\varphi(e_i)$. Since $t[\varphi(e_i)] \ge t(e_i)$, it follows that $\varphi(e_i) = \sum_{k=1}^m s_ke_k$ with s_k a rational number, and $t(e_k) \ge t(e_i)$ for all $1 \le k \le m$. Hence $\varphi(e_i)e_j = \sum_{k=1}^m s_k(e_ke_j) = r_j(\sum_{k=1}^m s_ke_k) = r_j\varphi(e_i) = \varphi(e_ie_j)$. If $j \in J$, and $t(e_i) \not\ge t(e_j)$ then $\varphi(e_ie_j) = \varphi(0) = 0$. Since $t(e_i) \not\leqslant t(e_j)$ by the minimality of $t(e_j)$ it follows that $t(e_i)$ and $t(e_j)$ are incomparable. Since $t[\varphi(e_i)] \ge t(e_i)$, either $\varphi(e_i) = 0$, or $t[\varphi(e_i)] \not\ge t(e_j)$. In either case, $\varphi(e_i)e_j = 0 = \varphi(e_ie_j)$.

If $j \notin J$, then $\varphi(e_i e_j) = \varphi(e_i) e_j = 0$.

An argument similar to that used in the proof of Lemma 7 yields:

LEMMA 19. Let R be a ring with R^+ a separable torsion free group. Then R is Eassociative if and only if every (finite rank) completely decomposable direct summand of R^+ is E-associative.

A generalization. *E*-associativity is just one of a set of ring properties which will now be defined.

DEFINITION. Let $n \ge 2$ be a positive integer, let *i* be a fixed integer, $1 \le i \le n$, and let $\sigma \in S_n$. A ring *R* is a (σ, i, n) -ring if $\varphi(x_1 \cdots x_n) = x_{\sigma(1)} \cdots x_{\sigma(i-1)} \varphi(x_{\sigma(i)}) x_{\sigma(i+1)} \cdots x_{\sigma(n)}$ for all $\varphi \in E(R^+)$, and all $x_1, \ldots, x_n \in R$.

The *E*-associative rings are precisely the (1, 1, 2)-rings, where 1 is the identity in S_2 .

THEOREM 20. Let R be a ring with unity. The following are equivalent:

- (1) *R* is a (σ, i, n) -ring for all $n \ge 2$, all $1 \le i \le n$, and all $\sigma \in S_n$.
- (2) There exists a positive integer $n \ge 2$, an integer $1 \le i \le n$, and $\sigma \in S_n$ such that R is a (σ, i, n) -ring.

(3) R is an E-ring.

PROOF. Clearly 1) \Rightarrow 2).

2) \Rightarrow 3): Let *R* be a (σ, i, n) -ring, and let $\varphi \in E(R^+)$. It suffices to show that either $\varphi(x) = \varphi(1)x$ for all $x \in R$, or that $\varphi(x) = x \cdot \varphi(1)$ for all $x \in R$, [6, p. 65, Lemma 6 and Definition]. If i = n, then choose $x_{\sigma(1)} = x$, and $x_j = 1$ for all $1 \le j \le n$ with $j \ne \sigma(1)$. Then $\varphi(x) = \varphi(x_1 \cdots x_n) = x_{\sigma(1)} \cdots x_{\sigma(n-1)} \varphi(x_{\sigma(n)}) = x(\varphi(1))$. If $i \ne n$, then choose $x_{\sigma(n)} = x$, and $x_j = 1$ for all $1 \le j \le n$ with $j \ne \sigma(n)$. Then $\varphi(x) = \varphi(x_1 \cdots x_n) = x_{\sigma(1)} \cdots x_{\sigma(n-1)} \varphi(x_{\sigma(n)}) = x(\varphi(1))$. If $i \ne n$, then choose $x_{\sigma(1)} = x$, and $x_j = 1$ for all $1 \le j \le n$ with $j \ne \sigma(n)$. Then $\varphi(x) = \varphi(x_1 \cdots x_n) = x_{\sigma(1)} \cdots \varphi(x_{\sigma(n)}) = \varphi(1)x$.

3) \Rightarrow 1): Let *R* be an *E*-ring. Then *R* is commutative, and $\varphi(x) = \varphi(1)x$ for all $\varphi \in E(R^+)$, and all $x \in R$, [6, Lemma 6]. This clearly implies that $\varphi(x_1 \cdots x_n) = x_{\sigma(1)} \cdots \varphi(x_{\sigma(i)}) \cdots x_{\sigma(n)} = \varphi(1)x_1 \cdots x_n$ for every positive integer $n \ge 2$, all $1 \le i \le n$, all $\sigma \in S_n$, and all $x_1, \ldots, x_n \in R$.

REFERENCES

1. S. Feigelstock, Additive Groups of Rings, Research Notes in Mathematics 83, Pitman, London, (1983).

2. L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York-London, 1971.

3. _____, Infinite Abelian Groups, vol. II, Academic Press, New York-London, 1973.

4. R. Pierce, *E-modules*, Contemporary Math. 87(1989), 221–240.

5. P. Schultz, Periodic homomorphism sequences of abelian groups, Arch. Math. 21(1970), 132–135.

6. P. Schultz, The endomorphism ring of the additive groups of a ring, J. Austral. Math. Soc. 15(1973), 60-69.

Bar-Ilan University Ramat-Gan Israel