INTERSECTION OF TWO INVARIANT SUBSPACES

BY TAKAHIKO NAKAZI

ABSTRACT. It is shown that, if F and G are inner functions, $(H^2 \ominus FH^2)/(H^2 \ominus FH^2) \cap GH^2$ is n-dimensional if and only if G is a Blaschke product of degree n. This is an extension of the well known result for the case $(H^2 \ominus FH^2) \cap GH^2 = \{0\}$.

1. **Introduction**. Let L^2 denote the space of square-integrable functions on the unit circle ∂U with Lebesgue measure $d\theta/2\pi$. Let H^2 denote the usual Hardy class for ∂U , that is, the space of functions in L^2 whose Fourier coefficients with negative indices vanish. H^2 coincides with the space of functions in L^2 whose Poisson extensions into the unit disc U are analytic.

For each $f \in L^2$, put $M_z f = zf$. We call a closed nonzero subspace in $L^2 M_z$ -invariant when it is invariant under an operation of M_z . A M_z -invariant subspace in H^2 is called S-invariant where $S = M_z | H^2$. M_z -invariant subspaces are described completely (cf. [7, Lecture II]). The nonreducing M_z -invariant subspaces of L^2 are precisely the subspaces of the form ψH^2 for some unimodular function ψ on ∂U . This is called Beurling's theorem. So every S-invariant subspace of H^2 has the form GH^2 for some inner function G and hence every S^* -invariant subspace has the form $H^2 \oplus FH^2$ for some inner function F.

It is easy to prove that if $H^2 \ominus FH^2 = (H^2 \ominus FH^2) \cap GH^2$ then G is a constant inner function. In this paper we will show that if F and G are inner functions, $H^2 \ominus FH^2/(H^2 \ominus FH^2) \cap GH^2$ is an n dimensional subspace if and only if G is a Blaschke product of degree n. When $(H^2 \ominus FH^2) \cap GH^2 = \{0\}$, the result is well known [2, p189].

 S^* -invariant subspaces were investigated by many people. For example, [1] and [3]. Our result will give information about the structure of them.

Let z_1, z_2, \cdots be distinct points in the open disk and F the Blaschke product with zeros $\{z_k\}$. I_F denotes the linear operator on H^2 defined by

$$I_F(f) = \{(1 - |z_k|^2)^{1/2} f(z_k)\}_{k=1}^{\infty}.$$

Then I_F is a bounded linear operator from H^2 to ℓ^2 . If $\{z_k\}$ is uniformly separated then

Received by the editors September 14, 1984 and in revised form October 8, 1986.

This research was partially supported by Grant-in Aid for Scientific Research, Ministry of Education. AMS Mathematics Subject Classification (1980): Primary 47A15, 47B35; Secondary 30D55, 30E05. © Canadian Mathematical Society 1985.

 $I_F(H^2) = \ell^2$ and so \mathcal{I}_F , the restriction of I_F to $H^2 \bigoplus FH^2$, is a one-one bounded linear operator from $H^2 \bigoplus FH^2$ onto ℓ^2 . This was shown by Shapiro and Shields (cf. [4, Theorem 9.1]). Suppose F and G are Blaschke products with zeros $\{z_k\}$ and $\{s_k\}$, respectively. When $\{z_k\}$ is uniformly separated, $I_GI_F^{-1}$ is a bounded linear operator from ℓ^2 to ℓ^2 .

$$I_G \mathcal{F}_F^{-1}(\ell^2) = I_G(H^2 \bigcirc FH^2)$$

= $[\{(1 - |s_k|^2)^{1/2} f(s_k)\} : f \in H^2 \bigcirc FH^2]$

and $\{f \in H^2 \bigcirc FH^2 : I_G f = 0\} = (H^2 \bigcirc FH^2) \cap GH^2$. Thus our result shows that $I_G \mathcal{G}_F^{-1}$ is of finite rank if and only if G is a finite Blaschke product because F is not a finite Blaschke product.

2. M_z^* -invariant subspace. We will consider only non-reducing invariant subspaces under M_z . Otherwise problems are easy to solve. The following proposition describes the intersection of a M_z^* -invariant subspace and a M_z -invariant subspace.

PROPOSITION 1. Let ϕ and ψ be unimodular functions. Then $\phi \bar{H}^2 \cap \psi H^2$ is the L^2 -closure of

$$\psi\{L^2\cap g(H^2 \ominus zqH^2)\}$$

where q is an inner function and g is a function whose square is a strong outer function in H^1 , and $\bar{\Phi}\psi = \bar{q}\bar{g}/g$.

Let h be a nonzero function in H^1 . Then h is an outer function if and only if k is constant a.e. whenever $kh \in H^1$ and $k \in L^\infty$ with $k \ge 0$ a.e.. We say h is a strong outer function if it has the following property: If $kh \in H^1$ for some Lebesgue measurable k with $k \ge 0$ a.e. then k is constant a.e. [9]. For $u \in L^\infty T_u$ denotes a Toeplitz operator (cf. [2, Chapter 7]). It is easy to see that $\psi \ker T_{\bar{z} \oplus \psi} = \varphi \bar{H}^2 \cap \psi H^2$. Hayashi [6] described completely the kernels of Toeplitz operators, and the formula of the proposition is his result. The author [9] described the finite dimensional kernels of Toeplitz operators independently of [6]. In [9], the author shows that if $\varphi \bar{H}^2 \cap \psi \bar{H}^2$ is an n dimensional subspace and $n \ne 0$ then $\bar{\varphi}\psi = \bar{z}^n\bar{g}/g$ for some strong outer function g^2 and $\varphi \bar{H}^2 \cap \psi H^2 = \{p\psi g : p \text{ ranges over all analytic polynomials with degree } \le n-1\}$.

PROPOSITION 2. Let ϕ and ψ be unimodular functions. If $\phi \overline{H}^2 \cap \psi H^2 \neq \{0\}$ then there exists a unimodular function ψ_1 that satisfies the following:

- (1) $\psi \bar{\psi}_{\perp}$ is a simple Blaschke factor
- (2) $dim\{\phi \overline{H}^2 \cap \psi_1 H^2/\phi \overline{H}^2 \cap \psi H^2\} = 1$

PROOF. Let $N = \phi \overline{H}^2 \cap \psi H^2$, and K be the orthogonal complement of N in $\phi \overline{H}^2$, then $N \neq \{0\}$ and $K \neq \{0\}$. Since $N \subset \psi H^2$, there exists $f \in N$ with $\overline{z}f \notin N$. Then $\overline{z}f = k + g$, $k \in K$, $k \neq 0$ and $g \in N$. Hence $f - zk = zg \in \psi H^2$ and so $zk \in \psi H^2$. This implies that $\psi H^2 + \{k\}$ is a M_z -invariant subspace where $\{k\}$ is the linear span of k.

Hence

$$\psi H^2 + [k] = \psi_1 H^2$$

and
$$\psi = \frac{z - \alpha}{1 - \bar{\alpha}z} \psi_1$$
 with $|\alpha| < 1$. Then $\phi \bar{H}^2 \cap \psi_1 H^2 = \phi \bar{H}^2 \cap (\psi H^2 \oplus [k]) = (\phi \bar{H}^2 \cap \psi H^2) \oplus [k]$.

THEOREM 3. If ϕ and ψ are unimodular functions, $\phi \overline{H}^2/\phi \overline{H}^2 \cap \psi H^2$ is an infinite dimensional space.

PROOF. If $\phi \bar{H}^2/\phi \bar{H}^2 \cap \psi H^2$ is a finite dimensional subspace, then by Proposition 2 we can show that $\phi \bar{H}^2 = \phi \bar{H}^2 \cap \psi_1 H^2$ for some inner function ψ_1 . Then $\phi \bar{H}^2 \subset \psi_1 H^2$ and this contradiction implies the theorem.

3. S^* -invariant subspace. Let F and G be inner functions. The intersection of an S^* -invariant subspace $H^2 \oplus FH^2$ and an S-invariant subspace GH^2 has the form $(H^2 \oplus FH^2) \cap GH^2 = \overline{z}(F\overline{H}^2 \cap zGH^2)$. Hence Proposition 1 describes the intersection. Theorem 3 shows that $GH^2/(H^2 \oplus FH^2) \cap GH^2$ is an infinite dimensional subspace. We will study $H^2 \oplus FH^2/(H^2 \oplus FH^2) \cap GH^2$.

LEMMA 1. If $(H^2 \ominus FH^2) \cap GH^2 \neq \{0\}$ then there exists a Blaschke product B_1 of degree 1 such that

$$dim\{(H^2 \ominus FH^2) \cap G\overline{B}_1H^2/(H^2 \ominus FH^2) \cap GH^2\} = 1.$$

The lemma is immediate from Proposition 2.

LEMMA 2. If $H^2 \ominus FH^2 \subset \psi H^2$ and ψ is a unimodular function then $\bar{\psi}$ is an inner function.

PROOF. If $f \in H^2 \oplus FH^2$ then f and $(f - f(0))\bar{z}$ are in ψH^2 , and hence f(0) belongs to ψH^2 . Since there exists $f \in H^2 \oplus FH^2$ with $f(0) \neq 0$, $\bar{\psi} \in H^2$.

LEMMA 3. If
$$f \in H^2 \ominus FH^2$$
 then $\frac{f - f(\alpha)}{z - \alpha} \in H^2 \ominus FH^2$ for any α with $|\alpha| < 1$.

PROOF. Let $g \in FH^2$ and

$$k(\alpha) = \int \frac{f(e^{i\theta}) - f(\alpha)}{e^{i\theta} - \alpha} \frac{\overline{g(e^{i\theta})}}{g(e^{i\theta})} d\theta, |\alpha| < 1.$$

Then k is an analytic function of α and a simple computation yields

$$k^{(n)}(0) = \int e^{-i(n+1)\theta} (f(e^{i\theta}) - \sum_{i=0}^{n} f^{(j)}(0)e^{ij\theta}) \overline{g(e^{i\theta})} d\theta.$$

Hence $k^{(n)}(0) = 0$ for any $n \ge 0$ and k = 0 (cf. [4]).

PROPOSITION 4. Let F be an inner function and G an inner function with nontrivial Blaschke part. If $(H^2 \ominus FH^2) \cap GH^2 \neq \{0\}$ then there exists a Blaschke product B_1 of degree I such that $G\overline{B}_1 \in H^2$ and

$$\dim\{(H^2 \bigcirc FH^2) \cap G\overline{B}_1H^2/(H^2 \bigcirc FH^2) \cap GH^2\} = 1.$$

PROOF. Let $N = (H^2 \ominus FH^2) \cap GH^2$, and K be the orthogonal complement of N in $H^2 \ominus FH^2$, then $N \neq \{0\}$. If $K = \{0\}$ then $H^2 \ominus FH^2 \subset GH^2$. By Lemma 2 G is constant and this contradicts the hypothesis of G. Hence $K \neq \{0\}$. Let $\alpha \in U$ with $G(\alpha) = 0$. There exists $f \in N$ with $f/(z - \alpha) \notin N$. Otherwise $(z - \alpha)^{-1}N \subset N$. Hence

$$N \subset G\left(\frac{z-\alpha}{I-\bar{\alpha}z}\right)^{\ell}H^2$$
 for any positive integer ℓ . This contradicts $N \neq \{0\}$.

Let $f \in N$ with $f/(z - \alpha) \notin N$, then $f/(z - \alpha) \in H^2 \ominus FH^2$ by Lemma 3 because $f(\alpha) = 0$. Hence $f = (z - \alpha)k + (z - \alpha)g$, $k \in K$, $k \ne 0$ and $g \in N$. Hence

$$\frac{f}{1 - \bar{\alpha}z} = \frac{z - \alpha}{1 - \bar{\alpha}z}k + \frac{z - \alpha}{1 - \bar{\alpha}z}g$$

and so $\frac{z-\alpha}{1-\bar{\alpha}z}k$ belongs to GH^2 . This implies that $GH^2+[k]$ is a M_z -invariant subspace and so

$$GH^2 + [k] = G_1H^2$$

where
$$G = \frac{z - \beta}{1 - \bar{\beta}z}G_1$$
 with $\beta \in U$. Then

$$(H^2 \bigcirc FH^2) \cap G_1H^2 = [k] \oplus (H^2 \bigcirc FH^2) \cap GH^2.$$

THEOREM 5. Let n be a nonnegative integer. Let F and G be inner functions. Suppose $(H^2 \bigcirc FH^2) \cap GH^2 \neq \{0\}$, then the dimension of $H^2 \bigcirc FH^2/(H^2 \bigcirc FH^2) \cap GH^2$ is n if and only if G is a Blaschke product of degree n.

PROOF. Suppose dim $\{H^2 \ominus FH^2/(H^2 \ominus FH^2) \cap GH^2\} = n$. By Lemma 1, there exists a Blaschke product B of degree n such that

$$H^2 \bigcirc FH^2 = (H^2 \bigcirc FH^2) \cap G\overline{B}H^2.$$

Lemma 2 implies that $\bar{G}B \in H^2$ and so G is a Blaschke product of degree $\leq n$.

Conversely suppose G is a Blaschke product of degree n. Proposition 4 implies that $\dim\{H^2 \ominus FH^2/(H^2 \ominus FH^2) \cap GH^2\} = n$.

The author thanks the referee and Professor J. Inoue for their helpful comments.

REFERENCES

- 1. P. R. Ahern and D. N. Clark, *On functions orthogonal to invariant subspaces*, Acta Math., **124** (1970), pp. 191–204.
 - 2. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York.
- 3. R. G. Douglas, H. S. Shapiro and A. L. Shields, *Cyclic vectors and invariant subspaces for the backward shift operator*, Ann. Inst. Fourier (Grenoble), **20** (1970), pp. 37–76.
 - 4. P. Duren, H^p Spaces, Academic Press, New York, 1970.
- 5. S. D. Fisher, Algebras of bounded functions invariant under the restricted backward shift, J. Funct. Anal., 12 (1973), pp. 236-245.

- 6. E. Hayashi, Left invariant subspaces of H² and the kernels of Toeplitz operators, in preprint.
- 7. H. Helson, Invariant Subspaces, Academic Press, New York, 1964.
- 8. M. Lee and D. Sarason, *The spectra of some Toeplitz operators*, J. Math. Anal. Appl., **33** (1971), pp. 529–543.
 - 9. T. Nakazi, The kernels of Toeplitz operators, J. Math. Soc. Japan, 38 (1986), 607-616.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE HOKKAIDO UNIVERSITY SAPPORO 060, JAPAN