
A TENSOR BOUNDARY VALUE PROBLEM 
OF MIXED TYPE 

G. F. D. DUFF 

The boundary value problems of generalized potential theory on finite 
Riemannian manifolds may be regarded as extensions of the Dirichlet and 
Neumann problems for harmonic functions. In the tensor theory there is, in 
fact, a greater variety of such problems; that is to say, these generalizations 
from classical potential theory can be made in various ways. We here intro­
duce yet another pair of boundary value problems for the tensor equation of 
Laplace. 

Two boundary value problems for harmonic ^-tensors, which, for p = 0 or 
p = N, reduce to the classical Dirichlet and Neumann problems, were dis­
cussed in ( l .b ) by means of the Poincaré-Fredholm integral equation tech­
nique. In one, values of components are assigned on the boundary, while in the 
other, values of components of the derivative and co-derivative are specified. 
As in the scalar problems, these are related, inasmuch as the system of integral 
equations appropriate to the one, when transposed, leads to the other. The 
whole formulation is invariant: that is, only tensor quantities and operators 
defined invariantly on the boundary surface appear in the statements and 
proofs. 

In this paper we shall discuss a second invariant generalization of the 
Dirichlet and Neumann problems. This type of problem is mixed, in the sense 
that values both of components and of their first derivatives are assigned at 
each boundary point. Although there are at first sight two problems of this 
kind, again related by transposition, the second mixed problem for ^-tensors 
is equivalent to the first mixed problem for (N—p) -tensors. The eigentensors 
of these problems are harmonic fields whose tangential or normal components 
vanish on the boundary, while the dimension of the eigenspace is a relative 
or absolute Betti number of the manifold. By specializing the boundary values, 
we obtain theorems for closed or co-closed harmonic forms, and also for har­
monic fields, thus bringing these hitherto separate theories together with that 
of the tensor Laplace equation. 

1. Formulation of the problem. We consider orientable Riemannian mani­
folds of dimension N and differentiability class C00. M will denote a compact 
manifold with boundary B of dimension N — 1 and class C°°, while F will 
denote a closed and compact manifold which is the double of M. A positive 
definite metric tensor gik of class C00 is supposed given on ikf, and can be 
extended to F. 
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On F we consider skew-symmetric covariant tensors 

<t>U...iv 

with which are associated exterior differential forms 0 of degree p. We have the 
differential operator d, the dual operator *, the co-differential 

5 = (-if+"+1*<f*, 

and the Laplacian A = 8d + dô. Precise definitions of these are given in ( l . b ) 
or (5) to either of which we refer for brevity. The scalar product (0, \[/)F 

— JF <t> A ** defines a Hilbert space of ^-forms on F (or on M, if the integration 
is extended over M) since N(<j>) = (0, 0) is positive unless 0 ^ 0 . 

As in ( l .c) we shall make use of double skew-symmetric ^-tensor fields 
Aix...i tjx...j which are symmetric in the two groups of indices i\. . . ip and 
j i . • -jp. 

We shall approach the study of the Laplace equation for harmonic forms 

(1.1) A0 = 0 
via an equation of type 
(1.2) 1,0 = A0 + A<t> = 0, 

where A<j) is the differential form corresponding to the tensor 

and where the matrix of independent components of A will be taken as positive 
definite. Green's formulae for (1.2) are 

(1.3) (d<f>, dip) + (<50, of) + (0, Af) - (0, Lf) = J (0A*d* - 3 M * « ) , 

and 

(1.4) (f, L<j>) - (0, Lf) = I (0A*d* - 5*A*0 - \l/A*d(j) + <50A*i£), 

where the integrals on the right are taken over the boundary surface of the 
domain of integration indicated by the round brackets. From (1.3) we see that 
the Dirichlet integral for (1.2) is 

(1.5) £ (0 , f) = (d«, df) + (00, ty) + (0, il*) = £ (* , 0). 

When A is positive definite, £(</>, 0) > 0 unless 0 = 0. The formulae for 
Laplace's equation are found by setting A = 0 in the above. Then £ (0 , 0) = 0 
implies only that d<t> = 0 and 50 — 0. 

In ( l .c) it was shown that, for A positive definite, the equation (1.2) has a 
fundamental singularity in the large gu(x, y) in any compact closed space F 
satisfying our conditions. As in the paper referred to, we use this singularity 
for the construction of single and double layer potentials. 

The boundary operators / and n, satisfying */ = w*, *n = /*, are defined as 
in ( l .b) . Thus t<p is the induced p-îorm on the boundary B. 

From ( l .b ) we recall that in the first (or Dirichlet) boundary value problem 
for harmonic forms, the quantities t<j> and w0 are assigned on B, and that the 
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eigenspace 0 for this problem is finite-dimensional, depending on the topologi­
cal structure of the manifold, or possibly zero. In the second or Neumann 
problem we assign nd<j> and tô<j>, subject to a certain orthogonality condition. 
The associated eigenspace F is the space of harmonic fields (d<f> = 0, <50 = 0) 
on M, and is known to be infinite-dimensional i f l < £ < iV — 1. The corre­
sponding problems for (1.2) with A positive definite have unique solutions. 

The two boundary value problems which we now introduce shall be known as 
the K and M problems. In the K problem we assign t(j> and tô<j>; in the M 
problem, n(j> and nd<j>. It is easily verified that the number of conditions so 
prescribed is, in each case, equal to the number (^) of independent com­
ponents of 4>. These boundary conditions are also self-adjoint, in the sense that 
if 4> and \p both satisfy one of these homogeneous conditions, the right hand 
side of (1.4) vanishes. 

The mixed boundary condition of Robin's type which was discussed in 
( l .b , §6) can be made to yield the Dirichlet (D), Neumann (N) or the K and 
M problems as limiting cases. For example, to obtain formally the K boundary 
condition, from (6.4) of ( l .b) , let Av —» co and AN-V —» 0. It is clear that these 
limiting cases must all be treated separately since the hypotheses of ( l .b , §6) 
are not then satisfied. 

The eigensolutions of these problems may be characterized with the help of 
(1.2). We see that L0 = 0, t<t> = 0, tb<j> = 0 imply £ (0 , 0) = 0, the integral 
being taken over M. Thus 0 = 0 in M, whenever A is positive definite, and if 
A is zero identically, we still have d(f> = 0, 50 = 0 but not necessarily 0 = 0. 
Similarly, if L<f> = 0, ncj> = 0, nd<f> = 0, we have E(<t>, <f>) = 0 with </> = 0 if A 
is positive definite, and d(j> = 0, ô(j> = 0 if A = 0 . 

Thus the independent conditions satisfied by a solution of the homogeneous 
X-problem are d<j> = 0, 5$ = 0 and t<t> = 0. In (2) it was shown that if the 
relative periods of </> on RP(M, B) independent relative ^-cycles are assigned, 
<j> is uniquely determined. Indeed, if these relative periods are given to be zero, 
then, according to ( l .a) , <j> is the derivative dx of a (p — l)-form % whose 
tangential part vanishes on B. Thus, by the shorter form of Green's formula, 

N(4>) = (0, dx) = (50, x) + I xA*0 = 0, 
*)B 

so that (j> vanishes identically. Therefore the dimension of the eigenspace K 
of the K problem is RP(M, B) = RN-P(M), by the Lefschetz duality theorem. 

Reasoning exactly dual to this shows that the eigenspace M of the M 
problem has dimension RP(M) = RN-V(M, B). Indeed, if 0 satisfies a boundary 
condition of the K type, its dual *0 is an N — p form satisfying a corresponding 
boundary condition of the M type. 

We remark that the intersection of the eigenspace K and the eigenspace M 
is the eigenspace 0 of the Dirichlet problem in which both t<j> and n<f> vanish. 

The letters K and M will also be used to denote projection operators (in the 
L2 norm) on the K and M eigenspaces. In this connection we have the operator 
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relations di£ = 0, ôK = 0, dM = 0, ôM = 0. If p£K, and \p is arbitrary, then, since 

(p,W) = (dp, ^) - J PA*t = 0 

we have i£<5 = 0. Similarly Md = 0. In fact, this last follows also from the 
evident formulae *M = K*, *K = ikf*. 

2. Potentials. Let g — gA (x, y) denote the fundamental solution of 
A<j> + A<j> = 0 (A positive definite) in the double F. Based on this double form 
we have the potentials 

(2.1) M = I (pA*dg — 5pA*g) = I (pA*dg + *gA*d*p) 
JB JB 

and 

(2.2) v = I (gA*da — ôgA*<r) = I (gA*da + *crA*^*g), 
J B J B 

each of which contains both single and double layer terms. The layer densities 
tp, top, nda and na are assumed here to be Holder continuous on B. We shall 
calculate the discontinuities of these quantities as the argument point crosses 
B from M to the complementary part CM in F, and for this purpose we use 
the formulae of §3 of ( l . b ) , noting that the singularity of the de Rham kernel 
g(x, y) is asymptotically equal to that of gA(x, y)* 

From (3.5) of ( l . b ) we see that the first term of t\x increases by tp: the second 
term of tp, is clearly continuous. From the same formulae we see that the first 
term of /*/x is continuous, and so also is the second. To calculate the discon­
tinuity of t*dn, we have 

t*dpi = t*d I (p A *dg — dp A *g) 
JB 

and from (3.6) of ( l . b ) we see that the second term is continuous across B. If 
we take the dual of (4.12) of ( l . b ) we see that the first term is also continuous. 
Lastly, we must examine t* d*fi. According to (3.5) of ( l . b ) the second term 
of t* d*p, decreases by t* d*p, while from (3.6) of the same paper, the first term 
is continuous. Analogous results for the dual potential v may be found by taking 
the duals of the above results with p replaced by N — p; or directly. Collecting 
together the results so found, we see that tp,, t* d*p,, t*v, and /* dv have the 
respective discontinuities tp, —t* d*p, —t*<r, and /* da; while t*p, t* dp,, tv, and 
/* d*v are continuous across B. 

We conclude that on B, we have as limits from M, 

t-p = \tp + t I (p A *dg + *g A *d*p), 
JB 

(2.3) t-*d*p = — |/*^*p + t*d* I (p A *dg + *g A *c?*p), 
JB 

t-*dv — — \t*dv + t*d I (g A *da + *<j A *^*g), 

t-*v = \t*G + £* I (g A *d<r + *o- A *d*g). 
J B 
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( ' 
V: 

Here the integrals on the right are understood to be evaluated on the boundary. 
The singularity of gA (x, y) for x = y is such that principal values of these 
integrals must be taken. The — sign appended to the operator t on the left of 
each equation indicates a limiting value from M ; a + sign will be used to 
indicate limits from CM. 

The reasoning of the Poincaré-Fredholm method now shows that the solu­
tion of the K problem with assigned data /<£, tb<j> is to be sought by solving the 
system of singular integral equations 

(2.4) t-ix = /</>, t-*d*n = t*d*<j). 

Similarly, the solution of the M problem will be found by solving the system 

(2.5) t-*dv = t*dcj), t-*v = t*<j> 

with given data /*#, t*d<}>. 
The kernel of the system (2.4) is 

ftX ty *y dy gA (X, j) , tX ty *y gA (X, j) \ 

. ty *X dX *X *y dy gA (X, y) , tX ty *X d% *y gA (X, ^) / , 

while the transpose of this kernel, namely 

HX ty *X dX gA (X, y ) , tX ty *X dX *y dy *y gA (X, ^ ) ̂  

<tx ty *X gA {X, y) , tX ty *X *y dy *y gA (X, j) 

is the kernel of the system (2.5). Thus the analogy with the case considered in 
( l . b ) is complete. 

3. Solution of the integral equations. The condition for the compatibility 
of (2.3) or (2.4) is, that the non-homogeneous terms should be orthogonal, over 
the domain of integration By to every solution of the homogeneous transposed 
equations (3). In each case the homogeneous transposed equation arises when 
we try to solve the boundary value problem of the dual type for the domain 
CM. 

For the K problem we will show that any H-continuous solution of the 
homogeneous transposed equation 

0 = \t*d<j + t*d I (g A *da + *o- A *d*g), 
(3.1) J* 

0 = — \t*v + t* I (g A *da + *o- A *d*g), 

is identically zero. The potential v of (2.2) corresponding to any such solution 
a satisfies on B, 
(3.2) t+ *dv = 0, /+ *v = 0, 

and also is a solution of Av + Av = 0 in CM. Thus the Dirichlet integral over 
CM of v is zero, and hence v vanishes identically in CM. Passing through the 
boundary B to My we see that 
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(3.3) tv = 0, t-*v = — £_*cr, t-*dv = fada, t-*d*v = 0. 

From the first and last of these relations, it follows that v has a zero Dirichlet 
integral in M, and so vanishes identically. Thus finally t*a = 0 and t*da = 0. 

That is, according to (3), the equations (2.4) possess a solution for arbitrary 
continuous data. Reasoning along the lines of this proof, we could easily show 
that this solution of the integral equations is also unique. The proof of existence 
of a solution of (2.5) parallels that just given and so will be omitted. 

THEOREM I. If A is positive definite in M, the differential equation A</> -\-A </> = 0 
has unique solutions with either t<j>, tb<j> or n<j>, nd<t> having assigned H-continuous 
boundary values. 

In the usual way we can now assert the existence of Green's forms corre­
sponding to the K and M problems on M. These are obtained by subtracting 
from the fundamental singularity gA(x, y) solutions of the differential equation, 
the appropriate boundary values of which agree with those of £A(#» y)- For the 
K problem we find a domain functional Kv(x, y) which satisfies 

(3.4) AXK + AK = 0 (x j* y); txK = 0, txôxK = 0; 
K(x,y) ~ g(x,y), (x ~ y). 

The symmetry property K(x,y) — K(y,x) is easily established. For the M 
problem we construct Mp(x, y) satisfying 

(3.5) AXM + AM = 0 (x 9* y); nxM = 0, nxdxM = 0; 
M(x, y) ~ g(xy y), (x ~ y). 

Finally, we see that *x *y Kp(x, y) = MN-V(x, y). 

4. Laplace's Equation. The above method requires modification when 
applied to Laplace's equation, for which the matrix A is zero. We shall con­
struct a modified Green's function in F, which will appear in the kernel of the 
integral equations corresponding to (2.4). For this purpose let A0 be a suffi­
ciently differentiate matrix tensor which is positive definite in M and vanishes 
in M (1, c). Then to the differential equation 

(4.1) A0 + AQ<t> = 0 

there corresponds the Dirichlet integral 

(4.2) Z>o(«, <t>) = N(d4>) + N(d<t>) + (0, A0(I>)M. 

Any form which is harmonic in M and vanishes in M annuls this integral and 
is an eigenform of (4.1) in F. That is, the eigenspace of (4.1) is 0 = M C\ K 
as defined in § 1. 

The method of (5) for constructing a Green's form applies to (4.1) as in 
(1, c), and it is a straightforward matter to verify in the present case the 
existence of a Green's form go(x, y) for (4.1) which satisfies the following 
equation : 
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(4.3) Axg0(x,y) = —a0(x,y), x ^ y, 

where 

is the reproducing kernel in M of the orthonormalized forms œt(x) of the eigen-
space 0. Thus ao(x, y) is a harmonic field with vanishing boundary values on 
B. Hence also 

dô dg0 = 0, ôd ôgo = 0. 

This kernel is symmetric as usual. With go(x, y) we may construct surface 
layers of the types (2.1) and (2.4), and for the remainder of this section /x0 

and v0 will denote these modified potentials. 
If p is an eigenform of the K problem, that is, if dp = 0, ôp = 0, tp = 0, and 

if A0 = 0 in My then from Green's formula we have 

(p, A0) + D(p, 0) = J (p A *J0 - 50 A *p). 

The left-hand side vanishes, as does the first term on the right. We then find 

(4.4) J 50 A *p = 0 

as a necessary condition for the solution of the K problem by harmonic forms. 
Writing 

(4.5) Mo = I (P A *dg0 — dp A *go) 

we see that 

A ô = I 5p A *ao = 0 
JB 

since ta0 = 0. That is, a surface layer (4.5) is a harmonic form. The solution of 
the K problem will then be attained if there exists a surface layer (4.5) satis­
fying the boundary conditions. 

The integral equations of the problem again take the form 

(4.6) t-fxo — t<f>, t-dfio = tb<t>. 

A solution (tp, top) exists if and only if the nonhomogeneous terms (t<f>, /50) are 
orthogonal to every solution of the homogeneous transposed equations. As in 
§3, to such an eigensolution (t*d<r, t*a) corresponds a potential v0, satisfying 
(4.1), with 
(4.7) t+*dv0 = 0, t+*v0 = 0 on B. 

Since A 0 is positive definite in M, we find 

(4.8) ?o = 0 in M. 

The discontinuity conditions then yield 

(4.9) t-vo = 0, t-*vo = —t*a, t-*dv0 = t*da, t-*d*vo = 0. 
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Since go(x, y) satisfies (4.3), we find 

(4.10) Av0 = E ^ f r 

where the fr form a basis for the eigenspace 0. Then in M, we see from (4.9), 

ô = I (go A *da — dgo A *o") = I (go A *di>o + ago A *^o). 
*/£ J B 

Therefore 

(4.11) Avo = — (ao A *dv0 + ôao A *?>o) = 0, 
J B 

since da = 0 and too = 0. Thus vo is a harmonic form in M. Next we calculate 

DM(?o) = (dvo, dv0)M + (àvo, àv0)M 

= (vo, A*>0) + I (?o A *^o — àvo A **>o) = 0 
JB 

since Av0 = 0 and /_*>o = 0, t-*d*v0 = 0. Therefore Ï>O is in fact a harmonic 
field in M, and since t-vo = 0, *>o is a member of the eigenspace K. 

The orthogonality condition sufficient for the existence of a solution of the 
integral equations (4.6) now becomes 

= I (0 A *d<j — dcj) A *<r) = — j <5<£ A *o-

= I 50 A *?o, 
J B 

0 
fB 

T B 

in view of the second of (4.9). That is, the necessary condition 

x 50 A **>o = 0, vo €X, 

is sufficient for the existence of a solution of the integral equations. The final 
result then follows from our remark that /x0 is a harmonic form. 

THEOREM II. There exists a solution <f>v of A<£ = 0, t<j> = t%, tb<f> = tô%, if and 
only if 

(4.12) j ô£ A *P = 0 

for eDery harmonic field p for which tp = 0 on B. 

In particular, if RP(M, B) = 0, the condition (4.12) is satisfied. 

5. Co-closed harmonic forms. The K problem is solvable if the given 
values for tô<j> are all zero. We will show that in this case the solution <j> is co-
closed throughout M. Since 5A<£ = ôdô<t> = 0, we have 

N(d8ct>) = (dot, dô(/>) = (ô<£, ôd8<t>) + I <50 A *dô<t> = 0, 
J B 
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by Green's formula, and since tb<t> vanishes. Thus db^> = 0 identically, and so 
also ôd<f) = 0. Now 

N(8<l>) = (<50, 00) = (0, db4>) - J 50 A *0 = 0, 

since d50 = 0 and /50 = 0. Thus 50 = 0 as stated. 

THEOREM III . There exists a co-closed harmonic form having a given tangential 
boundary value. 

This result is similar to but not identical with Theorem 2 of (2) which states 
the existence of a solution to the problem 8d4> = 0, t<j> = t£ given on B, and that 
if £ is of the form 5x, then there exists a unique solution 0 of the form ô\f/. The 
theorem just established is stronger than the first of these two statements, and 
more general than the second since the values of t<j> are restricted only by 
continuity. 

If we further restrict t<j> to be equal to the values of a derived form da 
defined on B, we can show that d4> is zero in M. The restriction on t<t> will be 
satisfied if dBt<j> = 0, and if t<j> has zero periods on all ^-cycles of B. ( l . a ) 
We see, in fact, that 

N(dct>) = {d<j),d<t>) = (0, bd<j>) + I 0 A *d<£. 

The volume term disappears since bd<j> = 0. Since t<j> = Ida, we have 

dBt(a A *d(f)) — td(a A *dc/>) 
= t(da A *d(f>) + (-l)p t(a A d*d<j>) 
= /(0 A *d0), 

again since d*d<j> = ±*5 d<f> — 0. Thus, by Stokes' theorem, 

J 0 A *d<£ = I a A *d<£ = 0 
B JbB 

since the boundary bB of i? is zero. Finally, dcf) = 0 in ikf. This result is a weaker 
form of the Dirichlet theorem for harmonic fields (2, Theorem 3). 

Another type of condition which ensures that the orthogonality condition 
(4.12) be satisfied is that the assigned values of tb<j> on B should be equal to a 
derived form dBxv-2 defined on B. If p is an eigenform, we have d*p = 0, and 

dBt(x A *p) = dB(x A t*p) 
— dBx A t*p d= x A d#/*p 
= /<$<£ A t*p ± x A /^*p 
= /(ô0 A *p). 

Hence, by Stokes' theorem, 

J 50 A *p = I x A *p = 0, 

since B is closed. That is, (4.12) is satisfied as stated. 
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When the assigned boundary values of tô<t> are of this type, and when also the 
values of t<t> vanish, the corresponding solution of the K problem is closed. In 
fact, we have 

THEOREM IV. There exists a closed harmonic form 4> = <j>p with t<j> = 0, 
tô(j> = dBXp~2, where Xp-z is a p — 2 form of class HCl defined on B. 

The orthogonality condition being satisfied, there exists a harmonic form 
<t> with t<t> — 0, tb<j> = dBx- To show that <j> is closed, we first calculate 

N(db<j>) = («50, bdb<t>) - I 50 A *d<50. 
J B 

The volume term vanishes since bdbcf) = 5A0 = 0. For the surface integral, we 
have 

dBt{x A *d<50) = dB(x A t*dô<j>) 
= dBx A t*dô(j) db x A td*dô<t> 
— dBx A t*dô(f) ± x A t*ôdô<t) 
= tÔ(j> A t*dô<l> + 0 
= t(8<t) A *dô0). 

The integrand being a derived form on B, the surface integral over the closed 
boundary manifold B vanishes, by Stokes' theorem. That is, N(db<f>) = 0, so 
db<j) = 0. Again, since A<£ = 0 we have also bd4> = 0. Thus 

N(d(j>) = (0, bd<j>) + I 0 A *dtf> = 0, 

since 5^0 = 0 and t<j> = 0. Therefore, finally, d<j> = 0 and Theorem IV is proved. 
This proof demonstrates that a harmonic form with t<t> = 0, tb<j> = dBx is 

necessarily closed. However, the sufficient condition t<j> = 0 may be replaced 
by the condition wd$ = 0 which is clearly necessary, and the remark d<i> = 0 
still holds. To show this we refer to the Neumann boundary value theorem 
( l . b , Theorem II) . It is a consequence of this result that there exists a har­
monic form <j> with nd<j> = 0 and tb<j> — dBx if and only if 

I dBx A *r = 0 

for every harmonic field r defined throughout M. But 

dBt(x A *r) = dBx A t*r zt x A td*r 
= t(dBX A *r), 

since d*r is zero, and so this condition of orthogonality is satisfied. Therefore a 
harmonic form <j> satisfying the indicated boundary conditions exists. Now we 
have A(j> = 0, and therefore 

t*dbct> = —t*bdcj) = ±td*dcj) = ±dBt*d<j> = 0, 

since t*dcj) = *nd<j> is zero. Thus the surface integral in (5.2) vanishes; and, 
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since the volume integral is again zero, we conclude that ddcj) vanishes. Then, 
since also ôd<j> must be zero, we find that 

N(d<j>) = ( 0 , bd<j>) + I <t> A *d(f> = 0, 
JB 

since t*d<j> — *nd<j> is zero. T h a t is, d<t> = 0 holds in this case as well. 

6. Green's operators for Laplace's equation. From (4.10) we observe that 
the equation A<£ = p is solvable in M with the homogeneous boundary condi­
tions t<t> = 0, tô<j) = 0, if and only if (p, £) = 0 for all p (z K. Thus the modified 
equation A$ = /3 — i£/3 is solvable for arbitrary /3. Since the solution is un­
determined to the extent of an additive eigenform p Ç K, uniqueness may be 
secured by the additional requirement K(f> = 0. Writing 4> = GK/3, we define 
the Green's operator GK for the K problem on the given domain. As in ( l . b ) , 
(5), we see that the kernel g^(x, y) of this operator is a double p-iorm with a 
singularity asymptotic to the local fundamental singularity of A</> = 0, as 
x ~ y. Also gK(x, y) satisfies the differential equation 

(6.1) AygK(x,y) = -k(x,y), x j* y, 
where 

Rp(M.B) 

(6.2) k(x,y) = £ p,(*)p,Cy) 

is the reproducing kernel of the eigenspace K. 
Since tGK<j> = 0 and tô GK<j) = 0, we find that ty g*(x, y) = 0 and ty ôygK(x, y) 

= 0. Also, to the orthogonality relation KG = 0 corresponds the formula 
(p(x), gK(%, y)) — 0 for each p G K. The symmetry property gx(x, y) — gK(y,%) 
now follows in the usual way from Green's formula. Thus GK is self-adjoint. 

Let 4> be any £-form ; we calculate 

GKA(j) = (gK, A0) 

(6.3) = 0 + ( A ^ ' *> 

+ I ( 0 A *dgK — §gK A *<!> — gK A *d<t> + ô<t> A *gK) 
*)B 

= cj) - K<j> + I (0 A *dfe + 50 A *&). 

Since /G^ = 0, /ôG^ = 0, and tK — 0, /5i£ = 0, we see that the surface integral 

(6.4) PK<t> = - J (0 A *d& + H A *&) 

satisfies 
(6.5) /P*<£ = /0 , thPK<j> = tô4>. 
Moreover, 

AP*0 = + | ô 0 A *k, 
J B 

and this surface integral is zero if and only if the orthogonality condition (5.1) 
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holds. That is, if t<j>, td<t> satisfy (5.1), then PK<t> is the harmonic form which 
solves the K problem with these boundary values. From (6.2), (6.3) and (6.4) 
we deduce the operator equation 

(6.6) AGK - GKA = PK. 

Similar formulae are valid for the dual M problem. There exists a unique 
self-adjoint operator GM with kernel gui^i y), satisfying relations correspond­
ing and dual to (6.2)-(6.10). Moreover, 

*z*2/ & fa y) = £M~P(*, y). 

7. Examples. To find concrete examples of the existence theorems here 
proved, we turn to Euclidean space of two or of three dimensions. In the plane, 
a 1-form #, in Cartesian coordinates, is a differential 

0 = P dx + Q dy. 

*4> = Q dx — P dy, 

d<t> = {Qx - Py) dx dy, b<t> = Px + Qy. 

Thus the main existence theorem may be stated in terms of the two coefficients 
P and Q which will be harmonic functions if <t> is harmonic. Let R denote a 
simply-connected region, bounded by a smooth curve C of arc length para­
meter s. We see that there exist unique harmonic functions P and Q, such that 
the quantities 

take assigned Holder continuous values on C. For in this case the K problem 
has no eigenforms. Also, if Px + Qy is given as zero on C, it is everywhere zero. 
The dual problem may be stated by replacing P , Q with Q, — P , respectively. 

On the annulus a < r < b, r2 = x2 + y2, the K problem has the eigenform 
p = dr. Since t*p = t*dr — rdd = ds, the condition of solvability is 

f (P* + Qy) ds= f (Px + Qy) ds. 

In Euclidean three-space, a 1-form 0 and the related quantities may be 
written, in Cartesian coordinates, 

<t> = P dx + Q dy + R dz, 
*$ = P dy dz + Q dz dx + Rdx dy, 
d<i> = (Ry — Qz) dy dz + (P2 — Rx) dz dx + (Qx — Pv) dx dy, 
Ô* = ~(PX + Qy + R2); 

the differential corresponding to the curl and the co-differential being the 
divergence, of the vector (P, Q, R). Two mixed boundary value problems may 

The dual is 

while 
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be stated for this vector, on a multiply-connected region R of space, bounded 
by a boundary surface B. 

First, consider the K problem for the 1-form 0 (or, equivalently, the M 
problem for its dual *<£). Here we assign two tangential components Tu T2 of </>: 

where s1 and s2 are parameters of B; and the value of 5<t>, or of 

Pz + Q* + R*. 
The number of independent eigenforms is equal to the number of independent 
relative 1-cycles R; and in particular is zero if the boundary surface is con­
nected and if R is simply-connected. In this case we may state that there 
exist unique harmonic functions P , Q, R satisfying the above boundary condi­
tions. 

Furthermore, if (Px + Qy + Rz) is given as zero on B, then it is zero through­
out R; that is, the vector (P, Q, R) is solenoidal. If also the condition tcj> = tdx 
is satisfied as in §5, then dcj> = 0 which in this case implies that the vector 
(P, Q, R) is irrotational as well. The condition t<t> — tdx takes here the form 

T1ds1 + T2ds2 = dF(s\s2), 

which will hold if d l i/ds2 — d7 2/ds1 on By and if also for each absolute 1-cycle 
Al of B we have 

X1 **s Li[Ti dsl+T*ds2]=°* 
Secondly, we see that the M problem for cf> is equivalent to the K problem for 

*0, and that in this problem there are assigned values of the normal com­
ponent 

dn dn dn 

(n denoting normal distance from B, locally), and the two components 

* = 1,2, §Ii _ HE 
dn ds* ' 

of the curl or differential dcfr. The eigenvectors of this problem are harmonic 
vectors (irrotational and divergenceless) with vanishing normal components 
on B. That is, they are the secondary flows or circulations of Kelvin (4). The 
number of independent flows of this kind is equal to the number of absolute 
1-cycles (irreducible circuits), or, equivalently, to the minimum number of 
2-dimensional diaphragms needed to make the region simply-connected. Thus, 
if R is simply-connected, we may assert the existence of unique harmonic 
functions P , <2, and R which satisfy the boundary conditions. In the more 
general case when R is not simply connected, the orthogonality condition is 
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easily written down in terms of components. Again, we see from the dual of 
Theorem III that if the two assigned components of the curl are zero on B, then 
the curl vanishes inside. 

We may here also apply the second result of §5 to the dual vector *0: thus 
if t*<j) = td*x on By we conclude that d*<t> = 0, i.e. that the divergence of 
(P, Q, R) vanishes. This necessary condition takes the form 

Ndslds2 = d(jxdsl +f2ds2), 

where/i and f2 are single-valued on B. Since B is two-dimensional, the two-
form Nds1 ds2 is automatically closed ; by de Rham's second theorem it is 
derived if its periods are all zero; that is, if 

f NdsW = 0 
JjBi 

for each component Bt of B. 
The preceding remarks may be summed up as follows. Suppose that each 

Cartesian component of a vector field (P, Q, R) is harmonic in a multiply-
connected region R of space. Then if the vorticity vector on the boundary is 
everywhere normal to the boundary, the vector field is irrotational, while if 
there is zero net inflow over each boundary component, the vector field is 
solenoidal in R. 
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