ON THE THEOREMS OF BORSUK-ULAM AND LJUSTERNIK-SCHNIRELMANN-BORSUK

BY
H. STEINLEIN

Abstract

Let $p \geq 3$ be a prime number and m a positive integer, and let S be the sphere $S^{(m-1)(p-1)-1}$. Let $f: S \rightarrow S$ be a map without fixed points and with $f^{p}=\mathrm{id}_{S}$. We show that there exists an $h: S \rightarrow \mathbb{R}^{m}$ with $h(x) \neq h(f(x))$ for all $x \in S$. From this we conclude that there exists a closed cover $U_{1}, \ldots, U_{4 m}$ of S with $U_{i} \cap f\left(U_{i}\right)=$ \varnothing for $i=1, \ldots, 4 m$. We apply these results to Borsuk-Ulam and Ljusternik-Schnirelmann-Borsuk theorems in the framework of the sectional category and to a problem in asymptotic fixed point theory.

1. Introduction. We consider in this paper a special type of generalizations of the following two classical results (cf. [1,5]):

Borsuk-Ulam Theorem. Let

$$
\begin{equation*}
n \geq m, \tag{1}
\end{equation*}
$$

and let $h: S^{n} \rightarrow \mathbb{R}^{m}$ be a continuous map. Then there exists an $x \in S^{n}$ with $h(x)=h(-x)$.

Luusternik-Schnirelmann-Borsuk Theorem. Let H_{1}, \ldots, H_{k} be closed subsets of S^{n} such that $\bigcup_{i=1}^{k} H_{i}=S^{n}$ and $H_{i} \cap\left(-H_{i}\right)=\varnothing$ for $i=1, \ldots, k$. Then

$$
\begin{equation*}
n \leq k-2 . \tag{2}
\end{equation*}
$$

It is a very natural idea to replace -id by a map $f: S^{n} \rightarrow S^{n}$ without fixed points and with $f^{p}=\mathrm{id}_{S^{n}}$ for some (prime) number p and to ask for conditions such that
a) for any $h: S^{n} \rightarrow \mathbb{R}^{m}$, there is an $x \in S^{n}$ with $h(x)=h(f(x))$ or
b) there exists a covering of S^{n} by k closed sets U_{1}, \ldots, U_{k} with $U_{i} \cap$ $f\left(U_{i}\right)=\varnothing$ for $i=1, \ldots, k$.

Both questions have already been extensively studied in literature, not only for spheres, but for more general spaces. For spheres, one has the following results:

Generalized Borsuk-Ulam Theorem (cf. [6,7]). Let p be a prime number,

Received by the editors February 18, 1983.
AMS Subject Classification (1980): 55M20 (primary); 47H10 (secondary).
(C) Canadian Mathematical Society 1984.
$m, n \in \mathbb{N}$ with

$$
\begin{equation*}
n \geq(m-1)(p-1)+1, \tag{3}
\end{equation*}
$$

and let $f: S^{n} \rightarrow S^{n}$ generate a free \mathbb{Z}_{p}-action on S^{n} (i.e. $f^{p}=\mathrm{id}_{S^{n}}$ and f has no fixed points). Then for each continuous $h: S^{n} \rightarrow \mathbb{R}^{m}$, there exists an $x \in S^{n}$ with $h(x)=h(f(x))$.

Generalized Luusternik-Schnirelmann-Borsuk Theorem (cf. [9]). Let p be a prime number, $n, k \in \mathbb{N}$, and let $f: S^{n} \rightarrow S^{n}$ generate a free \mathbb{Z}_{p}-action on S^{n}. Assume that there are closed sets $H_{1}, \ldots, H_{k} \subset S^{n}$ with $\cup_{i=1}^{k} H_{i}=S^{n}$ and $H_{i} \cap f\left(H_{i}\right)=\varnothing$ for $i=1, \ldots, k$. Then

$$
n \leq \begin{cases}\frac{p-1}{2}(k-3), & \text { if } p=3 \tag{4}\\ \frac{p-1}{2}(k-3)+1, & \text { if } p>3\end{cases}
$$

The purpose of this paper is to consider the question of the optimality of the estimates (3) and (4). It is well known and easy to show that the estimates (1) and (2) are best possible. The optimality of (3) was known only in the case of $p=3$ [2]. We will construct for all prime numbers p a free \mathbb{Z}_{p}-action φ on $S^{(m-1)(p-1)-1}$ and an $h: S^{(m-1)(p-1)-1} \rightarrow \mathbb{R}^{m}$ with $h(x) \neq h(\varphi(x))$ for all $x \in$ $S^{(m-1)(p-1)-1}$. This yields the optimality of the generalized Borsuk-Ulam theorem, since for $p \geq 3$, there are no free \mathbb{Z}_{p}-actions on the even-dimensional spheres $S^{(m-1)(p-1)}$

Concerning the generalized Ljusternik-Schnirelmann-Borsuk theorem, we will see that the estimate (4) is in fact not best possible, but it is not far from the optimal one. We will see that with $\varphi: S^{(m-1)(p-1)-1} \rightarrow S^{(m-1)(p-1)-1}$ as above, there is a cover of $S^{(m-1)(p-1)-1}$ by closed sets $U_{1}, \ldots, U_{4 m}$ with $U_{i} \cap \varphi\left(U_{i}\right)=\varnothing$ for $i=1, \ldots, 4 m$.

Our main motivation for this work was the following conjecture in asymptotic fixed point theory:

Asymptotic Conjecture. Let E be a normed space, $f: E \rightarrow E$ a continuous map such that $\overline{\bar{f}^{k_{o}}(E)}$ is compact for some $k_{0} \geq 2$. Then there exists an $x \in E$ with $f(x)=x(?)$.

In [8], we described an approach to this problem via estimates of the genus $g\left(\mathscr{F}\left[f^{p}\right], f\right)$ (in the sense of A. S. Švarc [10, 11], cf. chapter 3 below) of the fixed point set $\mathscr{F}\left[f^{p}\right]$ of f^{p} for large prime numbers p. Unfortunately, as a consequence of the above described optimality result for the generalized Ljusternik-Schnirelmann-Borsuk covering property, we will see in chapter 5 that this approach fails. Instead we get another hint that the asymptotic conjecture might be wrong.
2. Optimality results. We start with a result, which shows that estimate (3) in the generalized Borsuk-Ulam theorem cannot be weakened:

Theorem 1. Let $m \in \mathbb{N}, p$ a prime number,

$$
\begin{aligned}
& L:=\left\{\left(x_{1}, \ldots, x_{p}\right) \in\left(\mathbb{R}^{m-1}\right)^{p} \mid \sum_{j=1}^{p} x_{j}=0\right\}, \\
& S:=S^{(m-1) p-1} \cap L
\end{aligned}
$$

and

$$
\varphi:=S \rightarrow S, \varphi\left(x_{1}, \ldots, x_{p}\right):=\left(x_{2}, \ldots, x_{p}, x_{1}\right) .
$$

There exists a continuous map $h: S \rightarrow \mathbb{R}^{m}$ with $h(x) \neq h(\varphi(x))$ for all $x \in S$.
Remarks. S is an $((m-1)(p-1)-1)$-dimensional sphere and φ generates a free \mathbb{Z}_{p}-action on S. Examples of such maps h on spheres $S^{(m-1)(p-1)-1}$ with a free \mathbb{Z}_{p}-action φ were already known for $p=2$ and any $m \geq 2$ (this is trivial even for S^{m-1} instead of $S^{m-2}=S^{(m-1)(p-1)-1}$) and for $p=3$ and any $m \geq 2$ (cf. [2]). On the other hand, the generalized Borsuk-Ulam theorem of E. Lusk [6] says that on $S^{(m-1)(p-1)+1}$ instead of $S^{(m-1)(p-1)-1}$, one always has a coincidence point x, i.e. $h(x)=h(\varphi(x))$. On $S^{(m-1)(p-1)}$, there are no free \mathbb{Z}_{p}-actions, if $p \geq 3$. We will describe in the next chapter how one can fill this gap.

Proof of Theorem 1. It suffices to consider $m \geq 2$. Let $\tilde{h}: S \rightarrow$ $\mathbb{R}^{m-1}, \tilde{h}\left(x_{1}, \ldots, x_{p}\right):=x_{1}$.
Since $\left(x_{1}, \ldots, x_{p}\right) \neq 0$ and $\sum_{j=1}^{p} x_{j}=0$, we have

$$
\begin{aligned}
d(x) & :=\left|\left(\tilde{h}(\varphi(x))-\tilde{h}(x), \tilde{h}\left(\varphi^{2}(x)\right)-\tilde{h}(\varphi(x)), \ldots, \tilde{h}\left(\varphi^{p}(x)\right)-\tilde{h}\left(\varphi^{p-1}(x)\right)\right)\right| \\
& =\left|\left(x_{2}-x_{1}, x_{3}-x_{2}, \ldots, x_{1}-x_{p}\right)\right| \neq 0
\end{aligned}
$$

for every $x=\left(x_{1}, \ldots, x_{p}\right) \in S$. Let $\alpha: \mathbb{R} \rightarrow[0,1]$ be continuous with $\alpha(0)=1$ and $\alpha(t)=0$ for $t \geq p^{-1 / 2}$. Let $g: S \rightarrow \mathbb{R}$,

$$
g(x):=\sum_{i=0}^{\mathrm{p}-2} \prod_{j=0}^{i} \alpha\left(\frac{\left|\tilde{h}\left(\varphi^{\mathrm{p}-\mathrm{j}}(x)\right)-\tilde{h}\left(\varphi^{\mathrm{p}-\mathrm{j}-1}(x)\right)\right|}{d(x)}\right) .
$$

Obviously, $d(x)=d(\varphi(x))$ for every $x \in S$. If $x \in S$ with $\tilde{h}(x)=\tilde{h}(\varphi(x))$, we have

$$
\alpha\left(\frac{\left|\tilde{h}\left(\varphi^{p+1}(x)\right)-\tilde{h}\left(\varphi^{p}(x)\right)\right|}{d(\varphi(x))}\right)=\alpha\left(\frac{|\tilde{h}(\varphi(x))-\tilde{h}(x)|}{d(x)}\right)=\alpha(0)=1 .
$$

In addition, by the definition of d and α, there must be a $j \in\{0, \ldots, p-1\}$ with

$$
\alpha\left(\frac{\left|\tilde{h}\left(\varphi^{\mathrm{p}-\mathrm{j}}(x)\right)-\tilde{h}\left(\varphi^{\mathrm{p-j-1}}(x)\right)\right|}{d(x)}\right)=0 .
$$

We have just seen that this cannot be for $j=p-1$, thus

$$
\prod_{j=0}^{p-2} \alpha\left(\frac{\left|\tilde{h}\left(\varphi^{p-j}(x)\right)-\tilde{h}\left(\varphi^{p-j-1}(x)\right)\right|}{d(x)}\right)=0
$$

We obtain in the case of $\tilde{h}(x)=\tilde{h}(\varphi(x))$

$$
\begin{aligned}
g(\varphi(x)) & =\sum_{i=0}^{p-2} \prod_{j=0}^{i} \alpha\left(\frac{\left|\tilde{h}\left(\varphi^{p-j+1}(x)\right)-\tilde{h}\left(\varphi^{p-j}(x)\right)\right|}{d(\varphi(x))}\right) \\
& =1+\sum_{i=1}^{p-2} \prod_{j=1}^{i} \alpha\left(\frac{\left|\tilde{h}\left(\varphi^{p-j+1}(x)\right)-\tilde{h}\left(\varphi^{p-j}(x)\right)\right|}{d(\varphi(x))}\right) \\
& =1+\sum_{i=0}^{p-3} \prod_{j=0}^{i} \alpha\left(\frac{\left|\tilde{h}\left(\varphi^{p-j}(x)\right)-\tilde{h}\left(\varphi^{p-j-1}(x)\right)\right|}{d(x)}\right) \\
& =1+g(x),
\end{aligned}
$$

in particular $g(\varphi(x)) \neq g(x)$.
Thus, $\quad h: S \rightarrow \mathbb{R}^{m}$, defined by $h(x):=(\tilde{h}(x), g(x))$, has the desired properties. q.e.d.

Our next result enables us to apply Theorem 1 to the Ljusternik-Schnirelmann-Borsuk covering problem:

Theorem 2. Let M be a normal space, p a prime number, and let $f: M \rightarrow M$ generate a free \mathbb{Z}_{p}-action on M. Let $m \in \mathbb{N}$ such that there exists a continuous $h: M \rightarrow \mathbb{R}^{m}$ with $h(x) \neq h(f(x))$ for all $x \in M$. Then there exist closed sets $U_{1}, \ldots, U_{4 m} \subset M$ with $\bigcup_{n=1}^{4 m} U_{n}=M$ and $U_{n} \cap f\left(U_{n}\right)=\varnothing$ for $n=1, \ldots, 4 m$.

Proof. Let $g: M \rightarrow S^{m-1}$,

$$
g(x):=\frac{h(f(x))-h(x)}{|h(f(x))-h(x)|} .
$$

For $l \in\{1, \ldots, m\}$, we define

$$
\begin{aligned}
R_{l} & :=\left\{x \in M| |(g(x))_{l} \mid \geq m^{-1 / 2}\right\}, \\
W_{l}^{+} & :=\left\{x \in M \mid(g(x))_{l} \geq 0\right\}, \\
W_{l}^{-} & :=\left\{x \in M \mid(g(x))_{l} \leq 0\right\}
\end{aligned}
$$

and

$$
R_{l}^{ \pm}:=R_{l} \cap W_{l}^{ \pm} .
$$

We fix $l \in\{1, \ldots, m\}$ and consider first only R_{l}^{+}:
Let $a_{+}: M \rightarrow[0,1]$ be a continuous map with $\left.a_{+}\right|_{\mathbf{R}_{1}^{+}}=1$ and $\left.a_{+}\right|_{\mathbf{w}_{1}^{-}}=0$. We define $b_{+}: M \rightarrow \mathbb{R}$,

$$
b_{+}(x):=\sum_{k=0}^{p-2} \prod_{j=0}^{k} a_{+}\left(f^{p-j}(x)\right)
$$

We first prove that for all $x \in M$ with $f(x) \in R_{l}^{+}$, we have $b_{+}(f(x))-b_{+}(x)=1$:
Since $a_{+}(f(x))=1$ and since for some $j \in\{0, \ldots, p-1\}$, we must have

$$
\left(h\left(f^{p-j+1}(x)\right)-h\left(f^{p-i}(x)\right)\right)_{l} \leq 0,
$$

i.e. $f^{p-j}(x) \in W_{l}^{-}$, it follows that

$$
\prod_{j=0}^{p-2} a_{+}\left(f^{p-j}(x)\right)=\prod_{j=0}^{p-1} a_{+}\left(f^{p-j}(x)\right)=0
$$

Thus,

$$
\begin{aligned}
b_{+}(f(x))-b_{+}(x) & =\sum_{k=0}^{p-2} \prod_{j=0}^{k} a_{+}\left(f^{p-j+1}(x)\right)-\sum_{k=0}^{p-2} \prod_{j=0}^{k} a_{+}\left(f^{p-j}(x)\right) \\
& =1+\sum_{k=1}^{p-2} \prod_{j=1}^{k} a_{+}\left(f^{p-j+1}(x)\right)-\sum_{k=0}^{p-3} \prod_{j=0}^{k} a_{+}\left(f^{p-i}(x)\right) \\
& =1+\sum_{k=0}^{p-3} \prod_{j=0}^{k} a_{+}\left(f^{p-j}(x)\right)-\sum_{k=0}^{p-3} \prod_{j=0}^{k} a_{+}\left(f^{p-j}(x)\right) \\
& =1 .
\end{aligned}
$$

We define $c_{+}: M \rightarrow S^{1} \subset \mathbb{C}, c_{+}(x):=e^{b_{+}(x) \pi i}$,

$$
D_{d}:=\left\{e^{2 \pi i t} \left\lvert\, \frac{d-1}{3} \leq t \leq \frac{d}{3}\right.\right\}
$$

and

$$
G_{d}^{+}:=R_{l}^{+} \cap c_{+}^{-1}\left(D_{d}\right)
$$

for $d=1,2,3$.
Doing the same with a function $a_{-}: M \rightarrow[0,1]$ with $\left.a_{-}\right|_{R_{i}^{-}}=1$ and $\left.a_{-}\right|_{w_{i}^{+}}=0$, we obtain in an analogous way a function $b_{-}: M \rightarrow \mathbb{R}$, such that for $x \in M$ with $f(x) \in R_{l}^{-}$, we have

$$
b_{-}(f(x))-b_{-}(x)=1
$$

With $c_{-}: M \rightarrow S^{1}, c_{-}(x):=e^{b_{-}(x) \pi i}$, we then define for $d=1,2,3$

$$
G_{d}^{-}:=R_{l}^{-} \cap c_{-}^{-1}\left(D_{d}\right) .
$$

Let $x \in M$ with $f(x) \in R_{l}^{+}$. Then

$$
b_{+}(f(x))=b_{+}(x)+1
$$

and hence $c_{+}(f(x))=-c_{+}(x)$, which implies that there is no $d \in\{1,2,3\}$ with $c_{+}(x), c_{+}(f(x)) \in D_{d}$ simultaneously. It follows that for $d=1,2,3$

$$
G_{d}^{+} \cap f\left(G_{d}^{+}\right)=\varnothing
$$

and (with the same proof)

$$
G_{d}^{-} \cap f\left(G_{d}^{-}\right)=\varnothing .
$$

In addition, we get for $d=1$ and $d=3$

$$
G_{d}^{+} \cap f\left(G_{d}^{-}\right)=\varnothing \text { and } G_{d}^{-} \cap f\left(G_{d}^{+}\right)=\varnothing:
$$

Let $x \in G_{d}^{-} \subset R_{l}^{-} \subset W_{l}^{-}$such that $f(x) \in R_{l}^{+}$. Then $a_{+}(x)=0$ and therefore

$$
b_{+}(f(x))=\sum_{k=0}^{p-2} \prod_{j=0}^{k} a_{+}\left(f^{p-j+1}(x)\right)=a_{+}(f(x))=1 .
$$

It follows $c_{+}(f(x))=e^{\pi i} \in D_{2} \backslash\left(D_{1} \cup D_{3}\right)$, which implies

$$
f(x) \in G_{2}^{+} \backslash\left(G_{1}^{+} \cup G_{3}^{+}\right)
$$

Thus, $G_{d}^{+} \cap f\left(G_{d}^{-}\right)=\varnothing$. The proof of $G_{d}^{-} \cap f\left(G_{d}^{+}\right)=\varnothing$ is identical.
We define the closed sets

$$
H_{1}:=G_{1}^{+} \cup G_{1}^{-}, H_{2}:=G_{2}^{+}, H_{3}:=G_{2}^{-}, H_{4}:=G_{3}^{+} \cup G_{3}^{-} .
$$

By definition, it is obvious that

$$
R_{l}=\bigcup_{i=1}^{4} H_{i},
$$

and we have just proved that

$$
H_{i} \cap f\left(H_{i}\right)=\varnothing \text { for } i=1, \ldots, 4 .
$$

This finishes the proof, since we know that

$$
\bigcup_{l=1}^{m} R_{l}=M . \quad \text { q.e.d. }
$$

Combining Theorem 1 and 2 , we obtain
Theorem 3. Let m, p, S and $\varphi: S \rightarrow S$ be as in Theorem 1. Then there exist closed sets $U_{1}, \ldots, U_{4 m} \subset S$ with $\cup_{n=1}^{4 m} U_{n}=S$ and $U_{n} \cap \varphi\left(U_{n}\right)=\varnothing$ for $n=$ $1, \ldots, 4 m$.

3. Sectional category and Borsuk-Ulam and Ljusternik-Schnirelmann-

 Borsuk theorems. Let us first recall the notion of sectional category (this term is due to I. M. James [3]) or genus in the sense of A. S. Švarc [10, 11]:Definition 1. Let \mathscr{H}_{p} be the class of pairs (M, f), where M is a Hausdorff space and $f: M \rightarrow M$ generates a free \mathbb{Z}_{p}-action on M. Let $\mathcal{N}_{p}:=\{(M, f) \in$ $\mathscr{H}_{p} \mid M$ normal $\}$.

Definition 2. Let M be a Hausdorff space. We call a set $\mathscr{D} \subset 2^{M}$ an admissible covering of M, if
a) \mathscr{D} is an open covering of M,
b) there exists a family $\left(t_{D}\right)_{D \in \mathscr{D}}$ of continuous maps $t_{D}: M \rightarrow[0,1]$ such that
i) $\left.t_{D}\right|_{M \backslash D}=0$,
ii) for every $x \in M$ there is a $D \in \mathscr{D}$ with $t_{D}(x)=1$.

Let \mathscr{K} be the class of cardinal numbers and ∞ an object not in \mathscr{K}. Let $\mathscr{K}^{\prime}:=\mathscr{K} \cup\{\infty\}$ with the ordering induced by the well-ordering of \mathscr{K} together with $\alpha<\infty$ for all $\alpha \in \mathscr{K}$.

Defintion 3. Let p be a prime number and $(M, f) \in \mathscr{H}_{p}$. Then the sectional category or genus $\tilde{g}(M, f)$ is defined by
$\tilde{g}(M, f):=\min \left\{\operatorname{card} \mathscr{U} \mid \mathscr{U} \subset 2^{M}\right.$ is an admissible covering, for every $U \in U$ there exist disjoint open sets U_{0}, \ldots, U_{p-1}

$$
\text { with } \left.\bigcup_{j=0}^{p-1} U_{i}=U \text { and } U_{j}=f^{i}\left(U_{0}\right) \text { for } j=1, \ldots, p-1\right\}
$$

if such a \mathscr{U} exists, and $\tilde{g}(M, f):=\infty$ otherwise.
In $[8,9]$, we used another genus $g(M, f)$, for which one knows that $g(M, f) \leq$ $\tilde{g}(M, f)$ and that it coincides with $\tilde{g}(M, f)$, if M is normal. We prefer below $\tilde{g}(M, f)$ instead of $g(M, f)$, because it is more suitable for Borsuk-Ulam theorems. That does not matter for Ljusternik-Schnirelmann-Borsuk theorems, since we can consider these only in normal spaces. We shall need several elementary properties of the genus:

Lemma 1 (cf. [11, 8]). Let p be a prime number and $\left(M_{1}, f_{1}\right),\left(M_{2}, f_{2}\right) \in \mathscr{H}_{p}$. Let $P:\left(M_{1}, f_{1}\right) \rightarrow\left(M_{2}, f_{2}\right)$ be an equivariant map (i.e. $P: M_{1} \rightarrow M_{2}$ with $P \circ f_{1}=$ $\left.f_{2} \circ P\right)$. Then we have $\tilde{g}\left(M_{1}, f_{1}\right) \leq \tilde{g}\left(M_{2}, f_{2}\right)$.

Definition 4. Let $n \in\{0,1,2, \ldots\}$ and p a prime number. Let

$$
l_{2}:=\left\{z=\left.\left(z_{1}, z_{2}, \ldots\right) \in \mathbb{C}^{\mathbb{N}}\left|\sum_{j=1}^{\infty}\right| z_{j}\right|^{2}<\infty\right\}
$$

with the usual Hilbert-space norm. We define
$F_{n, p}:=\left\{\begin{array}{l}\varnothing, \text { if } n=0, \\ \left\{z=\left(z_{1}, \ldots, z_{n / 2}, 0, \ldots\right) \in l_{2} \mid\|z\|=1\right\}, \text { if } n \in\{2,4,6, \ldots\}, \\ \left\{z=\left(z_{1}, \ldots, z_{(n+1) / 2}, 0, \ldots\right) \in l_{2}\left|\|z\|=1, z_{(n+1) / 2}=\left|z_{(n+1) / 2}\right| e^{(k / p) 2 \pi i} \text { for }\right.\right. \\ \quad \text { some } k \in\{0, \ldots, p-1\}\}, \text { if } n \in\{1,3,5, \ldots\}\end{array}\right.$ and $\varphi_{p}: F_{n, p} \rightarrow F_{n, p}$.

$$
\varphi_{p}(z):=\left(e^{2 \pi i / p} z_{1}, e^{2 \pi i / p} z_{2}, \ldots\right)
$$

If n is even, $F_{n, p}$ is a sphere S^{n-1}. In addition, $\left(F_{n, p}, \varphi_{p}\right) \in \mathcal{N}_{p}$.
Lemma 2 (cf. [10,11,8,7]). Let p be a prime number and $(M, f) \in \mathscr{H}_{p}$. If $n:=\tilde{g}(M, f)$ is finite, then n is the minimal number such that there exists an equivariant map $P:(M, f) \rightarrow\left(F_{n, p}, \varphi_{p}\right)$.

Due to Krasnosel'skiĭ [4] is the following result:
Lemma 3. For any prime number p and any map $f: S^{n} \rightarrow S^{n}$ with $\left(S^{n}, f\right) \in \mathcal{N}_{p}$, one has $\tilde{g}\left(S^{n}, f\right)=n+1$. Furthermore, $\tilde{g}\left(F_{n, p}, \varphi_{p}\right)=n$.

Lemma 4 (cf. [11,8]). Let $n \in\{0,1,2, \ldots\}$ and p a prime number. Let $(M, f) \in$ \mathscr{H}_{p} with M nonempty and n-connected. Then there exists an equivariant map $P:\left(F_{n+2, p}, \varphi_{p}\right) \rightarrow(M, f)$, in particular $\tilde{g}(M, f) \geq n+2$.

We obtain as a simple corollary:
Lemma 5. Let $m \geq 2$ be an integer and let p be a prime number. Let (S, φ) be as in Theorem 1 and $(M, f) \in \mathscr{H}_{p}$. Then $\tilde{g}(M, f) \leq(m-1)(p-1)$ if and only if there exists an equivariant map $P:(M, f) \rightarrow(S, \varphi)$.

Proof. Let $n:=\tilde{g}(M, f) \leq(m-1)(p-1)$. By Lemma 2, there exists an equivariant map $P_{1}:(M, f) \rightarrow\left(F_{n, p}, \varphi_{p}\right)$. Let $j: F_{n, p} \rightarrow F_{(m-1)(p-1), p}$ be the inclusion map. S is an $((m-1)(p-1)-1)$-dimensional sphere, hence $((m-1) \times$ $(p-1)-2)$-connected. It follows by Lemma 4 that there exists an equivariant map $P_{2}:\left(F_{(m-1)(p-1), p}, \varphi_{p}\right) \rightarrow(S, \varphi)$. Then $P:=P_{2} \circ j \circ P_{1}:(M, f) \rightarrow(S, \varphi)$ is equivariant.

The other direction of the proof is obvious by Lemma 2 and 3. q.e.d.
For $m \in \mathbb{N}$ and p a prime number, we define:
$q_{1}(m, p):=\max \left\{n \in\{0,1,2, \ldots\} \mid\right.$ For every $(M, f) \in \mathscr{H}_{p}$ with $\tilde{g}(M, f) \leq n$, there exists an $h: M \rightarrow \mathbb{R}^{m}$ with $h(x) \neq h(f(x))$ for all $\left.x \in M\right\}$,
$q_{2}(m, p):=\max \left\{n \in\{0,1,2, \ldots\} \mid\right.$ There exists an $(M, f) \in \mathscr{H}_{p}$ with $\tilde{g}(M, f)=n$, such that there exists an $h: M \rightarrow \mathbb{R}^{m}$ with $h(x) \neq h(f(x))$ for all $x \in M\}$,
$r_{1}(m, p):=\max \left\{n \in\{0,1,2, \ldots\} \mid\right.$ For every $(M, f) \in \mathcal{N}_{p}$ with $\tilde{g}(M, f) \leq n$, there exist closed sets U_{1}, \ldots, U_{m} with $\bigcup_{i=1}^{m} U_{i}=M$ and $U_{i} \cap f\left(U_{i}\right)=\varnothing$ for $\left.i=1, \ldots, m\right\}$,
$r_{2}(m, p):=\max \left\{n \in\{0,1,2, \ldots\} \mid\right.$ There exists an $(M, f) \in \mathcal{N}_{p}$ with $\tilde{g}(M, f)=n$, such that there exist closed sets U_{1}, \ldots, U_{m} with $\bigcup_{i=1}^{m} U_{i}=M$ and $U_{i} \cap f\left(U_{i}\right)=\varnothing$ for $\left.i=1, \ldots, m\right\}$.

For $s \in \mathbb{R}$, let

$$
[s]:=\max \{n \in \mathbb{Z} \mid n \leq s\} .
$$

Now we can formulate the main result of this chapter:
Theorem 4. Let $m \in \mathbb{N}$ and $p \geq 3$ a prime number. Then

$$
(m-1)(p-1) \leq q_{1}(m, p) \leq q_{2}(m, p)=(m-1)(p-1)+1
$$

and, if $m \geq 3$,

$$
\left(\left[\frac{m}{4}\right]-1\right)(p-1) \leq r_{1}(m, p) \leq r_{2}(m, p) \leq(m-3) \frac{p-1}{2}+\left\{\begin{array}{l}
1, \text { if } p=3 \\
2, \text { if } p>3
\end{array}\right.
$$

Remark. In the case of $m=2$, one knows that (cf. [7], 7.13)

$$
q_{1}(2, p)=p-1<p=q_{2}(2, p) .
$$

It is not known whether q_{1} and q_{2} differ for all $p \geq 3$ and $m \geq 3$.
Proof of Theorem 4. $(m-1)(p-1) \leq q_{1}(m, p)$: Let (S, φ) be as in Theorem 1 and let $(M, f) \in \mathscr{H}_{p}$, such that $\tilde{g}(M, f) \leq(m-1)(p-1)$. By Lemma 5, there exists an equivariant map $P:(M, f) \rightarrow(S, \varphi)$. From Theorem 1 we know that there exists a continuous map $h: S \rightarrow \mathbb{R}^{m}$ with $h(\varphi(y)) \neq h(y)$ for all $y \in S$. It follows for every $x \in M$

$$
\begin{aligned}
& (h \circ P)(f(x))=h((P \circ f)(x))=h(\varphi(P(x))) \neq h(P(x))=(h \circ P)(x) . \\
& \quad q_{1}(m, p) \leq q_{2}(m, p) \text { is obvious. } \\
& q_{2}(m, p)=(m-1)(p-1)+1: \text { See Schupp [7], 5.2 and 6.1. }
\end{aligned}
$$

$([m / 4]-1)(p-1) \leq r_{1}(m, p)$: It suffices to consider $m \geq 4$. Let $(M, f) \in \mathcal{N}_{p}$ with $\tilde{g}(M, f) \leq([m / 4]-1)(p-1)$, and let (S, φ) be as in Theorem 1 with $[m / 4]$ instead of m. By Lemma 5, there exists an equivariant map $P:(M, f) \rightarrow(S, \varphi)$. From Theorem 3, we know that S can be covered by $4[m / 4] \leq m$ closed sets $V_{1}, \ldots, V_{4[m / 4]}$ with $V_{i} \cap \varphi\left(V_{i}\right)=\varnothing$ for $i=1, \ldots, 4[m / 4]$. Let $U_{i}:=P^{-1}\left(V_{i}\right)$. Then we have $U_{i} \cap f\left(U_{i}\right)=P^{-1}\left(V_{i}\right) \cap f\left(P^{-1}\left(V_{i}\right)\right)=P^{-1}\left(V_{i}\right) \cap P^{-1}\left(\varphi\left(V_{i}\right)\right)=\varnothing$ for $i=1, \ldots, 4[\mathrm{~m} / 4]$ and

$$
M=\bigcup_{i=1}^{4[m / 4]} U_{i}
$$

$$
\begin{aligned}
& r_{1}(m, p) \leq r_{2}(m, p) \text { is obvious. } \\
& r_{2}(m, p) \leq(m-3) \frac{p-1}{2}+\left\{\begin{array}{l}
1, \text { if } p=3 \\
2, \text { if } p>3
\end{array}\right\}
\end{aligned}
$$

This has been shown in [9], Theorem 5. q.e.d.
4. The case $\boldsymbol{p}=7$. In the last chapter, we obtained a lower estimate for the Ljusternik-Schnirelmann-Borsuk covering property, which is approximately one half of the upper estimate proved in [9]. In this chapter, we want to show that this lower estimate actually is not too bad. We improve the upper estimate considerably in the special case of $p=7$.

We start with some wellknown elementary facts and with some notations:
Lemma 6 (cf. [7]). Let p be a prime number and (M, f) $\in \mathcal{N}_{p}$. Let $A_{0}, \ldots, A_{n} \subset$ M be closed sets with $\varnothing=A_{0} \subset A_{1} \subset \cdots \subset A_{n}=M, \quad f\left(A_{i}\right)=A_{i} \quad$ and $\tilde{g}\left(A_{i} \backslash A_{i-1}, f\right)$ finite for $i=1, \ldots, n$. Then $\tilde{g}(M, f) \leq \sum_{i=1}^{n} \tilde{g}\left(A_{i} \backslash A_{i-1}, f\right)$.

The proof of Lemma 6 is based on the fact that for $k=1, \ldots, n-1$, there exists an open neighborhood B_{k} of A_{k} with $f\left(B_{k}\right)=B_{k}$ and $\tilde{g}\left(B_{k}, f\right)=\tilde{g}\left(A_{k}, f\right)$.

In addition to this property, we will use below only the trivial fact that for every free \mathbb{Z}_{p}-action $f: S^{1} \rightarrow S^{1}$, we have $\tilde{\mathrm{g}}\left(S^{1}, f\right) \leq 2$.
Let $(M, f) \in \mathcal{N}_{p}$, and let $M_{1}, \ldots, M_{m} \subset M$ be closed sets with $\cup_{i=1}^{m} M_{i}=M$ and $M_{i} \cap f\left(M_{i}\right)=\varnothing$ for $i=1, \ldots, m$. We define for $j=0, \ldots, m$

$$
A_{j}:=\left\{x \in M \mid\left\{x, f(x), \ldots, f^{p-1}(x)\right\} \subset \bigcup_{l=1}^{i} M_{l}\right\} .
$$

Obviously we have (if $p \geq 3$, which will be assumed in the sequel)

$$
\varnothing=A_{0}=A_{1}=A_{2} \subset A_{3} \subset \cdots \subset A_{m}=M,
$$

and all A_{j} are closed and $f\left(A_{j}\right)=A_{j}$ for $j=0, \ldots, m$. By Lemma 6, we have

$$
\tilde{\mathrm{g}}(M, f) \leq \sum_{j=1}^{m} \tilde{\mathrm{~g}}\left(A_{j} \backslash A_{j-1}, f\right)=\sum_{i=3}^{m} \tilde{\mathrm{~g}}\left(A_{j} \backslash A_{j-1}, f\right) .
$$

Our aim is to estimate $\tilde{\mathrm{g}}\left(A_{j} \backslash A_{j-1}, f\right)$ by some $s(p)$. Before, we need some further notation.

We fix j and define a special subdivision of $A_{j} \backslash A_{j-1}$. It is obvious from the definition that for any $x \in A_{j} \backslash A_{j-1},\left\{x, f(x), \ldots, f^{p-1}(x)\right\} \cap M_{j} \neq \varnothing$. Let $\rho: \mathbb{Z} \rightarrow$ \mathbb{Z}_{p} be the canonical homomorphism. We shall use the notation $\bar{a}:=\rho(a)$ for $a \in \mathbb{Z}$. For any $N \subset \mathbb{Z}_{p}$, we define

$$
\langle N\rangle:=\left\{x \in A_{i} \backslash A_{i-1} \mid f^{a}(x) \in M_{j} \Leftrightarrow \bar{a} \in N\right\} .
$$

Some elementary remarks:
a) $M_{i} \cap f\left(M_{j}\right)=\varnothing$ implies that

$$
\langle N\rangle \neq \varnothing \Rightarrow a \pm \overline{1} \notin N \text { for all } a \in N .
$$

In particular $\langle N\rangle=\varnothing$, if $\operatorname{card} N \geq(p+1) / 2$.
b) From the continuity of f and the closedness of M_{j}, we obtain for all $N \subset \mathbb{Z}_{p}$ that

$$
\bigcup_{N \subset V \subset \mathbb{Z}_{\mathrm{p}}}\langle V\rangle
$$

is closed.
For $a_{1}, \ldots, a_{l} \in \mathbb{Z}_{p}$, we write $\left\langle a_{1}, \ldots, a_{l}\right\rangle$ instead of $\left\langle\left\{a_{1}, \ldots, a_{l}\right\}\right\rangle$.
We consider now the case of $p=7$:
Theorem 5. If $p=7$, then $g\left(A_{j} \backslash A_{j-1}, f\right) \leq 2$ for $j=3, \ldots, m$.

Proof. We define an equivariant map $P:\left(A_{j} \backslash A_{j-1}, f\right) \rightarrow\left(S^{1}, \varphi\right)$, where $\varphi: S^{1} \rightarrow S^{1}, \varphi(z):=z e^{(4 / 7) 2 \pi i}$.

It is easy to see that

$$
\begin{aligned}
A_{i} \backslash A_{j-1}= & \bigcup_{l \in \mathbb{Z}_{7}}(\langle l, l+\overline{2}, l+\overline{4}\rangle \cup\langle l, l+\overline{2}\rangle \cup\langle l, l+\overline{4}\rangle \cup\langle l\rangle) \\
= & \langle\overline{1}, \overline{3}, \overline{5}\rangle \cup\langle\overline{2}, \overline{4}, \overline{6}\rangle \cup \cdots \cup\langle\overline{7}, \overline{2}, \overline{4}\rangle \cup\langle\overline{1}, \overline{3}\rangle \cup \cdots \cup\langle\overline{7}, \overline{2}\rangle \\
& \cup\langle\overline{1}, \overline{5}\rangle \cup \cdots \cup\langle\overline{7}, \overline{4}\rangle \cup\langle\overline{1}\rangle \cup \cdots \cup\langle\overline{7}\rangle .
\end{aligned}
$$

We define for $l=0, \ldots, 6$

$$
P\left(f^{l}(\langle\overline{1}, \overline{3}, \overline{5}\rangle \cup\langle\overline{1}, \overline{5}\rangle)\right):=\left\{e^{l(4 / 7) 2 \pi i}\right\}
$$

In particular, we have

$$
P(\langle\overline{1}, \overline{3}, \overline{5}\rangle \cup\langle\overline{1}, \overline{5}\rangle)=\left\{e^{0}\right\}
$$

and

$$
P(\langle\overline{6}, \overline{1}, \overline{3}\rangle \cup\langle\overline{6}, \overline{3}\rangle)=\left\{e^{(8 / 7) 2 \pi i}\right\}=\left\{e^{(1 / 7) 2 \pi i}\right\} .
$$

By the Tietze-Urysohn theorem, we can extend P continuously to

$$
\langle\overline{1}, \overline{3}\rangle \cup \bigcup_{l=0}^{6} f^{l}(\langle\overline{1}, \overline{3}, \overline{5}\rangle \cup\langle\overline{1}, \overline{5}\rangle),
$$

such that

$$
P(\langle\overline{1}, \overline{3}\rangle) \subset\left\{e^{d 2 \pi i} \left\lvert\, 0 \leq d \leq \frac{1}{7}\right.\right\}
$$

(cf. Remark b). We then extend P to an equivariant map on

$$
R:=\bigcup_{l=0}^{6} f^{l}(\langle\overline{1}, \overline{3}, \overline{5}\rangle \cup\langle\overline{1}, \overline{5}\rangle \cup\langle\overline{1}, \overline{3}\rangle) .
$$

A similar argument allows us to extend P to $\langle\overline{1}\rangle \cup R$ such that

$$
P(\langle\overline{1}\rangle) \subset\left\{e^{d 2 \pi i} \left\lvert\, 0 \leq d \leq \frac{2}{7}\right.\right\} .
$$

Again, P can be extended to an equivariant map on $A_{i} \backslash \boldsymbol{A}_{j-1}$. q.e.d.
We obtain
Theorem 6. $r_{2}(m, 7) \leq 2(m-2)$ for all $m \geq 2$.
For the next prime number $p=11$, it is not difficult to prove $\tilde{g}\left(A_{3} \backslash A_{2}, f\right) \leq 2$ (cf. [9]) and $\tilde{g}\left(A_{j} \backslash A_{j-1}, f\right) \leq 4$ for $j=4, \ldots, m$, and hence $r_{2}(m, 11) \leq$ $4(m-3)+2$ for $m \geq 3$, whereas it seems to be impossible to show that $\tilde{g}\left(A_{j} \backslash A_{j-1}, f\right) \leq 3$.
5. An application to asymptotic fixed point theory. In [8], we developed the following strategy to prove the "asymptotic conjecture" (cf. the introduction):

One assumes that $f(x) \neq x$ for all $x \in E$. Then, for all prime numbers $p,\left(\mathscr{F}\left[f^{p}\right], f\right) \in \mathcal{N}_{\mathrm{p}}$. In [8], Satz 14 , we proved that

$$
\tilde{g}\left(\mathscr{F}\left[f^{p}\right], f\right)>\frac{2}{k_{0}} p-2 .
$$

We would get a contradiction, if we could prove that

$$
\tilde{\mathrm{g}}\left(\mathscr{F}\left[f^{p}\right], f\right)=o(p) .
$$

We tried to derive this only from the fact that

$$
\bigcup_{\mathrm{p} \text { prime }} \mathscr{F}\left[f^{p}\right] \subset \overline{f^{k_{o}}(E)}
$$

where $\overline{f^{k_{o}}(E)}$ is a compact set. But this is not sufficient. We will give an example of a compact subset K of a normed space and a continuous map $\varphi: K \rightarrow K$ with $\mathscr{F}[\varphi]=\varnothing$ and $\tilde{\mathrm{g}}\left(\mathscr{F}\left[\varphi^{\mathrm{p}}\right], \varphi\right)$ increases linearly with p (p prime):
Let $\Delta_{m-1}:=\operatorname{co}\left\{E_{1}, \ldots, E_{m}\right\}$ be the standard $(m-1)$-simplex spanned by the points $E_{i} \in \mathbb{R}^{m}$ with the components $\left(E_{i}\right)_{k}:=\delta_{i k}$. Let

$$
\Delta_{m-1 ; i}:=\operatorname{co}\left(\left\{E_{1}, \ldots, E_{m}\right\} \backslash\left\{E_{i}\right\}\right)
$$

be the $(m-2)$-dimensional face of Δ_{m-1}, which is opposite to E_{i}, and let $\partial \Delta_{m-1}$ be the boundary of Δ_{m-1}, i.e.

$$
\partial \Delta_{m-1}:=\bigcup_{i=1}^{m} \Delta_{m-1 ; i}
$$

In addition, we need $\Sigma_{m-1 ; i}$, which is the union of all simplices σ of the first barycentric subdivision of $\partial \Delta_{m-1}$ with $\bar{\sigma} \cap \Delta_{m-1 ; i}=\varnothing$. Let

$$
l_{2}\left(\mathbb{R}^{m}\right):=\left\{\left.\left(x_{n}\right) \in\left(\mathbb{R}^{m}\right)^{\mathbb{N}}\left|\sum_{n=1}^{\infty}\right| x_{n}\right|^{2}<\infty\right\}
$$

with the usual l_{2}-norm and let

$$
\begin{aligned}
& L:=\left\{\left.\left(x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \ldots\right) \in l_{2}\left(\mathbb{R}^{m}\right) \right\rvert\, x_{n} \in \partial \Delta_{m-1}\right. \\
& K:=\bar{L} \quad \text { and } \quad \varphi: K \rightarrow K, \\
& \left.\qquad\left(x_{n} \in \Delta_{m-1 ; i} \Rightarrow x_{n+1} \in \Sigma_{m-1 ; i}\right) \text { for all } n \in \mathbb{N}\right\}, \\
& \qquad\left(x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \ldots\right):=\left(x_{2}, \frac{1}{2} x_{3}, \frac{1}{3} x_{4}, \ldots\right) .
\end{aligned}
$$

Obviously, $\varphi(x) \neq x$ for all $x \in K$, and in addition, there is a canonical
equivariant map $h:\left(\tilde{L}_{m, p}, \varphi_{m, p}\right) \rightarrow\left(\mathscr{F}\left[\varphi^{p}\right], \varphi\right)$, where (cf. [9])

$$
\begin{aligned}
\tilde{L}_{m, p}:= & \left\{\left(x_{1}, \ldots, x_{p}\right) \in\left(\partial \Delta_{m-1}\right)^{p} \mid \text { If } j, k \in\{1, \ldots, p\}\right. \\
& \text { with } \left.\quad k \equiv j+1(\bmod p) \quad \text { and } \quad x_{j} \in \Delta_{m-1 ; i}, \text { then } x_{k} \in \Sigma_{m-1 ; i}\right\}
\end{aligned}
$$

and $\varphi_{m, p}: \tilde{L}_{m, p} \rightarrow \tilde{L}_{m, p}$,

$$
\varphi_{m, p}\left(x_{1}, \ldots, x_{p}\right):=\left(x_{2}, \ldots, x_{p}, x_{1}\right) .
$$

By Theorem 2 in [9] and by Theorem 4, we know that

$$
\tilde{\mathrm{g}}\left(\mathscr{F}\left[\varphi^{\mathrm{p}}\right], \varphi\right) \geq \tilde{\mathrm{g}}\left(\tilde{L}_{m, p}, \varphi_{m, p}\right)=r_{2}(m, p) \geq\left(\left[\frac{m}{4}\right]-1\right)(p-1) .
$$

This example shows that one would have to use additional properties of f to prove the asymptotic conjecture. But moreover, it is a strong hint that the conjecture is wrong.

References

1. K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
2. F. Cohen and E. L. Lusk, Coincidence point results for spaces with free \mathbb{Z}_{p}-actions, Proc. Amer. Math. Soc. 49 (1975), 245-252.
3. I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.
4. M. A. Krasnosel'skiǐ, On special coverings of a finite-dimensional sphere, Doklady Akad. Nauk SSSR 103 (1955), 961-964. (Russian).
5. L. Ljusternik and L. Schnirelmann, Topological methods in variational problems, Issledowatel'skiǐ Institut Mathematiki i Mechaniki pri J.M.G.U., Moscow, 1930. (Russian)
6. E. L. Lusk, The mod p Smith index and a generalized Borsuk-Ulam theorem, Michigan Math. J. 22 (1975), 151-160.
7. C. Schupp, Verallgemeinerungen des Borsuk-Ulamschen Koinzidensatzes, Ph. D. Dissertation, University of Munich, 1981.
8. H. Steinlein, Borsuk-Ulam Sätze und Abbildungen mit kompakten Iterierten, Dissertationes Math. (Rozprawy Mat.) 177 (1980), 116 pp.
9. H. Steinlein, Some abstract generalizations of the Ljusternik-Schnirelmann-Borsuk covering theorem, Pacific J. Math. 83 (1979), 285-296.
10. A. S. Švarc, Some estimates of the genus of a topological space in the sense of Krasnosel'skiǔ, Uspehi Mat. Nauk 12 (1957), no. 4 (76), 209-214 (Russian).
11. A. S. Švarc, The genus of a fiber space, Trudy Moskov. Mat. Obšč. 10 (1961), 217-272 and 11 (1962), 99-126; (Russian), English translation in Amer. Math. Soc., Translat., II. Ser. 55 (1966), 49-140.

Mathematisches Institut
Universität München
ThERESIENSTR. 39
D-8000 MÜnchen 2, GERMANY

