INTERSECTION OF TWO INVARIANT SUBSPACES

BY
TAKAHIKO NAKAZI

Abstract

It is shown that, if F and G are inner functions, $\left(H^{2} \Theta F H^{2}\right) /\left(H^{2} \Theta F H^{2}\right) \cap G H^{2}$ is n-dimensional if and only if G is a Blaschke product of degree n. This is an extension of the well known result for the case $\left(H^{2} \Theta F H^{2}\right) \cap G H^{2}=\{0\}$.

1. Introduction. Let L^{2} denote the space of square-integrable functions on the unit circle ∂U with Lebesgue measure $d \theta / 2 \pi$. Let H^{2} denote the usual Hardy class for ∂U, that is, the space of functions in L^{2} whose Fourier coefficients with negative indices vanish. H^{2} coincides with the space of functions in L^{2} whose Poisson extensions into the unit disc U are analytic.

For each $f \in L^{2}$, put $M_{z} f=z f$. We call a closed nonzero subspace in $L^{2} M_{z}$-invariant when it is invariant under an operation of M_{z}. A M_{z}-invariant subspace in H^{2} is called S-invariant where $S=M_{z} \mid H^{2} . M_{z}$-invariant subspaces are described completely (cf. [7, Lecture II]). The nonreducing M_{z}-invariant subspaces of L^{2} are precisely the subspaces of the form ψH^{2} for some unimodular function ψ on ∂U. This is called Beurling's theorem. So every S-invariant subspace of H^{2} has the form $G H^{2}$ for some inner function G and hence every S^{*}-invariant subspace has the form $H^{2} \Theta F H^{2}$ for some inner function F.
It is easy to prove that if $H^{2} \Theta F H^{2}=\left(H^{2} \Theta F H^{2}\right) \cap G H^{2}$ then G is a constant inner function. In this paper we will show that if F and G are inner functions, $H^{2} \Theta F H^{2} /\left(H^{2} \Theta F H^{2}\right) \cap G H^{2}$ is an n dimensional subspace if and only if G is a Blaschke product of degree n. When $\left(H^{2} \Theta F H^{2}\right) \cap G H^{2}=\{0\}$, the result is well known [2, p189].
S^{*}-invariant subspaces were investigated by many people. For example, [1] and [3]. Our result will give information about the structure of them.
Let z_{1}, z_{2}, \cdots be distinct points in the open disk and F the Blaschke product with zeros $\left\{z_{k}\right\}$. I_{F} denotes the linear operator on H^{2} defined by

$$
I_{F}(f)=\left\{\left(1-\left|z_{k}\right|^{2}\right)^{1 / 2} f\left(z_{k}\right)\right\}_{k=1}^{\infty} .
$$

Then I_{F} is a bounded linear operator from H^{2} to ℓ^{2}. If $\left\{z_{k}\right\}$ is uniformly separated then

[^0]$I_{F}\left(H^{2}\right)=\ell^{2}$ and so \mathscr{I}_{F}, the restriction of I_{F} to $H^{2} \Theta F H^{2}$, is a one-one bounded linear operator from $H^{2} \Theta F H^{2}$ onto ℓ^{2}. This was shown by Shapiro and Shields (cf. [4, Theorem 9.1]). Suppose F and G are Blaschke products with zeros $\left\{z_{k}\right\}$ and $\left\{s_{k}\right\}$, respectively. When $\left\{z_{k}\right\}$ is uniformly separated, $I_{G} I_{F}^{-1}$ is a bounded linear operator from ℓ^{2} to ℓ^{2}.
\[

$$
\begin{aligned}
I_{G} \mathscr{I}_{F}^{-1}\left(\ell^{2}\right) & =I_{G}\left(H^{2} \Theta F H^{2}\right) \\
& =\left[\left\{\left(1-\left|s_{k}\right|^{2}\right)^{1 / 2} f\left(s_{k}\right)\right\}: f \in H^{2} \Theta F H^{2}\right]
\end{aligned}
$$
\]

and $\left\{f \in H^{2} \ominus F H^{2}: I_{G} f=0\right\}=\left(H^{2} \ominus F H^{2}\right) \cap G H^{2}$. Thus our result shows that $I_{G} \mathscr{I}_{F}^{-1}$ is of finite rank if and only if G is a finite Blaschke product because F is not a finite Blaschke product.
2. \boldsymbol{M}_{z}^{*}-invariant subspace. We will consider only non-reducing invariant subspaces under M_{z}. Otherwise problems are easy to solve. The following proposition describes the intersection of a M_{-}^{*}-invariant subspace and a M_{z}-invariant subspace.

Proposition 1. Let ϕ and ψ be unimodular functions. Then $\phi \bar{H}^{2} \cap \psi H^{2}$ is the L^{2}-closure of

$$
\psi\left\{L^{2} \cap g\left(H^{2} \Theta z q H^{2}\right)\right\}
$$

where q is an inner function and g is a function whose square is a strong outer function in H^{\prime}, and $\bar{\phi} \psi=\bar{q} \bar{g} / g$.

Let h be a nonzero function in H^{1}. Then h is an outer function if and only if k is constant a.e. whenever $k h \in H^{\prime}$ and $k \in L^{\infty}$ with $k \geq 0$ a.e.. We say h is a strong outer function if it has the following property: If $k h \in H^{1}$ for some Lebesgue measurable k with $k \geq 0$ a.e. then k is constant a.e. [9]. For $u \in L^{\infty} T_{u}$ denotes a Toeplitz operator (cf. [2, Chapter 7]). It is easy to see that $\psi \operatorname{ker} T_{\overline{\text { I }}}=\phi \bar{H}^{2} \cap \psi H^{2}$. Hayashi [6] described completely the kernels of Toeplitz operators, and the formula of the proposition is his result. The author [9] described the finite dimensional kernels of Toeplitz operators independently of [6]. In [9], the author shows that if $\phi \bar{H}^{2} \cap \psi H^{2}$ is an n dimensional subspace and $n \neq 0$ then $\bar{\phi} \psi=\bar{z}^{n} \bar{g} / g$ for some strong outer function g^{2} and $\phi \bar{H}^{2} \cap \psi H^{2}=\{p \psi g: p$ ranges over all analytic polynomials with degree $\leq n-1\}$.

Proposition 2. Let ϕ and ψ be unimodular functions. If $\phi \bar{H}^{2} \cap \psi H^{2} \neq\{0\}$ then there exists a unimodular function ψ_{1} that satisfies the following:
(1) $\psi \bar{\psi}_{1}$ is a simple Blaschke factor
(2) $\operatorname{dim}\left\{\phi \bar{H}^{2} \cap \psi_{1} H^{2} / \phi \bar{H}^{2} \cap \psi H^{2}\right\}=1$

Proof. Let $N=\phi \bar{H}^{2} \cap \psi H^{2}$, and K be the orthogonal complement of N in $\phi \bar{H}^{2}$, then $N \neq\{0\}$ and $K \neq\{0\}$. Since $N \subset \psi H^{2}$, there exists $f \in N$ with $\bar{z} f \notin N$. Then $\bar{z} f=$ $k+g, k \in K, k \neq 0$ and $g \in N$. Hence $f-z k=z g \in \psi H^{2}$ and so $z k \in \psi H^{2}$. This implies that $\psi H^{2}+[k]$ is a M_{z}-invariant subspace where $[k]$ is the linear span of k.

Hence

$$
\psi H^{2}+[k]=\psi_{1} H^{2}
$$

and $\psi=\frac{z-\alpha}{1-\bar{\alpha} z} \psi_{1}$ with $|\alpha|<1$. Then $\phi \bar{H}^{2} \cap \psi_{1} H^{2}=\phi \bar{H}^{2} \cap\left(\psi H^{2} \oplus[k]\right)=$ $\left(\phi \bar{H}^{2} \cap \psi H^{2}\right) \oplus[k]$.

Theorem 3. If ϕ and ψ are unimodular functions, $\phi \bar{H}^{2} / \phi \bar{H}^{2} \cap \psi H^{2}$ is an infinite dimensional space.

Proof. If $\phi \bar{H}^{2} / \phi \bar{H}^{2} \cap \psi H^{2}$ is a finite dimensional subspace, then by Proposition 2 we can show that $\phi \bar{H}^{2}=\phi \bar{H}^{2} \cap \psi_{1} H^{2}$ for some inner function ψ_{1}. Then $\phi \bar{H}^{2} \subset \psi_{1} H^{2}$ and this contradiction implies the theorem.
3. S^{*}-invariant subspace. Let F and G be inner functions. The intersection of an S^{*}-invariant subspace $H^{2} \ominus F H^{2}$ and an S-invariant subspace $G H^{2}$ has the form $\left(H^{2} \Theta F H^{2}\right) \cap G H^{2}=\bar{z}\left(F \bar{H}^{2} \cap z G H^{2}\right)$. Hence Proposition 1 describes the intersection. Theorem 3 shows that $G H^{2} /\left(H^{2} \Theta F H^{2}\right) \cap G H^{2}$ is an infinite dimensional subspace. We will study $H^{2} \ominus F H^{2} /\left(H^{2} \ominus F H^{2}\right) \cap G H^{2}$.

Lemma 1. If $\left(H^{2} \ominus F H^{2}\right) \cap G H^{2} \neq\{0\}$ then there exists a Blaschke product $B_{\text {, of }}$ degree I such that

$$
\operatorname{dim}\left\{\left(H^{2} \ominus F H^{2}\right) \cap G \bar{B}_{1} H^{2} /\left(H^{2} \ominus F H^{2}\right) \cap G H^{2}\right\}=1 .
$$

The lemma is immediate from Proposition 2.
Lemma 2. If $H^{2} \Theta F H^{2} \subset \psi H^{2}$ and ψ is a unimodular function then $\bar{\psi}$ is an inner function.

Proof. If $f \in H^{2} \ominus F H^{2}$ then f and $(f-f(0)) \bar{z}$ are in ψH^{2}, and hence $f(0)$ belongs to ψH^{2}. Since there exists $f \in H^{2} \Theta F H^{2}$ with $f(0) \neq 0, \bar{\psi} \in H^{2}$.

Lemma 3. If $f \in H^{2} \Theta F H^{2}$ then $\frac{f-f(\alpha)}{z-\alpha} \in H^{2} \Theta F H^{2}$ for any α with $|\alpha|<1$.
Proof. Let $g \in F H^{2}$ and

$$
k(\alpha)=\int \frac{f\left(e^{i \theta}\right)-f(\alpha)}{e^{i \theta}-\alpha} \overline{g\left(e^{i \theta}\right)} d \theta,|\alpha|<1 .
$$

Then k is an analytic function of α and a simple computation yields

$$
k^{(n)}(0)=\int e^{-i(n+1) \theta}\left(f\left(e^{i \theta}\right)-\sum_{0}^{n} f^{(j)}(0) e^{i j \theta}\right) \overline{g\left(e^{i \theta}\right)} d \theta .
$$

Hence $k^{(n)}(0)=0$ for any $n \geq 0$ and $k=0$ (cf. [4]).
Proposition 4. Let F be an inner function and G an inner function with nontrivial Blaschke part. If $\left(H^{2} \Theta F H^{2}\right) \cap G H^{2} \neq\{0\}$ then there exists a Blaschke product B_{1} of degree 1 such that $G \bar{B}_{1} \in H^{2}$ and

$$
\operatorname{dim}\left\{\left(H^{2} \ominus F H^{2}\right) \cap G \bar{B}_{1} H^{2} /\left(H^{2} \Theta F H^{2}\right) \cap G H^{2}\right\}=1
$$

Proof. Let $N=\left(H^{2} \ominus F H^{2}\right) \cap G H^{2}$, and K be the orthogonal complement of N in $H^{2} \Theta F H^{2}$, then $N \neq\{0\}$. If $K=\{0\}$ then $H^{2} \Theta F H^{2} \subset G H^{2}$. By Lemma $2 G$ is constant and this contradicts the hypothesis of G. Hence $K \neq\{0\}$. Let $\alpha \in U$ with $G(\alpha)=0$. There exists $f \in N$ with $f /(z-\alpha) \notin N$. Otherwise $(z-\alpha)^{-1} N \subset N$. Hence $N \subset G\left(\frac{z-\alpha}{I-\bar{\alpha} z}\right)^{\ell} H^{2}$ for any positive integer ℓ. This contradicts $N \neq\{0\}$.

Let $f \in N$ with $f /(z-\alpha) \notin N$, then $f /(z-\alpha) \in H^{2} \Theta F H^{2}$ by Lemma 3 because $f(\alpha)=0$. Hence $f=(z-\alpha) k+(z-\alpha) g, k \in K, k \neq 0$ and $g \in N$. Hence

$$
\frac{f}{1-\bar{\alpha} z}=\frac{z-\alpha}{1-\bar{\alpha} z} k+\frac{z-\alpha}{1-\bar{\alpha} z} g
$$

and so $\frac{z-\alpha}{1-\bar{\alpha} z} k$ belongs to $G H^{2}$. This implies that $G H^{2}+[k]$ is a M_{z}-invariant subspace and so

$$
G H^{2}+[k]=G_{1} H^{2}
$$

where $G=\frac{z-\beta}{1-\bar{\beta} z} G_{1}$ with $\beta \in U$. Then

$$
\left(H^{2} \Theta F H^{2}\right) \cap G_{1} H^{2}=[k] \oplus\left(H^{2} \Theta F H^{2}\right) \cap G H^{2} .
$$

Theorem 5. Let n be a nonnegative integer. Let F and G be inner functions. Suppose $\left(H^{2} \ominus F H^{2}\right) \cap G H^{2} \neq\{0\}$, then the dimension of $H^{2} \ominus F H^{2} /\left(H^{2} \ominus F H^{2}\right) \cap G H^{2}$ is n if and only if G is a Blaschke product of degree n.

Proof. Suppose $\operatorname{dim}\left\{H^{2} \Theta F H^{2} /\left(H^{2} \Theta F H^{2}\right) \cap G H^{2}\right\}=n$. By Lemma 1, there exists a Blaschke product B of degree n such that

$$
H^{2} \Theta F H^{2}=\left(H^{2} \Theta F H^{2}\right) \cap G \bar{B} H^{2} .
$$

Lemma 2 implies that $\bar{G} B \in H^{2}$ and so G is a Blaschke product of degree $\leq n$.
Conversely suppose G is a Blaschke product of degree n. Proposition 4 implies that $\operatorname{dim}\left\{H^{2} \Theta F H^{2} /\left(H^{2} \ominus F H^{2}\right) \cap G H^{2}\right\}=n$.

The author thanks the referee and Professor J. Inoue for their helpful comments.

References

1. P. R. Ahern and D. N. Clark, On functions orthogonal to invariant subspaces, Acta Math., 124 (1970), pp. 191-204.
2. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York.
3. R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble), 20 (1970), pp. 37-76.
4. P. Duren, H^{p} Spaces, Academic Press, New York, 1970.
5. S. D. Fisher, Algebras of bounded functions invariant under the restricted backward shift, J. Funct. Anal., 12 (1973), pp. 236-245.
6. E. Hayashi, Left invariant subspaces of H^{2} and the kernels of Toeplitz operators, in preprint.
7. H. Helson, Invariant Subspaces, Academic Press, New York, 1964.
8. M. Lee and D. Sarason, The spectra of some Toeplitz operators, J. Math. Anal. Appl., 33 (1971), pp. 529-543.
9. T. Nakazi, The kernels of Toeplitz operators, J. Math. Soc. Japan, 38 (1986), 607-616.

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060, Japan

[^0]: Received by the editors September 14, 1984 and in revised form October 8, 1986.
 This research was partially supported by Grant-in Aid for Scientific Research, Ministry of Education. AMS Mathematics Subject Classification (1980): Primary 47A15, 47B35; Secondary 30D55, 30E05. (C) Canadian Mathematical Society 1985.

