Ergod. Th. & Dynam. Sys. (1988), **8**, 421-424 Printed in Great Britain

Smooth chaotic maps with zero topological entropy

M. MISIUREWICZ AND J. SMÍTAL

Institute of Mathematics, Warsaw University, PKiN IX p., 00-901 Warsaw, Poland, Institute of Mathematics, Komensky University, 842 15 Bratislava, Czechoslovakia

(Received 13 March 1987)

Abstract. We find a class of C^{∞} maps of an interval with zero topological entropy and chaotic in the sense of Li and Yorke.

1. Introduction

Throughout this paper $f: I \rightarrow I$ will be a continuous map of a compact real interval I into itself.

The notion of chaos has been introduced by Li and Yorke [5]. The following equivalent definition is given in [9] (cf. also [3]):

f is chaotic if there is some $\varepsilon > 0$ and a non-empty perfect set $S \subset I$ such that for any $x, y \in S, x \neq y$, and any periodic point p of f,

$$\limsup_{n \to \infty} |f^n(x) - f^n(y)| \ge \varepsilon, \tag{1}$$

$$\liminf_{n\to\infty} \left| f^n(x) - f^n(y) \right| = 0, \tag{2}$$

$$\limsup_{n \to \infty} |f^n(x) - f^n(p)| \ge \varepsilon, \tag{3}$$

where f^n denotes the *n*th iterate of *f*. The set *S* is called an ε -scrambled set for *f*.

It turns out that the chaos in the sense of Li and Yorke is a weaker property than positive topological entropy (and is equivalent to the property that the map has a trajectory which is not approximable by cycles, cf. [3, 9]). An example showing this is given in [9].

The main aim of the present paper is to give simple examples of chaotic maps with zero entropy.

2. Preliminary constructions

We recall that the ω -limit set of $x \in I$, denoted by $\omega_f(x)$, is the set of limit points of the sequence $(f^n(x))_{n=0}^{\infty}$.

The following theorem will be useful in the sequel:

THEOREM 1. If there is a point $x \in I$ such that the set $\omega_f(x)$ is infinite and f is not injective on $\omega_f(x)$ then f is chaotic in the sense of Li and Yorke.

Proof. Choose $a, b \in \omega_f(x)$ such that $a \neq b, f(a) = f(b)$. Then any periodic neighbourhoods J_a, J_b of a, b, respectively, must have a point in common. By [3], this implies that f is chaotic.

Remark 1. The condition of Theorem 1 is not necessary, an example is given in [9].

Recall that a continuous map $f: I \rightarrow I$, where I = [a, b], is called *unimodal* (cf. [2]) if there exists $c \in (a, b)$ such that f is strictly increasing on [a, c] and strictly decreasing on [c, b]. We shall call f weakly unimodal if there exists $c \in (a, b)$ such that f is non-decreasing on [a, c] and non-increasing on [c, b].

Let f be weakly unimodal. We shall say that $x, y \in I$ are *equivalent* (denoted by $x \sim y$) if there exists $n \ge 1$ such that f^n is constant on [x, y]. Clearly, \sim is an equivalence relation. Let $\tilde{I} = I/\sim$ be the factor space obtained by identifying to a point each equivalence class. These classes are closed intervals (possibly degenerated to a point) and thus \tilde{I} is a closed interval (also possibly degenerated). The natural projection $\pi: I \rightarrow \tilde{I}$ is continuous and non-decreasing. Since f is continuous, $x \sim y$ implies $f(x) \sim f(y)$. Therefore there exists a unique map $\tilde{f}: \tilde{I} \rightarrow \tilde{I}$ such that

the diagram
$$\begin{array}{c} I \xrightarrow{f} I \\ & & \downarrow \pi \\ & & \downarrow \pi \end{array} \quad \text{commutes.} \qquad (4)$$

$$\begin{array}{c} I \xrightarrow{f} & & I \\ & & & \downarrow \pi \end{array}$$

This \tilde{f} is continuous and either monotone or unimodal.

By the period of a periodic point (orbit) we shall understand its smallest period.

LEMMA 1. (a) If $x \in I$ is a periodic point of f of period k then $\pi(x)$ is a periodic point of \tilde{f} of period k.

(b) If $y \in \tilde{I}$ is a periodic point of \tilde{f} of period k then there exists a unique periodic point $x \in I$ of f for which $\pi(x) = y$. The period of x is k.

Proof. (b) Let $\pi^{-1}(y) = [a, b]$. Then (4) and the equality $\tilde{f}^{k}(y) = y$ imply that $f^{k}([a, b]) \subset [a, b]$. Since f is continuous, there is some $x \in [a, b]$ with $f^{k}(x) = x$. Clearly $\pi(x) = y$. The point x cannot have a period i < k because then by (4), y would have period i.

Let $z \in [a, b]$. Since $z \sim x$, there is some r such that $f'^k(z) = f'^k(x) = x$. This shows that x is the unique periodic point of f in [a, b].

(a) From (4) it follows that $\tilde{f}^k(\pi(x)) = \pi(x)$. The period of $\pi(x)$ cannot be i < k because then, by (b), the period of x would be also i.

Let \mathcal{F} be the class of all weakly unimodal maps f, for which

the set $J_f = \{x \in I; f(x) \ge f(y) \text{ for all } y \in I\}$ consists

(5)

(7)

of more than one point,

for each $n \ge 0$, f has a periodic orbit of period 2^n , (6)

f has no periodic orbits of other periods.

LEMMA 2. If $f \in \mathcal{F}$ then \tilde{f} is unimodal and satisfies (6) and (7).

Proof. By Lemma 1, the sets of periods of periodic orbits of f and \tilde{f} are equal. Therefore, if $f \in \mathcal{F}$ then \tilde{f} satisfies (6) and (7). Then, since \tilde{f} has periodic points of period larger than 2, it cannot be monotone. Consequently, it is unimodal.

3. Main results

First we prove the following

THEOREM 2. Any mapping $f \in \mathcal{F}$ has topological entropy zero and is chaotic in the sense of Li and Yorke.

Proof. Let $f \in \mathcal{F}$. By (7) and [8], f has topological entropy zero.

By Lemma 2, \tilde{f} is unimodal and satisfies (6) and (7). Therefore it has the same kneading invariant as the Feigenbaum map Φ (see e.g. [4 Proposition 4.6] for the uniqueness of this kneading invariant, and [2] for the description of the Feigenbaum map). Hence the relative positions of the turning point, its images and the periodic points are the same for Φ and \tilde{f} . Since π is non-decreasing, by Lemma 1 it is the same also for f. However, for Φ this relative position is well-known. Let c be the critical point of Φ and let a_n be the periodic point of Φ of period 2^n with the largest image under Φ . Then from the known properties of Φ we immediately get

$$\Phi^{2^{1}}(c) < a_{1} < \Phi^{2^{3}}(c) < a_{3} < \cdots < c < \cdots < a_{4} < \Phi^{2^{4}}(c)$$
$$< a_{2} < \Phi^{2^{2}}(c) < a_{0} < \Phi^{2^{0}}(c).$$

Therefore if b_n is the periodic point of f of period 2^n with the largest image under f and $d \in J_f$ (see (5)) then

$$f^{2^{\prime}}(d) < b_{1} < f^{2^{\prime}}(d) < b_{3} < \dots < d < \dots < b_{4} < f^{2^{\prime}}(d)$$

$$< b_{2} < f^{2^{\prime}}(d) < b_{0} < f^{2^{\prime}}(d).$$
(8)

Let $d_1 = \lim_{n \to \infty} b_{2n+1}$, $d_2 = \lim_{n \to \infty} b_{2n}$. Since

$$\Phi(a_0) < \Phi(a_1) < \Phi(a_2) < \Phi(a_3) < \cdots < \Phi(c),$$

we have also

$$f(b_0) < f(b_1) < f(b_2) < f(b_3) < \cdots < f(d)$$

and therefore

$$\lim_{n \to \infty} f(b_i) = f(d_1) = f(d_2) \le f(d).$$
(9)

Since

$$\lim_{n\to\infty}\Phi(a_n)=\lim_{n\to\infty}\Phi^{2^{n+1}}(c)=\Phi(c)$$

and c is not periodic for Φ , the \tilde{f} -itineraries of all points

$$y \in [\lim_{n \to \infty} \tilde{f}(\pi(b_n)), \tilde{f}(\pi(d))]$$

are the same (in fact, from the result of [6] applied to a slightly modified map f it follows that the above interval is degenerated to a point; however, we do not need to use it). By (9), this means that we can replace in (8) d by d_i , i = 1, 2. Consequently

$$d_i \in \omega_f(f(d_1)) \qquad \text{for } i = 1, 2. \tag{10}$$

By the definition of d_1 and by (8), d_1 is not periodic. Hence $\omega_f(f(d_1))$, which by (10) contains the whole trajectory of d_1 , is infinite. The point d in (8) is an arbitrary element of J_f and hence $J_f \subset [d_1, d_2]$. Therefore by (5), $d_1 < d_2$. By (9) $f(d_1) = f(d_2)$, and hence by Theorem 1, f is chaotic.

THEOREM 3. \mathcal{F} contains a C^{∞} map.

Proof. There exists a C^{∞} map g of [0, 1] onto [0, 1] which is weakly unimodal, satisfies (5) and g(0) = g(1) = 0. Set $g_{\lambda}(x) = \lambda g(x)$ for all $\lambda, x \in [0, 1]$. The map g_{λ} is of class C^{∞} for each λ . By [7], the set $A = \{\lambda; g_{\lambda} \text{ satisfies (6)}\}$ is closed. Clearly, g_{1} satisfies (6) but g_{0} does not. Therefore if $\mu = \inf A$ then $\mu > 0$ and g_{μ} satisfies (6).

Suppose that g_{μ} does not satisfy (7). Then by [1], if λ is sufficiently close to μ then g_{λ} satisfies (6), a contradiction. Clearly, g_{μ} satisfies also (5).

Remark 3. Let ε be the length of J_g . Then g_{μ} has a non-empty ε -scrambled set S (cf. [9]). Clearly ε can be made arbitrarily close to 1, but less than 1. This result cannot be improved, since if $f:[0,1] \rightarrow [0,1]$ is a continuous map with zero topological entropy satisfying (1) and (2) for some $x, y \in [0,1]$ then $\varepsilon < 1$. To see it note that in this case at least one of the sets $\omega_f(x)$, $\omega_f(y)$, say $\omega_f(x)$, must be infinite. Let I_0, I_1 be disjoint closed periodic intervals covering $\omega_f(x)$ and such that $I_0 \cap \omega_f(x) \neq \emptyset \neq I_1 \cap \omega_f(x)$ (cf. e.g. [9]). By (2) there exists some $z \in \omega_f(x) \cap \omega_f(y)$ and this z cannot be periodic (cf. [9]). Consequently, $\omega_f(y) \subset I_0 \cup I_1$ and since dist $\{I_0, I_1\} > 0$, (2) implies that for some $m, f^m(x), f^m(y) \in I_0$. Hence for every $n \ge m, f^n(x), f^n(y)$ belong to the same interval $I_{i(n)}$, where $i(n) \in \{0, 1\}$. But then

$$\limsup_{n\to\infty} |f^n(x) - f^n(y)| \le \max \{\operatorname{diam} I_0, \operatorname{diam} I_1\} < 1.$$

Remark 4. Let h be the tent map (h(x) = 1 - |2x - 1|) and let $h_{\lambda}(x) = \min(\lambda, h(x))$ for $\lambda, x \in [0, 1]$. For each $n \ge 0$ let $\lambda_n \in [0, 1]$ be the minimal number with the property that $[0, \lambda_n]$ contains a periodic orbit of h of period 2^n . Clearly $\lambda_0 < \lambda_1 < \cdots$. Put $\nu = \lim_{n \to \infty} \lambda_n$ (=0.8249080...). Then $h_{\nu} \in \mathcal{F}$. In such a way we obtain another simple example of chaotic map with zero topological entropy.

REFERENCES

- L. Block. Stability of periodic orbits in the theorem of Šarkovskii. Proc. Amer. Math. Soc. 81 (1981), 555-562.
- [2] P. Collet & J.-P. Eckmann. Iterated Maps on the Interval as Dynamical Systems. Birkhauser: Boston, 1980.
- [3] K. Janková & J. Smítal. A characterization of chaos. Bull. Austral. Math. Soc. 34 (1986), 283-292.
- [4] L. Jonker. Periodic orbits and kneading invariants. Proc. London Math. Soc. 39 (3) (1979), 428-450.
- [5] T. Y. Li & J. A. Yorke. Period three implies chaos. Amer. Math. Monthly 82 (1975), 985-992.
- [6] W. de Melo & S. van Strien. A structure theorem in one dimensional dynamics. Informes de Matématica Série A-063/86, Rio de Janeiro (preprint 1986).
- [7] M. Misiurewicz. Structure of mappings of an interval with zero entropy. Publ. Math. IHES 53 (1981), 5-16.
- [8] M. Misiurewicz & W. Szlenk. Entropy of piecewise monotone maps. Studia Math. 67 (1980), 45-63.
- [9] J. Smítal. Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), 269-282.