Smooth chaotic maps with zero topological entropy

M. MISIUREWICZ and J. SMÍTAL
Institute of Mathematics, Warsaw University, PKiN IX p., 00-901 Warsaw, Poland, Institute of Mathematics, Komensky University, 84215 Bratislava, Czechoslovakia

(Received 13 March 1987)
Abstract. We find a class of C^{∞} maps of an interval with zero topological entropy and chaotic in the sense of Li and Yorke.

1. Introduction

Throughout this paper $f: I \rightarrow I$ will be a continuous map of a compact real interval I into itself.

The notion of chaos has been introduced by Li and Yorke [5]. The following equivalent definition is given in [9] (cf. also [3]):
f is chaotic if there is some $\varepsilon>0$ and a non-empty perfect set $S \subset I$ such that for any $x, y \in S, x \neq y$, and any periodic point p of f,

$$
\begin{align*}
& \underset{n \rightarrow \infty}{\limsup }\left|f^{n}(x)-f^{n}(y)\right| \geq \varepsilon \tag{1}\\
& \underset{n \rightarrow \infty}{\liminf }\left|f^{n}(x)-f^{n}(y)\right|=0, \tag{2}\\
& \underset{n \rightarrow \infty}{\limsup }\left|f^{n}(x)-f^{n}(p)\right| \geq \varepsilon \tag{3}
\end{align*}
$$

where f^{n} denotes the nth iterate of f. The set S is called an ε-scrambled set for f.
It turns out that the chaos in the sense of Li and Yorke is a weaker property than positive topological entropy (and is equivalent to the property that the map has a trajectory which is not approximable by cycles, cf. [3,9]). An example showing this is given in [9].

The main aim of the present paper is to give simple examples of chaotic maps with zero entropy.

2. Preliminary constructions

We recall that the ω-limit set of $x \in I$, denoted by $\omega_{f}(x)$, is the set of limit points of the sequence $\left(f^{n}(x)\right)_{n=0}^{\infty}$.

The following theorem will be useful in the sequel:
Theorem 1. If there is a point $x \in I$ such that the set $\omega_{f}(x)$ is infinite and f is not injective on $\omega_{f}(x)$ then f is chaotic in the sense of Li and Yorke.
Proof. Choose $a, b \in \omega_{f}(x)$ such that $a \neq b, f(a)=f(b)$. Then any periodic neighbourhoods J_{a}, J_{b} of a, b, respectively, must have a point in common. By [3], this implies that f is chaotic.

Remark 1. The condition of Theorem 1 is not necessary, an example is given in [9].
Recall that a continuous map $f: I \rightarrow I$, where $I=[a, b]$, is called unimodal (cf. [2]) if there exists $c \in(a, b)$ such that f is strictly increasing on [a, c] and strictly decreasing on $[c, b]$. We shall call f weakly unimodal if there exists $c \in(a, b)$ such that f is non-decreasing on [a, c] and non-increasing on $[c, b]$.

Let f be weakly unimodal. We shall say that $x, y \in I$ are equivalent (denoted by $x \sim y$) if there exists $n \geq 1$ such that f^{n} is constant on $[x, y]$. Clearly, \sim is an equivalence relation. Let $\tilde{I}=I / \sim$ be the factor space obtained by identifying to a point each equivalence class. These classes are closed intervals (possibly degenerated to a point) and thus \tilde{I} is a closed interval (also possibly degenerated). The natural projection $\pi: I \rightarrow \tilde{I}$ is continuous and non-decreasing. Since f is continuous, $x \sim y$ implies $f(x) \sim f(y)$. Therefore there exists a unique map $\tilde{f}: \tilde{I} \rightarrow \tilde{I}$ such that

This \tilde{f} is continuous and either monotone or unimodal.
By the period of a periodic point (orbit) we shall understand its smallest period.
Lemma 1. (a) If $x \in I$ is a periodic point of f of period k then $\pi(x)$ is a periodic point of \tilde{f} of period k.
(b) If $y \in \tilde{I}$ is a periodic point of \tilde{f} of period k then there exists a unique periodic point $x \in I$ of f for which $\pi(x)=y$. The period of x is k.
Proof. (b) Let $\pi^{-1}(y)=[a, b]$. Then (4) and the equality $\tilde{f}^{k}(y)=y$ imply that $f^{k}([a, b]) \subset[a, b]$. Since f is continuous, there is some $x \in[a, b]$ with $f^{k}(x)=x$. Clearly $\pi(x)=y$. The point x cannot have a period $i<k$ because then by (4), y would have period i.

Let $z \in[a, b]$. Since $z \sim x$, there is some r such that $f^{r k}(z)=f^{r k}(x)=x$. This shows that x is the unique periodic point of f in $[\mathrm{a}, \mathrm{b}]$.
(a) From (4) it follows that $\tilde{f}^{k}(\pi(x))=\pi(x)$. The period of $\pi(x)$ cannot be $i<k$ because then, by (b), the period of x would be also i.

Let \mathscr{F} be the class of all weakly unimodal maps f, for which
the set $J_{f}=\{x \in I ; f(x) \geq f(y)$ for all $y \in I\}$ consists
of more than one point,
for each $n \geq 0, \quad f$ has a periodic orbit of period 2^{n},
f has no periodic orbits of other periods.
Lemma 2. If $f \in \mathscr{F}$ then \tilde{f} is unimodal and satisfies (6) and (7).
Proof. By Lemma 1, the sets of periods of periodic orbits of f and \tilde{f} are equal. Therefore, if $f \in \mathscr{F}$ then \tilde{f} satisfies (6) and (7). Then, since \tilde{f} has periodic points of period larger than 2 , it cannot be monotone. Consequently, it is unimodal.

3. Main results

First we prove the following
Theorem 2. Any mapping $f \in \mathscr{F}$ has topological entropy zero and is chaotic in the sense of Li and Yorke.
Proof. Let $f \in \mathscr{F}$. By (7) and [8], f has topological entropy zero.
By Lemma 2, \tilde{f} is unimodal and satisfies (6) and (7). Therefore it has the same kneading invariant as the Feigenbaum map Φ (see e.g. [4 Proposition 4.6] for the uniqueness of this kneading invariant, and [2] for the description of the Feigenbaum map). Hence the relative positions of the turning point, its images and the periodic points are the same for Φ and \tilde{f}. Since π is non-decreasing, by Lemma 1 it is the same also for f. However, for Φ this relative position is well-known. Let c be the critical point of Φ and let a_{n} be the periodic point of Φ of period 2^{n} with the largest image under Φ. Then from the known properties of Φ we immediately get

$$
\begin{aligned}
\Phi^{2^{1}}(c) & <a_{1}<\Phi^{2^{3}}(c)<a_{3}<\cdots<c<\cdots<a_{4}<\Phi^{2^{4}}(c) \\
& <a_{2}<\Phi^{2^{2}}(c)<a_{0}<\Phi^{2^{0}}(c) .
\end{aligned}
$$

Therefore if b_{n} is the periodic point of f of period 2^{n} with the largest image under f and $d \in J_{f}$ (see (5)) then

$$
\begin{align*}
f^{2^{1}}(d) & <b_{1}<f^{2^{3}}(d)<b_{3}<\cdots<d<\cdots<b_{4}<f^{2^{4}}(d) \\
& <b_{2}<f^{2^{2}}(d)<b_{0}<f^{2^{0}}(d) . \tag{8}
\end{align*}
$$

Let $d_{1}=\lim _{n \rightarrow \infty} b_{2 n+1}, d_{2}=\lim _{n \rightarrow \infty} b_{2 n}$. Since

$$
\Phi\left(a_{0}\right)<\Phi\left(a_{1}\right)<\Phi\left(a_{2}\right)<\Phi\left(a_{3}\right)<\cdots<\Phi(c),
$$

we have also

$$
f\left(b_{0}\right)<f\left(b_{1}\right)<f\left(b_{2}\right)<f\left(b_{3}\right)<\cdots<f(d)
$$

and therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(b_{i}\right)=f\left(d_{1}\right)=f\left(d_{2}\right) \leq f(d) \tag{9}
\end{equation*}
$$

Since

$$
\lim _{n \rightarrow \infty} \Phi\left(a_{n}\right)=\lim _{n \rightarrow \infty} \Phi^{2^{2+1}}(c)=\Phi(c)
$$

and c is not periodic for Φ, the \tilde{f}-itineraries of all points

$$
y \in\left[\lim _{n \rightarrow \infty} \tilde{f}\left(\pi\left(b_{n}\right)\right), \tilde{f}(\pi(d))\right]
$$

are the same (in fact, from the result of [6] applied to a slightly modified map f it follows that the above interval is degenerated to a point; however, we do not need to use it). By (9), this means that we can replace in (8) d by $d_{i}, i=1,2$. Consequently

$$
\begin{equation*}
d_{i} \in \omega_{f}\left(f\left(d_{1}\right)\right) \quad \text { for } i=1,2 \tag{10}
\end{equation*}
$$

By the definition of d_{1} and by (8), d_{1} is not periodic. Hence $\omega_{f}\left(f\left(d_{1}\right)\right)$, which by (10) contains the whole trajectory of d_{1}, is infinite. The point d in (8) is an arbitrary element of J_{f} and hence $J_{f} \subset\left[d_{1}, d_{2}\right]$. Therefore by (5), $d_{1}<d_{2}$. By (9) $f\left(d_{1}\right)=f\left(d_{2}\right)$, and hence by Theorem $1, f$ is chaotic.

Theorem 3. \mathscr{F} contains a C^{∞} map.
Proof. There exists a C^{∞} map g of $[0,1]$ onto $[0,1]$ which is weakly unimodal, satisfies (5) and $g(0)=g(1)=0$. Set $g_{\lambda}(x)=\lambda g(x)$ for all $\lambda, x \in[0,1]$. The map g_{λ} is of class C^{∞} for each λ. By [7], the set $A=\left\{\lambda ; g_{\lambda}\right.$ satisfies (6) $\}$ is closed. Clearly, g_{1} satisfies (6) but g_{0} does not. Therefore if $\mu=\inf A$ then $\mu>0$ and g_{μ} satisfies (6).

Suppose that g_{μ} does not satisfy (7). Then by [1], if λ is sufficiently close to μ then g_{λ} satisfies (6), a contradiction. Clearly, g_{μ} satisfies also (5).
Remark 3. Let ε be the length of J_{g}. Then g_{μ} has a non-empty ε-scrambled set S (cf. [9]). Clearly ε can be made arbitrarily close to 1 , but less than 1 . This result cannot be improved, since if $f:[0,1] \rightarrow[0,1]$ is a continuous map with zero topological entropy satisfying (1) and (2) for some $x, y \in[0,1]$ then $\varepsilon<1$. To see it note that in this case at least one of the sets $\omega_{f}(x), \omega_{f}(y)$, say $\omega_{f}(x)$, must be infinite. Let I_{0}, I_{1} be disjoint closed periodic intervals covering $\omega_{f}(x)$ and such that $I_{0} \cap$ $\omega_{f}(x) \neq \varnothing \neq I_{1} \cap \omega_{f}(x)$ (cf. e.g. [9]). By (2) there exists some $z \in \omega_{f}(x) \cap \omega_{f}(y)$ and this z cannot be periodic (cf. [9]). Consequently, $\omega_{f}(y) \subset I_{0} \cup I_{1}$ and since dist $\left\{I_{0}, I_{1}\right\}>0$, (2) implies that for some $m, f^{m}(x), f^{m}(y) \in I_{0}$. Hence for every $n \geq m, f^{n}(x), f^{n}(y)$ belong to the same interval $I_{i(n)}$, where $i(n) \in\{0,1\}$. But then

$$
\limsup _{n \rightarrow \infty}\left|f^{n}(x)-f^{n}(y)\right| \leq \max \left\{\operatorname{diam} I_{0}, \operatorname{diam} I_{1}\right\}<1 .
$$

Remark 4. Let h be the tent map $(h(x)=1-|2 x-1|)$ and let $h_{\lambda}(x)=\min (\lambda, h(x))$ for $\lambda, x \in[0,1]$. For each $n \geqq 0$ let $\lambda_{n} \in[0,1]$ be the minimal number with the property that $\left[0, \lambda_{n}\right]$ contains a periodic orbit of h of period 2^{n}. Clearly $\lambda_{0}<\lambda_{1}<\cdots$. Put $\nu=\lim _{n \rightarrow \infty} \lambda_{n}(=0.8249080 \ldots)$. Then $h_{\nu} \in \mathscr{F}$. In such a way we obtain another simple example of chaotic map with zero topological entropy.

REFERENCES

[1] L. Block. Stability of periodic orbits in the theorem of Šarkovskii. Proc. Amer. Math. Soc. 81 (1981), 555-562.
[2] P. Collet \& J.-P. Eckmann. Iterated Maps on the Interval as Dynamical Systems. Birkhauser: Boston, 1980.
[3] K. Janková \& J. Smítal. A characterization of chaos. Bull. Austral. Math. Soc. 34 (1986), 283-292.
[4] L. Jonker. Periodic orbits and kneading invariants. Proc. London Math. Soc. 39 (3) (1979), 428-450.
[5] T. Y. Li \& J. A. Yorke. Period three implies chaos. Amer. Math. Monthly 82 (1975), 985-992.
[6] W. de Melo \& S. van Strien. A structure theorem in one dimensional dynamics. Informes de Matématica Série A-063/86, Rio de Janeiro (preprint 1986).
[7] M. Misiurewicz. Structure of mappings of an interval with zero entropy. Publ. Math. IHES 53 (1981), 5-16.
[8] M. Misiurewicz \& W. Szlenk. Entropy of piecewise monotone maps. Studia Math. 67 (1980), 45-63.
[9] J. Smítal. Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), 269-282.

