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ABSTRACT. Accurately estimating winter surface mass balance on glaciers is central to assessing glacier
health and predicting glacier run-off. However, measuring and modelling snow distribution is inherently
difficult in mountainous terrain. Here, we explore rigorous statistical methods of estimating winter balance
and its uncertainty from multiscale measurements of snow depth and density. In May 2016, we collected
over 9000 manual measurements of snow depth across three glaciers in the St. Elias Mountains, Yukon,
Canada. Linear regression, combined with cross-validation and Bayesian model averaging, as well as
ordinary kriging are used to interpolate point-scale values to glacier-wide estimates of winter balance.
Elevation and a wind-redistribution parameter exhibit the highest correlations with winter balance, but
the relationship varies considerably between glaciers. A Monte Carlo analysis reveals that the interpolation
itself introduces more uncertainty than the assignment of snow density or the representation of grid-scale
variability. For our study glaciers, the winter balance uncertainty from all assessed sources ranges from
0.03 to 0.15 m w.e. (5-39%). Despite the challenges associated with estimating winter balance, our
results are consistent with a regional-scale winter-balance gradient.
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1. INTRODUCTION significant uncertainty in estimates of winter balance, thus

Winter surface mass balance, or ‘winter balance’, is the net
accumulation and ablation of snow over the winter season
(Cogley and others, 2011), which constitutes glacier mass
input. Winter balance (B,,) is half of the seasonally resolved
mass balance, initializes summer ablation conditions and
must be estimated to simulate energy and mass exchange
between the land and atmosphere (e.g. Hock, 2005; Réveillet
and others, 2016). Effectively representing the spatial distribu-
tion of snow on glaciers is also central to monitoring surface
run-off and its downstream effects (e.g. Clark and others, 2011).

Winter balance is notoriously difficult to estimate (e.g.
Dadic and others, 2010; Cogley and others, 2011). Snow dis-
tribution in alpine regions is highly variable with short correl-
ation length scales (e.g. Anderton and others, 2004; Egli and
others, 2011; Griinewald and others, 2010; Helbig and van
Herwijnen, 2017; Lépez-Moreno and others, 2011, 2013;
Machguth and others, 2006; Marshall and others, 2006)
and is influenced by dynamic interactions between the
atmosphere and complex topography, operating on multiple
spatial and temporal scales (e.g. Barry, 1992; Liston and
Elder, 2006; Clark and others, 2011; Scipién and others,
2013). Simultaneously extensive, high resolution and accur-
ate snow distribution measurements on glaciers are therefore
difficult to acquire (e.g. Cogley and others, 2011; McGrath
and others, 2015) and obtaining such measurements is
further complicated by the inaccessibility of many glacier-
ized regions during the winter. Use of physically based
models to estimate winter balance is computationally inten-
sive and requires detailed meteorological data to drive the
models (Dadic and others, 2010). As a result, there is
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limiting the ability of models to represent current and pro-
jected glacier conditions.

Studies that have focused on obtaining detailed estimates
of B,, have used a wide range of observational techniques,
including direct measurement of snow depth and density
(e.g. Cullen and others, 2017), lidar or photogrammetry
(e.g. Sold and others, 2013) and ground-penetrating radar
(e.g. Machguth and others, 2006; Gusmeroli and others,
2014; McGrath and others, 2015). Spatial coverage of
direct measurements is generally limited and often comprises
an elevation transect along the glacier centreline (e.g. Kaser
and others, 2003). Measurements are typically interpolated
using linear regression on only a few topographic parameters
(e.g. MacDougall and Flowers, 2011), with elevation being
the most common. Other established techniques include
hand contouring (e.g. Tangborn and others, 1975), kriging
(e.g. Hock and Jensen, 1999) and attributing measured
winter balance values to elevation bands (e.g. Thibert and
others, 2008). Physical snow models have been used to esti-
mate spatial patterns of winter balance (e.g. Mott and others,
2008; Schuler and others, 2008; Dadic and others, 2010), but
the availability of the required meteorological data generally
prohibits their widespread application. Error analysis is rarely
undertaken and few studies have thoroughly investigated
uncertainty in spatially distributed estimates of winter
balance (e.g. Schuler and others, 2008).

More sophisticated snow-survey designs and statistical
models of snow distribution are widely used in the field
of snow science. Surveys described in the snow science
literature are generally spatially extensive and designed to
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measure snow depth and density throughout a basin, ensur-
ing that all terrain types are sampled. A wide array of meas-
urement interpolation methods are used, including linear (e.
g. Lépez-Moreno and others, 2010) and non-linear regres-
sions (e.g. Molotch and others, 2005) that include numerous
terrain parameters, as well as geospatial interpolation (e.g.
Erxleben and others, 2002; Cullen and others, 2017) includ-
ing various forms of kriging. Different interpolation methods
are also combined; for example, regression kriging (see
Supplementary Material) adds kriged residuals to a field
obtained with linear regression (e.g. Balk and Elder, 2000).
Physical snow models such as SnowTran-3D (Liston and
Sturm, 1998), Alpine3D (Lehning and others, 2006) and
SnowDrift3D  (Schneiderbauer and Prokop, 2011) are
widely used, and errors in estimating snow distribution
have been examined from theoretical (e.g. Trujillo and
Lehning, 2015) and applied perspectives (e.g. Turcan and
Loijens, 1975; Woo and Marsh, 1978; Deems and Painter,
2006).

The goals of this study are to (1) critically examine
methods of converting direct snow depth and density mea-
surements to distributed estimates of winter balance; and
(2) identify sources of uncertainty, evaluate their magnitude
and assess their combined contribution to uncertainty in
glacier-wide winter balance. We focus on commonly
applied, low-complexity methods of measuring and estimat-
ing winter balance in the interest of making our results
broadly applicable.

2. STUDY SITE

The St. Elias Mountains (Fig. 1a) rise sharply from the Pacific
Ocean, creating a significant climatic gradient between
coastal maritime conditions, generated by Aleutian-Gulf of
Alaska low-pressure systems, and interior continental condi-
tions, driven by the Yukon-Mackenzie high-pressure system
(Taylor-Barge, 1969). The boundary between the two cli-
matic zones is generally aligned with the divide between
the Hubbard and Kaskawulsh Glaciers, ~130 km from the
coast. Research on snow distribution and glacier mass
balance in this area is limited. A series of research programs,
including Project ‘Snow Cornice’ and the Icefield Ranges
Research Project, were operational in the 1950s and 60s
(Wood, 1948; Danby and others, 2003) and in the last 30
years, there have been a few long-term studies on selected
alpine glaciers (e.g. Clarke, 2014), as well as several regional
studies of glacier mass balance and dynamics (e.g. Arendt
and others, 2008; Berthier and others, 2010; Burgess and
others, 2013; Waechter and others, 2015).

We carried out winter-balance surveys on three unnamed
glaciers in the Donjek Range of the St. Elias Mountains. The
Donjek Range is located ~40 km to the east of the regional
mountain divide and has an area of ~ 30 x 30 km”. Glacier
4, Glacier 2 and Glacier 13 (labelling adopted from
Crompton and Flowers (2016)) are located along a south-
west-northeast transect through the range (Fig. 1b,
Table 1). These small alpine glaciers are generally oriented
southeast-northwest, with Glacier 4 having a predominantly
southeast aspect and Glaciers 2 and 13 having generally
northwest aspects. The glaciers are situated in valleys with
steep walls and have simple geometries. Based on a detailed
study of Glacier 2 (Wilson and others, 2013) and related the-
oretical modelling (Wilson and Flowers, 2013), we suspect
all of the study glaciers to be polythermal.
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3 METHODS

Estimating glacier-wide winter balance (B,,) involves trans-
forming measurements of snow depth and density into
values of winter balance distributed across a defined grid
(bw). We do this in four steps. (1) Obtain direct measurements
of snow depth and density in the field. (2) Assign density
values to all depth-measurement locations to calculate
point-scale values of b,, at each location. Winter balance,
measured in units of mw.e.,, can be estimated as the
product of snow depth and depth-averaged density. (3)
Average all point-scale values of b,, within each gridcell of
a DEM to obtain the gridcell-averaged b,,. (4) Interpolate
and extrapolate these gridcell-averaged b,, values to obtain
estimates of b,, in each gridcell across the domain. B,, is
then calculated by taking the average of all gridcell-averaged
b, values for each glacier. For brevity, we refer to these four
steps as (1) field measurements, (2) density assignment, (3)
gridcell-averaged b, and (4) distributed b,,. Detailed meth-
odology for each step is outlined below. We use the SPIRIT
SPOT-5 DEM (40 m x 40 m) from 2005 (Korona and others,
2009) throughout this study.

3.1. Field measurements

Our sampling campaign involved four people and occurred
between 5 and 15 May 2016, which falls within the period
of historical peak snow accumulation in southwestern Yukon
(Yukon Snow Survey Bulletin and Water Supply Forecast,
1 May 2016). Snow depth is generally accepted to be more
variable than density (Elder and others, 1991; Clark and others,
2011; Lépez-Moreno and others, 2013) so we chose a sam-
pling design that resulted in a high ratio (~55:1) of snow
depth to density measurements. In total, we collected more
than 9000 snow-depth measurements and more than 100
density measurements throughout the study area (Table 1).

During the field campaign, there were two small accumu-
lation events. The first, on 6 May 2016, also involved high
winds so accumulation could not be determined. The
second, on 10 May 2016, resulted in 0.01T m w.e. accumula-
tion measured at one location on Glacier 2. Assuming both
accumulation events contributed a uniform 0.01 m w.e.
accumulation to all study glaciers then our survey did not
capture ~3 and ~2% of estimated B,, on Glaciers 4 and 2,
respectively. We, therefore, assume that these accumulation
events were negligible and apply no correction. Positive tem-
peratures and clear skies occurred between 11 and 16 May
2016, which we suspect resulted in melt occurring on
Glacier 13. The snow in the lower part of the ablation area
of Glacier 13 was isothermal and showed clear signs of
melt and metamorphosis. The total amount of melt during
the study period was estimated using a degree-day model
and found to be small (<0.01 mw.e., see Supplementary
Material) so no corrections were made.

3.1.1. Sampling design

The snow surveys were designed to capture variability in
snow depth at regional, basin, gridcell and point scales
(Clark and others, 2011). To capture variability at the
regional scale, we chose three glaciers along a transect
aligned with the dominant precipitation gradient (Fig. 1b)
(Taylor-Barge, 1969). To account for basin-scale variability,
snow depth was measured along linear and curvilinear
transects on each glacier (Fig. 1c) with a sample spacing of
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Fig. 1. Study area location and sampling design for Glaciers 4, 2 and 13. (a) Study region in the Donjek Range of the St. Elias Mountains of
Yukon, Canada. (b) Study glaciers located along a southwest-northeast transect through the Donjek Range. The local topographic divide is
shown as a dashed line. Imagery from Landsat 8 (5 September 2013, data available from the US Geological Survey). (c) Details of the snow-
survey sampling design, with centreline and transverse transects (blue dots), hourglass and circle designs (green dots) and locations of snow
density measurements (orange squares). Arrows indicate ice-flow directions. Approximate location of ELA on each glacier is shown as a black
dashed line. (d) Close up of linear and curvilinear transects. (e) Configuration of navigator and observers. (f) Point-scale snow-depth sampling.
(g) Linear-random snow-depth measurements in ‘zigzag’ design (red dots) with one density measurement (orange square) per zigzag.

10-60 m (Fig. 1d). Sample spacing was constrained by proto-
cols for safe glacier travel, while survey scope was constrained
by the need to complete all surveys within the period of peak
accumulation. We selected centreline and transverse trans-
ects as the most commonly used survey designs in winter-
balance studies (e.g. Kaser and others, 2003; Machguth
and others, 2006) as well as an hourglass pattern with an
inscribed circle, which allows for sampling in multiple direc-
tions and easy travel (personal communication from C. Parr,
2016). To capture variability at the grid scale, we densely
sampled up to four gridcells on each glacier using a linear-
random sampling design (Shea and Jamieson, 2010), which
we term a ‘zigzag’. To capture point-scale variability, each
observer made 3-4 depth measurements within ~1m
(Fig. 1f) at each transect measurement location.

3.1.2. Snow depth: transects
While roped-up for glacier travel with fixed distances
between observers, the lead observer used a single-frequency

Table 1. Physical characteristics of the study glaciers

GPS unit (Garmin GPSMAP 64s) to navigate between prede-
fined transect measurement locations (Fig. 1e). The remaining
three observers used 3.2 m graduated aluminum avalanche
probes to make snow-depth measurements (Kinar and
Pomeroy, 2015). The locations of each set of depth measure-
ments, made by the second, third and fourth observers, are
estimated using the recorded location of the first observer,
the approximate distance between observers and the direc-
tion of travel. The 3—4 point-scale depth measurements are
averaged to obtain a single depth measurement at each tran-
sect measurement location. When considering variability at
the point scale as a source of uncertainty in snow depth mea-
surements, we find that the mean standard deviation of point-
scale snow depth measurements is <7% of the mean snow
depth for all study glaciers.

Snow-depth sampling was concentrated in the ablation
area to ensure that only snow from the current accumulation
season was measured. The boundary between snow and firn
in the accumulation area can be difficult to detect and often
misinterpreted, especially when using an avalanche probe

Location Elevation (m a.s.l) Slope (e) Area (km?)
UTM Zone 7 Mean Range ELA Mean
Glacier 4 595470 E 674 0730 N 2344 1958-2809 ~2500 12.8 3.8
Glacier 2 60 1160 E 6753785 N 2495 1899-3103 ~2500 13.0 7.0
Glacier 13 60 4602 E 676 3400 N 2428 1923-3067 ~2380 13.4 12.6
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(Griinewald and others, 2010; Sold and others, 2013). We
intended to use a firn corer to measure winter balance in
the accumulation area, but cold snow combined with posi-
tive air temperatures led to cores being unrecoverable.
Successful snow-depth measurements within the accumula-
tion area were made either in snow pits or using a Federal
Sampler (described below) to unambiguously identify the
snow/firn transition.

3.1.3. Snow depth: zigzags

We measured depth at random intervals of 0.3-3.0 m along
two ‘Z’-shaped patterns (Shea and Jamieson, 2010), result-
ing in 135-191 measurements per zigzag, within three
40 m x 40 m gridcells (Fig. 1g) per glacier. Random intervals
were computer-generated from a uniform distribution in
sufficient numbers that each survey was unique. Zigzag loca-
tions were randomly chosen within the upper, middle and
lower regions of the ablation area of each glacier. Extra
time in the field allowed us to measure a fourth zigzag on
Glacier 13 in the central ablation area at ~2200 m a.s.l.

3.1.4. Snow density

Snow density was measured using a Snowmetrics wedge
cutter in three snow pits (SP) on each glacier. Within the
snow pits, we measured a vertical density profile (in 10 cm
increments) with the 5cmx5cmx 10 cm wedge-shaped
cutter (250 cm®) and a Presola 1000 g spring scale (e.g.
Gray and Male, 1981; Fierz and others, 2009; Kinar and
Pomeroy, 2015). Wedge-cutter error is ~+6% (e.g. Proksch
and others, 2016; Carroll, 1977). Uncertainty in estimating
density from SP measurements also stems from incorrect
assignment of density to layers that cannot be sampled
(e.g. ice lenses and hard layers). We attempt to quantify
this uncertainty by varying estimated ice-layer thickness by
+1 cm (<100%) of the recorded thickness, ice layer density
between 700 and 900 kg m~ and the density of layers iden-
tified as being too hard to sample (but not ice) between 600
and 700 kg m~>. When considering all three sources of
uncertainty, the range of integrated density values is always
<15% of the reference density. Depth-averaged densities
for shallow pits (<50 cm) that contain ice lenses are particu-
larly sensitive to changes in prescribed density and ice-lens
thickness.

While snow pits provide the most accurate measure of
snow density, digging and sampling a snow pit is time and
labour intensive. Therefore, a Geo Scientific Ltd. metric
Federal Sampler (FS) (Clyde, 1932) with a 3.2-3.8 cm diam-
eter sampling tube, which directly measures depth-integrated
snow water equivalent, was used to augment the SP measure-
ments. A minimum of three FS measurements were taken at
each of 7-19 locations on each glacier and an additional

eight FS measurements were co-located with two SP profiles
for each glacier. Measurements for which the snow core
length inside the sampling tube was <90% of the snow
depth were discarded. Densities at each measurement loca-
tion (eight at each SP, three elsewhere) were then averaged,
with the standard deviation taken to represent the uncer-
tainty. The mean standard deviation of FS-derived density
was <4% of the mean density for all glaciers.

3.2. Density assignment

Measured snow density must be interpolated or extrapolated
to estimate point-scale b,, at each snow-depth sampling loca-
tion. We employ four commonly used methods to interpolate
and extrapolate density (Table 2): (1) calculate mean density
over an entire mountain range (e.g. Cullen and others, 2017),
(2) calculate mean density for each glacier (e.g. Elder and
others, 1991; McGrath and others, 2015), (3) linear regres-
sion of density on elevation for each glacier (e.g. Elder and
others, 1998; Molotch and others, 2005) and (4) calculate
mean density using inverse-distance weighting (e.g.
Molotch and others, 2005) for each glacier. Densities
derived from SP and FS measurements are treated separately,
for reasons explained below, resulting in eight possible
methods of assigning density.

3.3. Gridcell-averaged winter balance

We average one to six (mean of 2.1 measurements) point-
scale values of b,, within each DEM gridcell to obtain the
gridcell-averaged b,,. The locations of individual measure-
ments have uncertainty due to the error in the horizontal pos-
ition given by the GPS unit and the estimation of observer
location based on the recorded GPS positions of the naviga-
tor. This location uncertainty could result in the incorrect
assignment of a point-scale b,, measurement to a particular
gridcell. However, this source of error is not further investi-
gated because we assume that the uncertainty resulting
from incorrect locations of point-scale b,, values is captured
in the uncertainty derived from zigzag measurements, as
described below. Error due to having multiple observers is
also evaluated by conducting an analysis of variance
(ANOVA) of snow-depth measurements along a transect
(amounting to 23 hypothesis tests, one for each transect)
and testing for differences between observers. We find no sig-
nificant differences between snow-depth measurements
made by observers along any transect (p > 0.05), with the
exception of the first transect on Glacier 4 (51 measure-
ments), where snow-depth measurements collected by one
observer were, on average, greater than snow-depth mea-
surements taken by the other two observers (p <0.01).
Since this was the first transect and the only one to show

Table 2. Details of the May 2016 winter-balance survey, including number of snow-depth measurement locations along transects (n+), total
length of transects (dy), number of combined snow pit and Federal Sampler density measurement locations (np), number of zigzag surveys
(n,,), number (as percent of total number of gridcells and of the number of gridcells in the ablation area) of gridcells sampled (n;) and the
elevation range (as percent of total elevation range and of ablation-area elevation range)

Date ny dr (km) b n,, ng Elevation range (ma.s.l.)
Glacier 4 4-7 May 2016 649 13.1 7 3 295 (12%, 21%) 2015-2539 (62%, 97%)
Glacier 2 8-11 May 2016 762 13.6 7 3 353 (8%, 14%) 2151-2541 (32%, 47%)
Glacier 13 12-15 May 2016 941 18.1 19 4 468 (6%, 14%) 2054-2574 (45%, 62%)
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differences by observer, this difference can be considered an
anomaly. We conclude that observer bias is not an important
effect in this study and therefore apply no observer correc-
tions to the data.

3.4. Distributed winter balance

Gridcell-averaged values of b,, are interpolated and extrapo-
lated across each glacier using linear regression (LR) and
ordinary kriging (OK). The LR relates gridcell-averaged
b, to various topographic parameters. We use this method
because it is simple and has precedent for success (e.g.
McGrath and others, 2015). Instead of a standard LR,
however, we use cross-validation implemented in such a
way as to prevent data overfitting, and employ model aver-
aging to allow for all combinations of the chosen topographic
parameters. To compliment the LR approach, we also use a
Gaussian Process regression with a constant mean and speci-
fied covariance, hereafter referred to as OK, to interpolate
and extrapolate gridcell-averaged b,,. This approach is an
interpolation method free of physical interpretation beyond
the premise of spatial correlation in the data (e.g. Hock and
Jensen, 1999; Rasmussen and Williams, 2006).

3.4.1. Linear regression

Commonly defined topographic parameters are selected as
regressors within the LR. As in McGrath and others (2015)
we include elevation, slope, aspect, curvature, ‘northness’
and a wind-redistribution parameter (Sx from Winstral and
others (2002)); we add distance-from-centreline as an add-
itional parameter. Topographic parameters are standardized
for use in the LR. The goal of the LR is to obtain a set of
fitted regression coefficients () that correspond to each topo-
graphic parameter (regressor) and to a model intercept. For
details on data and methods used to estimate the topographic
parameters see the Supplementary Material and Pulwicki
(2017). Our sampling design ensured that the ranges of topo-
graphic parameters associated with our measurement loca-
tions represent more than 70% of the total area of each
glacier (except elevation on Glacier 2, where our measure-
ments captured only 50%).

We use a combination of cross-validation and model aver-
aging to avoid overfitting the data, to account for uncertainty
in the selected predictors and to maximize the model’s pre-
dictive ability (Madigan and Raftery, 1994; Kohavi, 1995).
Since there are seven predictors, there are 27 possible
subsets of predictors, or equivalently, models.

For a given model, we randomly select 1000 subsets of the
data (where each subset includes ~2/3 of the data) and fit a
multiple LR using least squares (implemented in MATLAB),
thus obtaining 1000 sets of . Distributed b,, is then calcu-
lated by multiplying the topographic parameters by their cor-
responding regression coefficients for all DEM gridcells. We
use the remaining data (~1/3 of the values) to calculate a
RMSE between the estimated and observed b,, at the meas-
urement locations. From the 1000 sets of B values, we
select the set that results in the lowest RMSE. This set of j
has the greatest predictive ability for a particular linear com-
bination of topographic parameters. The procedure above is
repeated for each of the models, giving the best j set for each
of the 27 models.

With the f's in hand, we move on to prediction of distrib-
uted winter balance. To do so, we use Bayesian model
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averaging. We weight the models according to their relative
predictive success, as assessed by the value of the Bayesian
Information Criterion (BIC) (Burnham and Anderson, 2004).
BIC penalizes more complex models, which reduces the
risk of overfitting. The final value of each g is then the
weighted sum of § from all models. The final estimate of dis-
tributed b, is calculated by multiplying the topographic
parameters by the final set of 8 for all DEM gridcells.

3.4.2. Ordinary kriging

Kriging is a method of estimating dependent variables at
unsampled locations by using the spatial correlation of mea-
sured values to find a set of optimal weights (Davis and
Sampson, 1986; Li and Heap, 2008). Kriging assumes
spatial correlation between the dependent variables at the
sampling locations distributed across a surface and then
applies the correlation to interpolate between these loca-
tions. Many forms of kriging have been developed to accom-
modate different data types (e.g. Li and Heap, 2008, and
sources therein). OK is the simplest form of kriging in cases
where the mean of the estimated field is unknown. Unlike
LR, OK is neither useful for generating hypotheses to
explain the physical controls on snow distribution, nor can
it be used to estimate winter balance on unmeasured gla-
ciers. However, we chose to use OK because it does not
require external inputs and is, therefore, a means of obtaining
B, that is free of physical interpretation beyond the informa-
tion contained in the covariance matrix.

The OK model can be written y(s) = u + z(s) + e, where u
is the mean and e is independent white noise with standard
deviation o, (also known as the nugget) that captures the
sampling error as well as spatial variation at distances
less than those observed in the sampling design (Li and
Heap, 2008); z(s) follows a mean-zero normal distribution
with standard deviation o,. The covariance of observations
at spatial locations s and s’ is written as Cov(z(s), z(s')) =
o2r(s,s') and r is a specified correlation model. We use
the DiceKriging package in R (Roustant and others, 2012)
to implement OK. For our application, we employ an iso-
tropic Matérn correlation model with shape parameter v =
5/2 (see Rasmussen and Williams, 2006). This specification
implies a fairly smooth response surface (twice differentiable)
and is used in many applications (e.g. Stein, 1999). The
model parameters, u, o., o, and range parameter for the
Matérn correlation function, are estimated using maximum
likelihood. There is no closed form solution for these param-
eter estimates so they are found numerically. To ensure sta-
bility of the maximum likelihood solution, we use 500
random restarts of the DiceKringing package (each with a dif-
ferent initial value of the parameters).

3.5. Uncertainty analysis using a Monte Carlo
approach

Three sources of uncertainty are considered separately: the
uncertainty due to (1) grid-scale variability of b,, (oGs), (2)
the assignment of snow density (o,) and (3) interpolating
and extrapolating gridcell-averaged values of b,, (gin7). ToO
quantify the combined uncertainty due to grid-scale variabil-
ity, the method of density assignment and interpolation
uncertainty on estimates of B,,, we conduct a Monte Carlo
analysis that uses repeated random sampling of input
variables to calculate a distribution of output variables
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(Metropolis and Ulam, 1949). We repeat the random sam-
pling process 1000 times, resulting in a distribution of
values of B,, based on uncertainties associated with the
four steps we implement to derive B,, from distributed
snow-depth and density measurements. Individual sources
of uncertainty are propagated through the conversion of
snow depth and density measurements to B,,. Finally, the
combined effect of all three sources of uncertainty on B,, is
quantified. We use the standard deviation of the distribution
of B, as a useful metric of B,, uncertainty. Density assignment
uncertainty is calculated as the standard deviation of the eight
resulting values of B,,. To investigate the spatial patterns in by,
uncertainty, we calculate a combined uncertainty, which is
equal to the square root of the summed variance of distribu-
ted b,, that arises from ogs, 0, and ojnr. See Supplementary
Material (Figs. S5 and S6) for plots of standard deviation of
distributed b,, arising from individual sources of uncertainty.

3.5.1. Crid-scale uncertainty (o¢s)

We make use of the zigzag surveys to quantify the true vari-
ability of b, at the grid scale. Our limited data do not permit a
spatially-resolved assessment of grid-scale uncertainty, so we
characterize this uncertainty as uniform across each glacier
and represent it by a normal distribution. The distribution is
centred at zero and has a standard deviation equal to the
mean standard deviation of all zigzag measurements for
each glacier. For each iteration of the Monte Carlo, b,
values are randomly chosen from the distribution and
added to the values of gridcell-averaged b,,. These perturbed
gridcell-averaged values of b,, are then used in the interpol-
ation. We represent uncertainty in B,, due to grid-scale
uncertainty (ogs) as the standard deviation of the resulting
distribution of B,, estimates.

3.5.2. Density assignment uncertainty (c,)

We incorporate uncertainty due to the method of density
assignment by carrying forward all eight density interpolation
methods (Table 3) when estimating B,,. By choosing to retain
even the least plausible options, as well as the questionable
FS data (see below), this approach results in a generous
assessment of uncertainty. We represent the B,, uncertainty
due to density assignment uncertainty (o,,) as the standard
deviation of B,, estimates calculated using each density
assignment method.

3.5.3 Interpolation uncertainty (o;Nn7)

We represent the uncertainty due to interpolation/extrapola-
tion of gridcell-averaged b,, in different ways for LR and OK.
LR interpolation uncertainty is represented by a multivariate
normal distribution of possible regression coefficients (8). The
standard deviation of each distribution is calculated using the
covariance of S as outlined in Bagos and Adam (2015), which
ensures that the j values are internally consistent. The f dis-
tributions are randomly sampled and used to calculate grid-
cell-estimated b,,.

OK interpolation uncertainty is represented by the stand-
ard deviation for each gridcell-estimated value of b,, gener-
ated by the DiceKriging package. The standard deviation of
B, is then found by taking the square root of the average vari-
ance of each gridcell-estimated b,,. The final distribution of
B,, values is centred at the B,, estimated with OK. For simpli-
city, the standard deviation of B,, values that results from
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either LR or OK interpolation/extrapolation uncertainty is
referred to as ojnT.

4. RESULTS

4.1. Field measurements

4.1.1. Snow depth

Mean snow depth varied systematically across the study
region, with Glacier 4 having the highest mean snow depth
and Glacier 13 having the lowest (Fig. 2a). At each measure-
ment location, the median range of measured depths (3—4
points) as a percent of the mean local depth is 2, 11 and
12%, for Glaciers 4, 2 and 13, respectively. While Glacier
4 has the lowest point-scale variability, as assessed above,
it also has the highest proportion of outliers, indicating a
more variable snow depth across the glacier. The average
standard deviation of all zigzag depth measurements is
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Fig. 2. Measured snow depth and density. (a) Boxplot of measured
snow depth on Glaciers 4, 2 and 13 with the first quartiles (box),
median (line within box), minimum and maximum values
excluding outliers (bar) and outliers (circles), which are defined as
being outside of the range of 1.5 times the quartiles (~+2.70). (b)
Comparison of depth-averaged densities estimated using Federal
Sampler (FS) measurements and a wedge cutter in a snow pit (SP)
for Glacier 4 (G4), Glacier 2 (G2) and Glacier 13 (G13). Labels
indicate SP locations in the accumulation area (ASP), upper
ablation area (USP) and lower ablation area (LSP). Error bars for
SP-derived densities are calculated by varying the thickness and
density of layers that are too hard to sample, and error bars for FS-
derived densities are the standard deviation of measurements
taken at one location. One-to-one line is dashed.


https://doi.org/10.1017/jog.2018.68

Pulwicki and others: Estimating winter balance and its uncertainty from direct measurements of snow depth and density on alpine glaciers 787

0.6 04 0.3
4@] L Lo [ [N hl. M [ [
L M| o3 ' M M1 il
Zzo4ft M uf 2 ul Zo2t U e
3 3 3
] 802 IS
£ 02 L& g 0.1
a ™ % 0.1 -
0 ] 0 0 L
01 0 0.1 0.1 0 0.1 01 0 0.1
b (mw.e.) b (mw.e.) b (mw.e.)
w w w

Fig. 3. Distributions of estimated winter-balance values for each zigzag survey in lower (L), middle (M) and upper (U) ablation areas (insets).
Local mean has been subtracted. (a) Glacier 4. (b) Glacier 2. (c) Glacier 13.

0.07, 0.17 and 0.14 m, for Glaciers 4, 2 and 13, respectively.
When converted to values of b,, using the local FS-derived
density measurement, the average standard deviation is
0.027 mw.e., 0.035mw.e. and 0.040 mw.e. Winter-
balance data for each zigzag are not normally distributed
(Fig. 3).

4.1.2. Snow density

Contrary to expectation, co-located FS and SP measurements
are found to be uncorrelated (R? = 0.25, Fig. 2b). The FS
appears to oversample in deep snow and undersample in
shallow snow. Oversampling by small-diameter sampling
tubes has been observed in previous studies, with a percent
error between 6.8 and 11.8% (e.g. Work and others, 1965;
Fames and others, 1982; Conger and McClung, 2009).
Studies that use FS often apply a 10% correction to all mea-
surements for this reason (e.g. Molotch and others, 2005).
Oversampling has been attributed to slots ‘shaving’ snow
into the tube as it is rotated (e.g. Dixon and Boon, 2012)
and to snow falling into the slots, particularly for snow
samples with densities > 400 kg m™ and snow depths
> 1 m (e.g. Beaumont and Work, 1963). Undersampling is
likely to occur due to loss of snow from the bottom of the
sampler (Turcan and Loijens, 1975). The loss by this mechan-
ism may have occurred in our study, given the isothermal
and melt-affected snow conditions observed over the lower
reaches of Glaciers 2 and 13. Relatively poor FS spring-
scale sensitivity also calls into question the reliability of mea-
surements for snow depths < 20 cm.

Our FS-derived density values are positively correlated
with snow depth (R* =0.59). This relationship could be a
result of physical processes, such as compaction in deep
snow and preferential formation of depth hoar in shallow
snow, but is more likely a result of measurement artefacts
for a number of reasons. First, the total range of densities
measured by the FS seems improbably large (227-431 kg
m ). At the time of sampling, the snowpack had little new
snow, few ice lenses and was not saturated; the range of mea-
sured densities is, therefore, difficult to explain with physical
conditions. Moreover, the range of FS-derived values is much
larger than that of SP-derived values when co-located mea-
surements are compared. Second, compaction effects of
the magnitude required to explain the density differences
between SP and FS measurements would not be expected
at the measured snow depths (up to 340 cm). Third, no
linear relationship exists between depth and SP-derived
density (R* = 0.05). These findings suggest that the FS mea-
surements have a bias for which we have not identified a suit-
able correction. Despite this bias, we use FS-derived
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densities to generate a range of possible b,, estimates and
to provide a generous estimate of uncertainty arising from
density assignment.

4.2. Density assignment

Given the lack of correlation between co-located SP- and FS-
derived densities (Fig. 2), we use the densities derived from
these two methods separately (Table 3). SP-derived regional
(S1) and glacier-mean (S2) densities are within one standard
deviation of the corresponding FS-derived densities (F1
and F2) although SP-derived density values are larger
(see Supplementary Material, Table S3). For both SP- and
FS-derived densities, the mean density for any given glacier
(S2 or F2) is within one standard deviation of the
mean across all glaciers (S1 or F1). Correlations between ele-
vation and SP- and FS-derived densities are generally high
(R*>0.5 but vary between glaciers (Supplementary
Material, Table S3). For any given glacier, the standard devi-
ation of the 3—4 SP- or FS-derived densities is <13% of the
mean of those values (S2 or F2) (Supplementary Material,
Table S3). We adopt S2 (glacier-wide mean of SP-derived
densities) as the reference method of density assignment.
Though the method described by S2 does not account
for known basin-scale spatial variability in snow density
(e.g. Wetlaufer and others, 2016), it is commonly used in
winter-balance studies (e.g. Elder and others, 1991;
McGrath and others, 2015; Cullen and others, 2017).

Table 3. Eight methods used to estimate snow density at unmeas-
ured locations. Source of snow density values include snow pit
(SP) and Federal Sampler (FS) measurements. Total number of result-
ing density values given in parentheses, with ny the total number of
snow-depth measurement locations along transects (Table 1)

Method Snow density Density assignment method
code measurement
Sp FS
S1 [ | Mean of measurements across all gla-
F1 | | ciers (1)
S2 [ ] Mean of measurements for each
F2 [ | glacier (3)
S3 [ ] Regression of density on elevation for
F3 [ ] each glacier (n7)
S4 [ | Inverse distance weighted mean for
F4 ] each glacier (n7)
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4.3. Gridcell-averaged winter balance

The distributions of gridcell-averaged b,, values for the indi-
vidual glaciers are similar to those in Fig. 2a but with fewer
outliers (see Supplementary Material, Fig. S4). The standard
deviations of b, values determined from the zigzag surveys
are almost twice as large as the mean standard deviation of
point-scale b, values within a gridcell measured along trans-
ects (see Supplementary Material, Fig. S5). However, a small
number of gridcells sampled in transect surveys have stand-
ard deviations in b,, that exceed 0.25 mw.e. (~10 times
greater than those for zigzag surveys).

4.4. Distributed winter balance

4.4.1. Linear regression

The highest values of estimated b,, are found in the upper
portions of the accumulation areas of Glaciers 2 and 13
(Fig. 4). These areas also correspond to large values of eleva-
tion, slope and wind redistribution. Extrapolation of the posi-
tive relationship between b,, and elevation, as well as slope
and Sx for Glacier 2, results in high b,, estimates and large
combined uncertainty in these estimates (Fig. 5). On Glacier

Glacier 4 Glacier 2

Glacier 4 Glacier

4, the distributed b,, is nearly uniform (Fig. 4) due to the
small regression coefficients for all topographic parameters.
The variance explained by the LR-estimated b,, differs consid-
erably between glaciers (Fig. 6), with the best correlation
between modelled and observed b,, occurring for Glacier
2. LR is an especially poor predictor of b,, on Glacier 4,
where B,, can be estimated equally well using the mean of
the data. RMSE is also the highest for Glacier 4 (Table 4).

4.4.2. Ordinary kriging

For all three glaciers, large areas that correspond to loca-
tions far from measurements have b,, estimates equal
to the kriging mean. Distributed b,, estimated with OK
on Glacier 4 is mostly uniform except for local deviations
close to measurement locations (Fig. 4) and combined
uncertainty is high across the glacier. Distributed b,
varies more smoothly on Glaciers 2 and 13 (Fig. 4).
Glacier 2 has a distinct region of low estimated b,,
(~0.1 mw.e.) in the lower part of the ablation area,
which corresponds to a wind-scoured region of the
glacier. Glacier 13 has the lowest estimated mean b,,
and only small deviations from this mean at the

(mw.e.)

bw

(mw.e.)

bw

Glacier 13

Fig. 4. Spatial distribution of winter balance (b,,) estimated using linear regression (LR) (top row) and ordinary kriging (OK) (bottom row) with
densities assigned as per S2 (Table 3). The LR method involves multiplying regression coefficients, found using cross validation and model
averaging, by topographic parameters for each gridcell. OK uses the correlation of measured values to find a set of optimal weights for
estimating values at unmeasured locations. Locations of snow-depth measurements made in May 2016 are shown as black dots. Ice-flow

directions are indicated by arrows.
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measurement locations (Fig. 4). Combined uncertainty  (Fig. 5). The variance explained by OK-estimated b,, is
varies considerably across the three study glaciers with  high for Glaciers 2 and 13 relative to that for Glacier 4
the greatest uncertainty far from measurement locations  (Fig. 6).
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Fig. 6. Winter balance (b,,) estimated by linear regression (LR, top row) or ordinary kriging (OK, bottom row) versus the gridcell-averaged b,,
data for Glacier 4 (left), Glacier 2 (middle) and Glacier 13 (right). Each circle represents a single gridcell. Explained variance (R?) is provided.
Best-fit (solid) and one-to-one (dashed) lines are shown.

https://doi.org/10.1017/jog.2018.68 Published online by Cambridge University Press


https://doi.org/10.1017/jog.2018.68

790 Pulwicki and others: Estimating winter balance and its uncertainty from direct measurements of snow depth and density on alpine glaciers

Table 4. Glacier-wide winter balance (B,,, m w.e.) estimated using
linear regression and ordinary kriging for the three study glaciers
(S2 density method). RMSE (m w.e.) is computed between gridcell-
averaged values of b,, (the data) that were randomly selected and
excluded from interpolation (~ 1/3 of all data) and those estimated
by interpolation. RMSE as a percent of B,, is shown in parentheses

Linear regression Ordinary kriging

B RMSE Bw RMSE
G4 0.60 0.15 (25%) 0.62 0.12 (19%)
G2 0.52 0.10 (19%) 0.34 0.07 (21%)
G13 0.39 0.08 (21%) 0.28 0.06 (21%)

4.5. Uncertainty analysis using a Monte Carlo
approach

Estimates of B,, are affected by uncertainty introduced by the
representativeness of gridcell-averaged values of b,, (ocs),
choosing a method of density assignment (a,,), and interpol-
ating/extrapolating b,, values across the domain (oiN7).
Using a Monte Carlo analysis, we find that interpolation
uncertainty contributes more to B,, uncertainty than grid-
scale uncertainty or the method of density assignment (see
Supplementary Material). In other words, the distribution of
B,y that arises from grid-scale uncertainty and the differences
in distributions of B,, due to different methods of density
assignment are generally smaller than the distribution that
arises from interpolation uncertainty (Fig. 7 and Table 5).
B,, distributions obtained using LR are strongly affected by
extrapolation of positive linear relationships into the upper
portion of the accumulation area. OK-estimated values of
by in the accumulation area are generally uniform (Fig. 4)
but are sensitive to small variations in gridcell-averaged b,,
at locations along the edge of the survey. As a result, the
uncertainty in OK-estimated values of B, is large, and unreal-
istic values (e.g. B,y = 0 m w.e.) are possible (Fig. 7).

The values of B, for our study glaciers (using LR and the S2
density assignment), with an uncertainty equal to one standard
deviation of the distribution found with Monte Carlo analysis,
are: 0.60 + 0.03 m w.e. for Glacier 4, 0.52 + 0.05 m w.e. for
Glacier 2 and 0.39 +0.03 mw.e. for Glacier 13. The B,,
uncertainty from the three investigated sources of uncertainty
ranges from 0.03 to 0.05 m w.e. (5-9%) for LR estimates and
from 0.10 to 0.15 m w.e. (24-39%) for OK estimates.

5. DISCUSSION

5.1. Distributed winter balance

5.1.1. Linear regression

Of the topographic parameters in the LR, elevation (z) is the
most significant predictor of gridcell-averaged b,, for
Glaciers 2 and 13, while wind redistribution (Sx) is the
most significant predictor for Glacier 4 (Fig. 8). As expected,
gridcell-averaged b,, is positively correlated with elevation
where the correlation is significant. It is possible that the ele-
vation correlation was accentuated due to melt onset for
Glacier 13 in particular. Glacier 2 had little snow at the ter-
minus likely due to steep slopes and wind-scouring but the
snow did not appear to have been affected by melt. Our
results are consistent with many studies that have found ele-
vation to be the most significant predictor of seasonal snow
accumulation data (e.g. Machguth and others, 2006;
Griinewald and others, 2014; McGrath and others, 2015).
The b,—elevation gradient is 13 mmw.e.100m™~" on
Glacier 2 and 7 mm w.e. 100 m~" on Glacier 13. These gra-
dients are consistent with those reported for a few glaciers in
Svalbard (Winther and others, 1998) but are considerably
lower than many reported b,~elevation gradients, which
range from ~60 to 240 mm w.e. 100 m~' (e.g. Hagen and
Liestal, 1990; Tveit and Killingtveit, 1994; Winther and
others, 1998). Extrapolating linear relationships to unmeas-
ured locations typically results in considerable estimation
error, as seen by the large b,, values (Fig. 4) and large com-
bined uncertainty (Fig. 5) in the high-elevation regions of
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Fig. 7. Distributions of glacier-wide winter balance (B,,) for Glaciers 4 (G4), 2 (G2) and 13 (G13) that arise from various sources of uncertainty.
B,, distribution arising from grid-scale uncertainty (ogs) (left column). B,, distribution arising from interpolation uncertainty (o;x7) (middle
column). B,, distribution arising from a combination of ogs, oyt and density assignment uncertainty (g,,) (right column). Results are shown
for interpolation by linear regression (LR, top row) and ordinary kriging (OK, bottom row). Left two columns include eight distributions per
glacier (colour) and each corresponds to a density assignment method (S1-S4 and F1-F4).
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Table 5. Standard deviation (x 1072 m w.e.) of glacier-wide winter balance (B,,) distributions arising from uncertainties in grid-scale b, (oGs),
density assignment (o,), interpolation (ojn7) and all three sources combined (o) for linear regression (left columns) and ordinary kriging (right

columns)
Linear regression Ordinary kriging
0Gs Op OINT CALL 0Gs Op OINT OCALL
Glacier 4 0.86 1.90 2.13 2.90 0.18 2.16 14.35 14.64
Glacier 2 1.80 3.37 3.09 4.90 0.80 2.06 12.65 13.14
Glacier 13 1.12 1.68 2.80 3.20 0.57 1.30 9.74 10.48

Glaciers 2 and 13. The low correlation between b,, and ele-
vation on Glacier 4 is consistent with Grabiec and others
(2011) and Lépez-Moreno and others (2011), who conclude
that highly variable distributions of snow can be attributed to
complex interactions between topography and the atmos-
phere that cannot be easily quantified. The snow on
Glacier 4 also did not appear to have been affected by
melt and it is hypothesized that significant wind-redistribu-
tion of snow, which was not captured by the Sx parameter,
obscured ice topography and produced a relatively uniform
snow depth across the glacier.

Gridcell-averaged b,, is negatively correlated with Sx on
Glacier 4, counter-intuitively indicating less snow in what
would be interpreted as sheltered areas. Gridcell-averaged
b,, is positively correlated with Sx on Glaciers 2 and 13.
Our results corroborate those of McGrath and others (2015)
in a study of six glaciers in Alaska (DEM resolutions of 5 m)
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Fig. 8. Distribution of coefficients () determined by linear
regression of gridcell-averaged b,, on DEM-derived topographic
parameters for the eight different density assignment methods
(Table 3). Coefficients are calculated using standardized data, so
values can be compared across parameters. Regression
coefficients that are not significant are assigned a value of zero.
Topographic parameters include elevation (z), distance from
centreline (dc), slope (m), curvature (x) and wind redistribution
(5x). Aspect and ‘northness’ are not shown because coefficient
values are zero in every case. The box plot shows first quartiles
(box), median (line within box), mean (circle within box),
minimum and maximum values excluding outliers (bars) and
outliers (gray dots), which are defined as being outside of the
range of 1.5 times the quartiles (~+2.70).
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where elevation and Sx were the only significant parameters
for all glaciers; Sx regression coefficients were smaller than
elevation regression coefficients, and in some cases, negative.
While our results point to wind having an impact on snow dis-
tribution, the wind redistribution parameter (Sx) may not
adequately capture these effects at our study sites. For
example, Glacier 4 has a curvilinear plan-view profile and is
surrounded by steep valley walls, so specifying a single car-
dinal direction for wind may not be adequate. Further, the
scale of deposition may be smaller than the resolution of the
Sx parameter estimated from the DEM. Creation of a paramet-
rization for sublimation from blowing snow, which has been
shown to be an important mechanism of mass loss from
ridges (e.g. Musselman and others, 2015), may also increase
the explanatory power of LR for our study sites.

We find that transfer of LR coefficients between glaciers
results in large estimation errors. Regression coefficients
from Glacier 4 produce the highest RMSE (0.38 m w.e. on
Glacier 2 and 0.40 m w.e. on Glacier 13, see Table 4 for
comparison) and B,, values are the same for all glaciers
(0.64 m w.e.) due to the dominance of the regression inter-
cept. Even if the LR is performed with b,, values from all gla-
ciers combined, the resulting coefficients produce large
RMSE when applied to individual glaciers (0.31 mw.e.,
0.15mw.e. and 0.14 mw.e. for Glaciers 4, 2 and 13,
respectively). Our results are consistent with those of
Grinewald and others (2013), who found that local statistical
models cannot be transferred across basins and that regional-
scale models are not able to explain the majority of observed
variance in winter balance.

5.1.2. Ordinary kriging

Due to a paucity of data, OK produces almost uniform grid-
cell-estimated b,, in the accumulation area of each glacier,
inconsistent with observations described in the literature
(e.g. Machguth and others, 2006; Grabiec and others,
2011). Glacier 4 has the highest estimated mean with large
deviations from the mean at measurement locations. The
longer correlation lengths of the data for Glaciers 2 and 13
result in a more smoothly varying distributed b,,. As
expected, extrapolation using OK leads to large uncertainty
(Fig. 5), further emphasizing the need for spatially distributed
point-scale measurements.

5.1.3. Sensitivity of winter balance to interpolation/
extrapolation method

The physically-based LR estimates and the statistically-based
OK estimates result in different distributions of b,, for the
three study glaciers (Fig. 4). Since LR is based on physical
parameters, extrapolation to areas with extreme values of
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these parameters can lead to sharp changes in estimated b,,
and to large uncertainty (Fig. 7), due to the sensitivity of the
regression to each topographic parameter. The accumulation
areas of Glaciers 2 and 13 have large estimated b,, values
because observations are sparse and topographic para-
meters, such as elevation, attain their highest values.

In contrast, OK tends to result in extrapolated values of
b, that approach the data mean and are smoothly varying.
For Glaciers 2 and 13, OK estimates are more than
~0.22 mw.e. 39%) and ~0.11 mw.e. (30%) lower than
LR estimates, respectively (Table 4). The influence of eleva-
tion results in substantially higher LR-estimated values of
by, at high elevation, whereas OK-estimated values are
more uniform. Since OK is a data-fitting interpolation
method, the absolute RMSE of OK is ~0.03 m w.e. lower
for all glaciers (Table 4).

These two different methods produce similar estimates of
distributed b, (Fig. 4) and B,, (~0.6 mw.e., Table 4) on
Glacier 4, but both are relatively poor predictors of b,, in
measured gridcells (Fig. 6). Additionally, RMSEs as a per-
centage of glacier-wide B,, are comparable between LR
and OK (Table 4) with an average RMSE of 21%. This com-
parability is interesting, given that all of the data were used
to generate the OK model, while only ~ 2/3 were used in the
LR. Tests in which only ~ 2/3 of the data were used in the
OK model yielded similar results to those in which all
data were used.

5.2. Uncertainty analysis using a Monte Carlo
approach

Interpolation/extrapolation of b, data is the largest contribu-
tor to b,, uncertainty in our study. These results caution
strongly against including interpolated/extrapolated values
of by, in comparisons with remote sensing- or model-
derived estimates of b,,. If possible, such comparisons
should be restricted to point-scale data. Grid-scale uncer-
tainty (ogs) is the smallest assessed contributor to overall
B,y uncertainty. This result is consistent with the generally
smoothly-varying snow depths encountered in zigzag
surveys, and previously reported ice-roughness lengths on
the order of centimetres (e.g. Hock, 2005) compared with
snow depths on the order of decimetres to metres. Given
our assumption that zigzags are an adequate representation
of grid-scale variability, the low B,, uncertainty arising from
ocs implies that subgrid-scale sampling need not be a high
priority for reducing overall uncertainty. Our assumption
that the 3—4 zigzag surveys can be used to estimate glacier-
wide ogs may be flawed, particularly in areas with debris
cover, crevasses and steep slopes.

Our analysis did not include uncertainty arising from
density measurement errors associated with the FS, wedge
cutters and spring scales, from vertical and horizontal errors
in the DEM or from the error associated with estimating meas-
urement locations based on the GPS position of the lead obser-
ver. We assume that these sources of uncertainty are either
encompassed by the sources investigated or are negligible.

5.3. Regional winter-balance gradient

Although we find considerable inter- and intra-basin variabil-
ity in winter balance, our results are consistent with a
regional-scale winter-balance gradient for the continental
side of the St. Elias Mountains (Fig. 9). Winter-balance data
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are compiled from Taylor-Barge (1969), the three glaciers
presented in this paper and two snow pits we analyzed
near the head of the Kaskawulsh Glacier between 20 and
21 May 2016. The data show a linear decrease of 0.024 m
w.e. km™! (R* = 0.85) in winter balance with distance from
the regional topographic divide between the Kaskawulsh
and Hubbard Glaciers, as identified by Taylor-Barge
(1969). While the three study glaciers fit the regional trend,
the same relationship would not apply if just the Donjek
Range were considered. We hypothesize that interaction
between meso-scale weather patterns and large-scale moun-
tain topography is a major driver of regional-scale winter
balance. Further insight into regional-scale patterns of
winter balance in the St. Elias Mountains could be gained
by investigating moisture source trajectories and the contri-
bution of orographic precipitation.

5.4. Limitations and future work

The potential limitations of our work include the restriction of
our data to a single year, minimal sampling in the accumula-
tion area, the problem of uncorrelated SP- and FS-derived
densities, a sampling design that could not be optimized a
priori, the assumption of spatially uniform subgrid variability
and lack of more finely resolved DEMs.

Interannual variability in winter balance is not considered
in our study. A number of studies have found temporal stabil-
ity in spatial patterns of snow distribution and that statistical
models based on topographic parameters could be applied
reliably between years (e.g. Griinewald and others, 2013).
For example, Walmsley (2015) analyzed more than 40 years
of winter balance recorded on two Norwegian glaciers and
found that snow distribution is spatially heterogeneous yet

15 P-B,, (1969) |
' P-B,, (2016)
G-Byy, (2016)
G
= 1 ‘
E \
= G2
o G4
05 G13
0

0 10 20 30 40 50
Distance from topographic divide (km)
Fig. 9. Relationship between winter balance (B,,) and linear distance
from the regional topographic divide between the Kaskawulsh and
Hubbard Glaciers in the St. Elias Mountains. Point-scale values of
winter balance from snow-pit data reported by Taylor-Barge (1969)
(blue boxes, P-B,). LR-estimated B,, calculated using density
assignment S2 for Glaciers 4 (G4), 2 (G2) and 13 (G13) with errors
bars calculated as the standard deviation of Monte Carlo-derived B,,
distributions (this study) (open orange circles, G-B,,). Point-scale B,,
estimated from snow-pit data at two locations in the accumulation
area of the Kaskawulsh Glacier, collected in May 2016 (unpublished

data, SFU Glaciology Group) (filled orange dots, P-B,,). Black line
indicates best fit (R* = 0.85).
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exhibits robust temporal stability. Contrary to this, Crochet and
others (2007) found that snow distribution in Iceland differed
considerably between years and depended primarily on the
dominant wind direction over the course of a winter.
Therefore, multiple years of snow depth and density measure-
ments are needed to better understand interannual variability
of winter balance within the Donjek Range.

There is a conspicuous lack of data in the accumulation
areas of our study glaciers. With increased sampling in the
accumulation area, interpolation uncertainties would be
reduced where they are currently greatest and the LR would
be better constrained. Although certain regions of the glaciers
remain inaccessible for direct measurements, other methods of
obtaining winter-balance measurements, including ground-
penetrating radar and DEM differencing with photogrammetry
or lidar, could be used in conjunction with manual probing to
increase the spatial coverage of measurements.

The lack of correlation between SP- and FS-derived dens-
ities needs to be reconciled. Contrary to our results, most
studies that compare SP- and FS-derived densities report
minimal discrepancy (e.g. Dixon and Boon, 2012, and
sources within). Additional co-located density measurements
are needed to better compare the two methods of obtaining
density values. Comparison with other FS would also be
informative. Even with this limitation, density assignment
was, fortunately, not the largest source of uncertainty in esti-
mating glacier-wide winter balance.

Our sampling design was chosen to achieve broad spatial
coverage of the ablation area, but is likely too finely resolved
along transects for many mass-balance surveys to replicate.
An optimal sampling design would minimize uncertainty in
winter balance while reducing the number of required mea-
surements. Analysis of the estimated winter balance obtained
using subsets of the data is underway to make recommenda-
tions on optimal transect configuration and along-track
spacing of measurements. Lopez-Moreno and others (2010)
found that 200-400 observations are needed within a non-
glacierized alpine basin (6 km?) to obtain accurate and
robust snow distribution models. Similar guidelines would
be useful for glacierized environments.

In this study, we assume that the subgrid variability of
winter balance is uniform across a given glacier. Contrary
to this assumption, McGrath and others (2015) found
greater variability of winter-balance values close to the ter-
minus. Testing our assumption could be a simple matter of
prioritizing the labour-intensive zigzags surveys. To ensure
consistent quantification of subgrid variability, zigzag
survey measurements could also be tested against other mea-
surements methods, such as lidar.

DEM gridcell size is known to influence values of com-
puted topographic parameters (Zhang and Montgomery,
1994; Garbrecht and Martz, 1994; Guo-an and others,
2001; Lépez-Moreno and others, 2010). The relationship
between topographic parameters and winter balance is,
therefore, not independent of DEM gridcell size. For
example, Kienzle (2004) and Lépez-Moreno and others
(2010) found that a decrease in spatial resolution of the
DEM results in a decrease in the importance of curvature
and an increase in the importance of elevation in LR of
snow distribution on topographic parameters in non-glacier-
ized basins. The importance of curvature in our study is
affected by the DEM smoothing that we applied to obtain a
spatially continuous curvature field (see Supplementary
Material, Fig. S1). A comparison of regression coefficients
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from high-resolution DEMs obtained from various sources
and sampled with various gridcell sizes could be used to char-
acterize the dependence of topographic parameters on
DEMs, and therefore assess the robustness of inferred relation-
ships between winter balance and topographic parameters.

6. CONCLUSION

We estimate winter balance for three glaciers (termed Glacier
2, Glacier 4 and Glacier 13) in the St. Elias Mountains,
Yukon, Canada from multiscale snow depth and density
measurements. Linear regression and ordinary kriging are
used to obtain estimates of distributed winter balance (b,,).
We use Monte Carlo analysis to evaluate the contributions
of interpolation, assignment of snow density and grid-scale
variability of winter balance to uncertainty in estimates of
glacier-wide winter balance (B,).

Values of B,, estimated using LR and OK differ by up to
0.18 mw.e. We find that interpolation uncertainty is the
largest assessed source of uncertainty in B,, (5-9% for LR esti-
mates and 24-39% for OK estimates). Uncertainty resulting
from the method of density assignment is comparatively
low, despite the wide range of methods explored. Given
our representation of grid-scale variability, the resulting B,
uncertainty is small indicating that extensive subgrid-scale
sampling is not required to reduce overall uncertainty.

Our results suggest that processes governing distributed b,,
differ between glaciers, highlighting the importance of
regional-scale winter-balance studies. On Glacier 4, mea-
sured values of b, are characterized by high variability with
many outliers, leading to poor correlation with estimated
values. Measured values on Glacier 2 and 13 were less vari-
able, with elevation being a significant predictor of gridcell-
averaged b,,. A wind-redistribution parameter is found to be
a weak but significant predictor of b,,, though conflicting rela-
tionships between glaciers make it difficult to interpret. The
major limitations of our work include the restriction of our
data to a single year and minimal sampling in the accumula-
tion area. Although challenges persist when estimating
winter balance, our data are consistent with a regional-scale
winter-balance gradient for the continental side of the
St. Elias Mountains.
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