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Rotational effects are commonly neglected when considering the dynamics of freely
rising or settling isotropic particles. Here, we demonstrate that particle rotations play
an important role for rising as well as for settling cylinders in situations when mass
eccentricity, and thereby a new pendulum time scale, is introduced to the system. We
employ two-dimensional simulations to study the motion of a single cylinder in a
quiescent unbounded incompressible Newtonian fluid. This allows us to vary the Galileo
number, density ratio, relative moment of inertia (MOI) and centre-of-mass (COM) offset
systematically and beyond what is feasible experimentally. For certain buoyant density
ratios, the particle dynamics exhibits a resonance mode, during which the coupling via the
Magnus lift force causes a positive feedback between translational and rotational motions.
This mode results in vastly different trajectories with significantly larger rotational and
translational amplitudes and an increase of the drag coefficient easily exceeding a factor
two. We propose a simple model that captures how the occurrence of the COM offset
induced resonance regime varies, depending on the other input parameters, specifically
the density ratio, the Galileo number and the relative MOI. Remarkably, depending on the
input parameters, resonance can be observed for COM offsets as small as a few per cent
of the particle diameter, showing that the particle dynamics can be highly sensitive to this
parameter.
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1. Introduction

One of the striking characteristics of freely rising and settling particles at sufficiently large
Reynolds numbers is the existence of non-vertical paths. This type of motion is a common
characteristic for the dynamics of blunt bodies in general (Ern et al. 2012) and is related
to the presence of a (periodically) oscillating wake with vortex shedding, akin to that
forming behind a fixed geometry (Gerrard 1966; Perry, Chong & Lim 1982; Williamson
1996). The phase regimes of freely rising or settling bodies are more complicated than
their fixed counterparts, however, due to the inherent coupling between the motion of the
body–fluid interface and the surrounding flow morphology. This results in a complex,
often only quasi-periodic motion that is generally difficult to predict a priori. Therefore, a
complete solution or model of these systems remains elusive in many cases such that new
insights rely on empirical results and parameter studies based on experiments or numerical
simulations. Understanding and modelling of particle dynamics is important in many
fields, for instance, to predict the spread of (plastic) pollutants in the ocean (Sutherland
et al. 2023).

Properties of the paths and dynamics observed for buoyancy/gravity driven motion are
determined by the strength of the coupling between particle and fluid. When this coupling
is weak (Horowitz & Williamson 2006) or when the degrees of freedom of motion are
limited (Williamson & Govardhan 2004), then the fluid response will be similar to that
of a fixed geometry. On the contrary, regimes exist where particle kinematics are strongly
affected by the fluid motion, and vice versa leading to alterations in flow morphology
and particle trajectory and dynamics, e.g. the shedding frequency, path amplitude, and
most practically relevant, the drag. These changes to particle dynamics and kinematics are
important for our understanding of, e.g. the mixing behaviour in chemical reactors and in
waste/resource extraction by flotation and sedimentation (Alméras et al. 2015; Chan, Ng
& Krug 2023) or in natural processes such as sedimentation in rivers or oceans (Meiburg
& Kneller 2010), particle-turbulent interaction of falling snowflakes in the atmosphere
(Nemes et al. 2017) or, as previously mentioned, the spread of micro plastics in our oceans
(Sutherland et al. 2023).

Previous studies have often focused solely on the translational dynamics in relation to
the particle-to-fluid density ratio, often disregarding body rotation, as noted by Mathai
et al. (2017). In the present work, we primarily focus on the effects of rotational
coupling. To this end, we vary the internal mass distribution of freely rising and settling
two-dimensional (2-D) cylinders by introducing a centre-of-mass (COM) offset. This
approach is motivated by the recent work of Will & Krug (2021b), where the COM of
freely rising and settling spheres was varied experimentally. This study found that the
rotational dynamics of the spheres are strongly affected by the internal mass distribution,
which in turn strongly affects all other aspects of particle motion. Stronger rotational
dynamics is also observed for anisotropic particles. However, in this case inertial (normal)
forces on the particle also contribute a net torque, such that the driving in this case is
not exclusively via the rotational–translational coupling introduced by the COM. The
observed phenomena, for the case of spheres, could be explained via the analogy to a
simple driven harmonic oscillator and expressing the results in terms of a time-scale
ratio between the ‘pendulum’ frequency, induced by the offset, and the driving frequency,
which is determined by the vortex shedding. This model captured several key features
of the particle dynamics when COM offset was present. It further predicted additional
dependencies on the particle-to-fluid density ratio Γ , the dimensionless moment of inertia
(MOI) of the particle I∗ and implicitly on the Galileo number Ga, which is similar
to the Reynolds number Re as it is a measure of the ratio between inertial to viscous
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forces but uses an a priori defined buoyancy velocity scale instead of a dynamical one,
and governs the onset and transitions in between the various wake-structure topologies.
However, due to experimental and physical constraints, the parameter space available
in Will & Krug (2021b) is insufficient to test these conclusively. Therefore, we aim to
systematically investigate these dependencies by means of numerical simulations of 2-D
cylinders with COM offset, to show that the underlying physics are similar between the
2-D and three-dimensional (3-D) case, and that the results presented here can shed light
on the remaining open questions.

The problem of freely rising or settling cylinders is an extension of the classical case
of vortex-induced vibrations (Bearman 1984; Parkinson 1989; Govardhan & Williamson
2000; Williamson & Govardhan 2004), where a cylinder is placed in a free stream with
only limited degrees of freedom. The applied restrictions indicated that the degrees of
freedom and, therefore, the amount of particle motion (tuned by body inertia, spring
stiffness and damping of the supports) strongly influence the wake structure and coupled
dynamics. Williamson & Roshko (1988) presented qualitatively similar results for a
cylinder that was forced periodically in a free stream and classified the resulting wake
patterns as a function of the driving amplitude and frequency. Building on this, the work
by Jeon & Gharib (2004) showed that the type of vortex shedding depends on transverse
and streamwise oscillations as well as on their relative phase. Similarly, the effects of
forced rotations were examined in recent work by Bourguet (2023) for elastically mounted
cylinders at subcritical Reynolds numbers (Re ≤ 30), uncovering significant alterations
in the flow structure and amplitude of oscillation depending on Re and the rotational
magnitude and frequency. For the case of freely rising and settling 2-D cylinders, a
critical mass density ratio (Γ ), the ratio of particle-to-fluid mass density, was encountered,
marking the threshold between reduced coupling at high Γ where the particle dynamics
and its wake barely influence each other. On the contrary, below this threshold, particles
show large path amplitudes and substantial alterations in the wake vortex shedding
frequency (Horowitz & Williamson 2006, 2010b). Similar density ratio related transitions
in the regime of motion have also been observed for spheres (Horowitz & Williamson
2010a; Auguste & Magnaudet 2018; Will & Krug 2021a). Following the same train of
thought, the rotational MOI was also investigated as a relevant parameter, governing the
dynamics of rising and settling 2-D cylinders in the numerical work of Mathai et al. (2017),
as well as experimentally for spheres (Mathai et al. 2018; Will & Krug 2021a). Due to
these previous observations, we investigate the effects of Γ and MOI separately and in
combination with effects induced by a COM offset.

Before proceeding with the problem definition, caution is warranted when interpreting
the results as the 2-D assumption in this work effectively corresponds to the limiting case
of particle motion for very long cylinders settling or rising in a 3-D environment. Beyond
a certain Reynolds number, the flow will become inherently three dimensional, even for
a cylinder of infinite length; for a fixed cylinder, this is found to occur around Re ≈ 190
(Henderson 1997; Williamson & Brown 1998; Aleksyuk & Heil 2023). Moreover, the
cylinder length and associated end effects play an important role (Inoue & Sakuragi 2008),
such that the motion of these cylinders becomes inherently three dimensional, showing
both horizontal (azimuthal) cylinder rotation (around the vertical axis) and fluttering
motion (around a horizontal axis) (Toupoint, Ern & Roig 2019). Therefore, we would like
to preface this work by stating that the principle goal is not to perfectly predict dynamics
of 3-D cylinders settling or rising in a quiescent fluid but rather to better understand the
physics underlying the behaviour resulting from different combinations of the four control
parameters for both cylindrical and, more relevantly, spherical geometries.
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Figure 1. (a) Schematic of the cylinder with the COM (G) displaced by a distance � from the volumetric
centre (C). The pointing vector p is a unit vector in the direction from G to C and θ is the angle between
p and the vertical (y direction). The forces acting on the body are buoyancy (F b) and the remaining fluid
forces F f (in C) and gravity F g (in G). (b) Schematic depicting the direction of the Magnus lift force, the
horizontal component of which is used together with the horizontal particle acceleration to calculate the phase
lag�φ. (c) Time signals of the horizontal component of the Magnus force (F m ∼ −ωzvy, blue) and horizontal
particle acceleration (ax/g, red) for three different offset cases, showing different phase lags. Note that, since
〈vy〉 = O(1), the value on the left y axis is indicative of body rotation.

1.1. Problem definition and equations of motion
In this work we concern ourselves with the dynamics and kinematics of freely rising
and settling 2-D cylinders in an otherwise quiescent, infinite fluid. The fluid phase has
a constant mass density ρf and a kinematic viscosity ν. The motion of the cylinder is
confined to move within the xy plane. Here, the y axis is anti-parallel to the gravity vector
(which has magnitude g). Subscripts x and y are assigned to vector components in this
plane. We denote particle position, velocity and acceleration by xp, v and a, respectively.

The particle (see the schematic in figure 1a) has a circular diameter D, and an effective
mass mp, mass density ρp and a volume V , per unit length. The COM of the cylinder
(designated with point G) is displaced by a distance � from the geometric centre C.
Subscripts C and G throughout will refer to these points. A unit pointing vector p is defined
between these points from G to C. From here, we define the angles θ between p and ey (the
vertical unit vector), and θv between p and vC (the instantaneous particle velocity at the
centre). The buoyancy force acts upwards through point C, while the gravitational force
acts downwards through point G. The relevant velocity scale characterising this system is
the buoyancy velocity, i.e. Vb = √|1 − Γ |gD.

The dynamics of freely rising and settling buoyancy-driven particles is governed by the
linear and angular momentum balances. In the present work, all particle dynamics is for
unconstrained motion, implying that the only two forces acting on the geometry are a body
force due to gravity (F g = −ρpVgey) and the force exerted by the fluid on the particle F F.
For convenience, we split this total fluid force into a contribution due to buoyancy and
a time-varying part F F = F b + F f , where F b = ρfVgey. Therefore, the conservation of
linear momentum for the cylinder is given by

Γ
dvG

dt
= F f

mf
+ (1 − Γ )gey, (1.1)
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with Γ = ρp/ρf the mass density ratio and mf the mass of the fluid displaced by the
particle. It is important to note that (1.1) is independent of the COM offset. The angular
momentum balance for a 2-D cylinder with COM offset reads

IC
d2θ

dt2
= Tf − 1

2
mpγD(gey + aC)× p, (1.2)

where the balance is constructed with respect to the geometric centre of the particle.
Here, Tf is the fluid torque due to viscous stresses on the particle and the additional
terms (gey + aC)× p on the right-hand side results from the COM offset. In the current
work we treat IC, the MOI of the particle around point C, as the governing parameter
characterising the body’s rotational inertia. With IG following from the parallel axis
theorem: IG = IC − mp�

2. Furthermore, γ denotes the ratio γ = 2�/D. The rotational
dynamics described in (1.2) resembles that of a forced pendulum (Will & Krug 2021b),
for which, when linearised, the natural frequency is given by

fp = τ−1
p = 1

π

√
γ g
DI∗ , (1.3)

with I∗ = IC/IΓ and IΓ = mpD2/8 a reference value of a homogeneous cylinder with
identical mass mp. Therefore, the physically relevant range is 0 ≤ I∗ ≤ 2, i.e. 0 ≤ IC ≤
1/4mpD2 (all mass in the centre, all mass on the edge, respectively). In our work, however,
we consider cases beyond I∗ = 2 to unravel the role of this parameter. We can further
write (1.2) in dimensionless form by introducing a dimensionless time scale t̃ = t/τv ,
where τv = D/Vb is the vortex shedding time scale and, therefore, represents the typical
time scale of the forcing in (1.2). Since the geometry is cylindrical and only shear forces
contribute to the torque around C, we use viscous scaling to non-dimensionalise the
viscous torque term as Tf = μDLVbT∗

f (Jordan & Fromm 1972; Bouchet, Mebarek &
Dus̆ek 2006). Here, L is the length of the cylinder that is set to unity in the present work. On
the other hand, since the contribution of the body acceleration is related to lateral, pressure
induced, forcing, we use inertial scaling in order to non-dimensionalise this term writing
the particle acceleration as aC ∼ F f /mp, and using inertial scaling ‖F f ‖ ∼ ρf LDV2

b to
obtain aC = V2

b/(DΓ )a
∗
C. Applying this to (1.2) we obtain

d2θ

dt̃2
= 32

π

1
GaΓ I∗ T∗

f − 4γ
I∗

(
1

|1 − Γ |ey + 1
Γ

a∗
C

)
× p. (1.4)

Here, the Galileo number is defined as Ga =
√

|1 − Γ |gD3/ν. The dimensionless
prefactor γ /(|1 − Γ |I∗) in front of the pendulum term is proportional to the square of
the ratio T of the vortex shedding to the pendulum time scale as defined in Will & Krug
(2021b). For a 2-D cylinder, this time-scale ratio is equal to

T = τv

τp
= 1

π

√
γ

|1 − Γ |I∗ . (1.5)

Note that the control parameter T is solely dependent on the prescribed particle and fluid
properties. It was shown by Will & Krug (2021b) that this control parameter governs the
rotation dynamics of spheres with a COM offset. We will validate and expand upon this
finding in the present work.

In § 2 we first outline the numerical approach used to obtain the results as well as the data
processing applied to the dataset. Then, in §§ 4–6, our results are presented and discussed.
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This is split into four sections, where § 3 contains a general discussion on effects of COM
offset, the resonance mechanism and the effect of fluid inertia for freely rising cylinders.
Next, in § 4 the role of the particle-to-fluid density ratio and how it affects COM-induced
phenomena is discussed along with the differences between rising and settling, followed
by a discussion on MOI effects in § 5 and Galileo number effects in § 6. Finally, in § 7 the
primary results and findings are summarised.

2. Numerical framework

2.1. Fluid phase
The incompressible Navier–Stokes equations describe the flow of an unbounded
Newtonian fluid around the particle and satisfy the boundary conditions at the body
surface and infinity. An approximate computational strategy to model this configuration
is achieved by solving the Navier–Stokes equations on a finite size domain in a moving
reference frame attached to the body. For a perfectly circular particle, this reference frame
does not need to rotate due to the body’s inherent symmetry. A co-moving frame also
allows for a configuration where the gravity vector is directed towards the outlet such
that the wake can gently leave the domain without disturbing the particle dynamics. The
incompressible Navier–Stokes equations are non-dimensionalised with Vb and D. For the
translating frame, the momentum and continuity equations are given by (see, e.g. Mougin
& Magnaudet 2002; Jenny & Dušek 2004)

∂u
∂t

+ ∇ · [u(u − vC)] = −∇p + 1
Ga

∇2u + f , (2.1a)

∇ · u = 0, (2.1b)

with u the fluid velocity vector, p the kinematic pressure and f the boundary forcing from
the immersed boundary method that enforces the no-slip condition (described in detail
§ 2.2). Note that the hydrostatic component is absent from p as it is explicitly added to the
forces acting on the cylinder.

The velocity at the inflow is set to zero to simulate an asymptotically quiescent fluid.
At the outflow, a convective boundary is imposed (see, e.g. Kim & Choi 2006). The side
walls of the 2-D domain are periodic. The domain size is set to 60D in the gravity direction
and 20D in the transverse direction, which was found to be sufficiently large to avoid box
size effects. The grid spacing was kept constant within a square of size 2D adjacent to the
cylinder. Outside this domain, the mesh spacing expands linearly towards the edges of the
domain. A heat equation is solved to smoothen the mesh transition from the fine constant
spacing surrounding the cylinder to the linearly expanding mesh, which is required to
avoid numerical artefacts, and the final grids employed for the various cases are presented
in table 1. These grids were chosen such that the particle boundary layer was resolved by
three to four grid points. Tests confirmed that halving the respective grid spacing did not
alter the overall statistics.

2.2. Numerical method
The numerical scheme closely follows the immersed boundary projection method (IBPM)
originally developed by Taira & Colonius (2007) and Lǎcis, Taira & Bagheri (2016) of
which a brief overview is presented. We solve (2.1a) and (2.1b) on a staggered grid,
where the spatial gradients are computed using a conservative second-order central finite
difference scheme. The nonlinear term of (2.1a) is advanced in time via the explicit
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Ga D/�x Nx × Ny

50–200 50 420 × 960
500 84 520 × 1104
700 95 560 × 1152
2000 161 700 × 1440

Table 1. Overview of the grids. The first column denotes the Galileo number Ga. The second column
represents the number of grid points per diameter of the cylinder. The third column is the grid resolution
for the fluid phase.

second-order Adams–Bashforth scheme and the viscous terms via the second-order
implicit Crank–Nicolson scheme, i.e.

un+1 − un

�t
+ 3

2
N̂(un, vn

C)− 1
2

N̂(un−1, vn−1
C ) = −Ĝϕn+1/2

−Ĝpn + 1
2Ga

L̂(un+1 + un)+ Ĥf n+1/2, (2.2a)

where

D̂un+1 = 0 and Êun+1 = vn+1
C + ωn+1 × L. (2.2b)

Here, N̂(u, vC) denotes the nonlinear operator, Ĝ the gradient operator, L̂ the Laplace
operator, D̂ the divergence operator, Ĥ the spreading (regularisation) operator, Ê the
interpolation operator, ϕn+1/2 the discrete incremental pressure, pn the discrete pressure,
L the Lagrangian marker coordinates with respect to geometric centre and f n+1/2 the
discrete analogue of f in (2.1a). The interpolation and regularisation matrices Ê and Ĥ
make use of a discrete three-point δ function (Roma, Peskin & Berger 1999).

For the particle, the non-dimensional Newton–Euler equations are advanced in time via

1
�t
(vn+1

C − vn
C) = CB(NBf̃ n+1/2 +�qB)+ gn − ζ n, (2.3)

with

CB = 4
πΓ

⎡
⎣1 0 0

0 1 0
0 0 8/I∗

⎤
⎦ , NB = −

⎡
⎣ 1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1
−Ly1 . . . −Lyn Lx1 . . . Lxn

⎤
⎦ ,

(2.4a,b)

�qB ≡ Q(un − un−1)/�t and Q the matrix that interpolates the velocity inside
the cylinder (cf. Kempe & Fröhlich 2012). The time step is limited with a
Courant–Friedrichs–Lewy number of 0.4.

Vector gn contains the buoyancy force and the torque induced by the particle weight.
The Newton equation in (1.1) is solved with respect to the geometric centre and we make
use of vC = vG + γ /2 ω × p for the transformation of (1.1). Additionally, the equation
of angular conservation is solved with respect to the geometric centre (see § 1) yielding
an additional aC × p term. The terms from the latter contributions are collected in ζ n.
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Finally, we have, for gn and ζ n,

gn ≡
⎧⎨
⎩

0
sgn(1 − Γ )/Γ

−4γ /I∗ sin θn

⎫⎬
⎭ , ζ n ≡ γ

2�t

⎧⎨
⎩
ωn cos θn − ωn−1 cos θn−1

ωn sin θn − ωn−1 sin θn−1

(an
x cos θn + an

y sin θn)/I∗

⎫⎬
⎭ , (2.5a,b)

with an
x ≡ vn

x − vn−1
x and an

y ≡ vn
y − vn−1

y , discretised components relating to aC,
respectively.

Equation (2.2a) together with constraints (2.2b) and (2.3) can be rewritten as

⎡
⎢⎢⎣

A 0 G ET

0 IB 0 NB
GT 0 0 0
E NT

B 0 0

⎤
⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qn+1

vn+1
C

ϕn+1/2

f̃ n+1/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎨
⎪⎩

rn

rn
B
0
0

⎫⎪⎬
⎪⎭ , (2.6)

with qn+1 = Run+1, E = ÊR−1, diagonal matrix R ≡ [�yj, 0; 0,�xi], A = M̂[I/�t −
L̂/(2Ga)], and rn, rn

B containing the explicit terms. We approximate the inverse of
A as A−1 ≈ B = �tM−1 (Lǎcis et al. 2016, cf. § 3), with M = M̂R−1, M̂ ≡ [(�xi +
�xi−1)/2, 0; 0, (�yj +�yj−1)/2)] a diagonal matrix. The solution procedure of (2.6) is
performed via a block-LU decomposition following a three step procedure[

A 0
0 IB

]{
q∗
v∗

C

}
=

{
rn

rn
B

}
, (2.7a)

[
GTBG GTBET

EBG EBET + NT
BI−1

B NB

]{
ϕn+1/2

f̃ n+1/2

}
=

{
GTq∗

Eq∗ + NT
Bv∗

C

}
, (2.7b)

{
qn+1

vn+1
C

}
=

{
q∗
v∗

C

}
−
{

BGϕn+1/2 + BET f̃ n+1/2

I−1
B NB f̃ n+1/2

}
. (2.7c)

Here, q∗ in (2.7a) is solved for via a well-tested factorisation procedure (see, e.g.
Verzicco & Orlandi 1996). The solution of ϕn+1/2 and f̃ n+1/2 are obtained via the PETSc
library (Balay et al. 1997, 2019) using the algebraic multigrid method BoomerAMG
as the preconditioner and the general minimum residual method to solve (2.7b). This
combination of solvers was found to be robust and converge within 12–17 iterations
depending on the selected grid size and time step. A relative tolerance was set to 10−13, to
obtain solutions that satisfy the divergence free condition and no-slip condition up to the
limit of double-precision calculations. Once the solution vector is found, we update the
pressure field (cf. Verzicco & Orlandi 1996) to

pn+1 = pn + ϕn+1/2 − �t
2Ga

L̂ϕn+1/2. (2.8)

The additional solving routines for (2.7b) and (2.7c) were tested to ensure that they yield
machine precision solutions satisfying the divergence free and no-slip condition (defined
in (2.2b)). The overall solution procedure was found to provide a first-order convergence
rate in the L2 norm for the velocity field and first order in time (owing to the approximation
of A−1 ≈ �tM−1). Multiple validations for fixed and freely rising cylinders showed good
agreement with previous numerical and experimental studies (see Appendix A). The
method was found to be stable, even for density ratios as low as Γ = 0.001. This stability
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2-D cylinders with centre-of-mass offset

is inherent to the coupling between the particle and the flow via the matrix definitions
defined in (2.7c). This means that we may use explicit finite differences for the predictor
velocity v∗

C in rn
B, since the corrector velocity vn+1

C is solved for simultaneously with qn+1.

2.3. Dataset and processing
In this work, a total of 938 cases have been simulated for different combinations of the
four control parameters: T , Ga, Γ and I∗. The main goal is to investigate the effect of the
COM offset in combination with the other parameters. For this, we varied T between 0
and a maximum of 0.6, Ga in the range between 50 up to 2000, Γ between 0.001 and 5,
and I∗ from 0.5 to 16. Compiled input and output parameters for all cases in our dataset
are included in the supplementary materials available at https://doi.org/10.1017/jfm.2024.
30.

All results presented in this study are obtained after a statistically steady state has
been reached. To ensure this, first, a moving average is computed of the time trace of
the vertical velocity with an averaging window much larger than a single period of the
typical fluctuations. This processed signal is compared with the terminal velocity of that
case (determined by the average of the last 10 % of the time signal). The initial transient
is considered to have ended once the filtered time signal deviates less than 5 % from this
terminal velocity. For Ga = 200, this typically is the case after a transient time of 60D/Vb,
which is short compared with the total average simulation time of (1.9 × 103 D/Vb).

A number of different properties are derived from the simulations to characterise
kinematics and dynamics of the particle path and the surrounding flow field. In the
following, we describe the procedures used to extract these in detail.

The frequency f of the horizontal path oscillations is determined by the peak of the
power spectrum of vx(t)/Vb, for which we applied local peak fitting in order to increase the
accuracy of the estimated f . In the case of multiple peaks, the most prominent one is used
in subsequent analysis and data visualisation. Some specific cases featuring multiple peaks
are discussed in § 4.2. The obtained values of f were cross-checked with an autocorrelation
analysis of vx(t)/Vb, which was found to yield almost identical results in all cases.

Due to the intrinsic unsteady and non-regular motion of these bodies, some additional
processing is required to obtain oscillation amplitudes of the particle rotation and
translation due to drift present in the time signals of xp(t) and θ . The reference θ = 0 is
either defined by the direction of the offset or by the initial orientation in the case of zero
offset without loss of generality. To correct for the slow drift present for some of the cases,
we employ a moving averaging filter on the signal with a window size of approximately
1/f (Ga, Γ, T , I∗), or one full oscillation time. Thus, we obtain a ‘centreline’ (xcl(t),
with horizontal mean drift velocity vd = 〈|dxcl,x/dt|〉, documented in the supplementary
data) that is subtracted from the actual position and orientation time signal to remove
any low frequency effects. The absolute value of the signal processed this way is used
to determine a list of the individual peak amplitudes (A) for the path and (θ ) for the
rotational oscillations, the mean of which is denoted by Â and θ̂ , respectively. Note that,
as a consequence, this can mean that the particle does not exhibit rotational oscillations
around θ = 0 (where p is pointing upwards). Instead, especially for small offsets, we
observed a behaviour where θ might drift away from θ = 0 followed by a large rotation
back to the reference state when the rotational amplitude becomes large.

The phase lag �φ between the horizontal component of the Magnus lift force F m and
the horizontal body acceleration ax is calculated via cross-correlation of these quantities.
Similarly, �ψ denotes the phase lag between the angular acceleration α and the fluid
torque Tf . The lag obtained from the cross-correlation is divided by the length of an
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Figure 2. Snapshots of particle trajectories and wake structures of rising cylinders with Galileo number Ga =
200 and density ratio Γ = 0.5 for six different COM offsets γ (and T ) (a– f ). The offset increases from left
to right as indicated by the listed parameters at the top left of each subfigure. Particle trajectories are indicated
by the black lines, the grid spacing has dimensions of the particle diameter D. Coloured contours represent the
normalised vorticity field (ωzD/Vb).

oscillation period 1/f and then expressed as a phase angle ranging from −180◦ to 180◦.
The respective components that define �φ are illustrated in figure 1(b). Figure 1(c)
provides three examples of signals with varying T showing a negative, zero and positive
value of �φ.

3. General effect of the COM offset on dynamics and kinematics

3.1. Particle kinematics and wake structures
We present figure 2 to give an impression of how the wake patterns and particle kinematics
change in the presence of COM offset. These snapshots display the non-dimensionalised
fluid vorticity field (ωz = ∂yux − ∂xuy) along with particle tracks (black lines) for six
different COM offsets in the range γ ∈ [0, 1.23] (increasing from left to right). All cases
here are for Ga = 200, Γ = 0.5 and I∗ = 1.

The cylinder with zero COM offset in figure 2(a) is seen to rise almost straight, with
regular vortex shedding occurring at double the frequency of the path oscillations. This
vortex pattern, where two single vortices of opposite vorticity are shed during a single
oscillation cycle, is the so-called ‘2S’ mode (Williamson & Roshko 1988). No visible
effect of the COM offset is observed for cases up to T = 0.174 (figure 2b), but beyond
this value, e.g. T = 0.201 shown in figure 2(c), remarkably different kinematics are
encountered. Both amplitude and wavelength of the path oscillations are significantly
larger in this case, and the wake now exhibits an irregular vortex shedding pattern as
can be seen in supplementary movie 1. For this case, it is observed that the wake structure
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Figure 3. (a) Mean rotational amplitude θ̂ as a function of Galileo number versus the time-scale ratio T , here
Γ = 0.6 and I∗ = 1. (b) Schematic showing the parameters of the fluid inertia model. (c) Plot showing θ̂ for
the same cases as in (a) plotted against the modified time-scale ratio T̃ , which includes the effects of a Galileo
number dependent added fluid inertia as per (3.1b). (d) Thickness of the fluid inertia layer δ and (e) added
inertia as a function of Ga, based on empirical collapse of the data.

intermittently switches between several modes: (i) path oscillations with no significant
shedding events (denoted by 0 in figure 2), (ii) one single vortex pair per oscillation as in
the 2S regime or (iii) four vortices per oscillation cycle; in two pairs of two shed when
the body is changing direction; the so called ‘2P’ mode. Note that these different modes
appear to alternate without any noticeable long time-scale pattern. This chaotic shedding
pattern occurs for cases close to what we call ‘resonance’, where the rotational forcing
induced by the path oscillations occurs at the same frequency as the inherent pendulum
time scale. For even higher values of T beyond resonance, represented by T = 0.285
in figure 2(d), we observe that the large amplitude path oscillations persist albeit with a
reduced wavelength. Furthermore, the vortex shedding returns again to an unperturbed
2S mode now with staggered vortex cores due to the strong path oscillations. Finally,
with even larger offsets, figure 2(e, f ), the amplitude of the path oscillations begins to
gradually reduce, returning to a state very much like that for the zero offset case (see
supplementary movie 1 for T > 0.3 cases). The results shown here are representative of
the Γ range where the resonance phenomenon is present. In the following, we evaluate
how this resonance behaviour depends on all of the other governing parameters.

3.2. On the importance of fluid inertia
In order to investigate the effect of fluid inertia, we first consider the mean rotational
amplitude (θ̂ ) for a constant density ratio (Γ = 0.6) as a function of the time-scale ratio
T as shown in figure 3(a). Focusing initially on the case Ga = 200 (corresponding to
figure 2), we see that at T = 0 the rotational amplitude is small θ̂ = 0.4◦. Introducing
a small amount of offset results in a marginal increase in this amplitude up to θ̂ = 1.4◦
at T = 0.16. However, around T = 0.2, there is a strong increase reaching a maximum
amplitude of more than θ̂ = 35◦ at T = 0.225. This rapid increase is associated with
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the resonance phenomenon that was already visible in figure 2(c). Beyond this point, the
amplitude decreases gradually with increasing T .

When comparing results across different Ga numbers, the same characteristic behaviour
is observed for all cases in figure 3(a). However, the value of T at which resonance
appears (marked by the steep increase in θ̂ ) is consistently shifted towards higher values
as Ga decreases. Such a variation with Ga is not surprising since the definition of T does
not incorporate any viscous effects. However, for low values of Ga, one would expect
the Stokes layer surrounding the particle to contribute significantly to the total rotational
inertia of the body and thereby also to modify the particle pendulum time scale. We can
account for this effect by additionally including the rotational inertia Ia resulting from the
Stokes layer with thickness δ as illustrated in figure 3(b) in our analysis. As a result, the
modified pendulum frequency and time-scale ratio of the system become

f̃p = 1
π

√
γ g

D(I∗ + I∗
a/Γ )

(3.1a)

and

T̃ = 1
π

√
γ

|1 − Γ | (I∗ + I∗
a/Γ

) , (3.1b)

respectively. Here I∗
a is the dimensionless fluid inertia defined as I∗

a ≡ 8Ia/(mf D2), the
ratio of the Stokes layer’s rotational inertia to that of the displaced fluid. The total
rotational inertia is thus given by I∗ + I∗

aΓ . We assume that the thickness of this Stokes
layer scales as δ ∼ 1/

√
Ga (Williamson & Brown 1998; Schlichting & Gersten 2003;

Mathai et al. 2018), which for a cylinder leads to

I∗
a (Ga) = 8c1√

Ga
+ 24c2

1
Ga

+ 32c3
1

Ga3/2 + 16c4
1

Ga2 , (3.2)

with c1 as the only free parameter. We find that choosing c1 = 2.3 results in a reasonable
collapse of the resonance regime for different Ga when plotting θ̂ against T̃ as shown in
figure 3(c). The corresponding thickness of the Stokes layer and magnitude of the added
fluid inertia as a function of Ga are provided in figure 3(d,e), respectively. For Ga = 200,
the thickness of the fluid layer is approximately 0.33 particle radii and the rotational inertia
amounts to about two times that of the displaced fluid. Beyond Ga = O(103), the value of
I∗
a changes much more slowly, explaining the weak Ga dependence at higher Ga observed

in figure 3(a) as well as in previous work on spheres (Will & Krug 2021b). Note, however,
that I∗

a is still 0.72 of the displaced fluid mass at Ga = 1000 for cylinders and, therefore,
by no means negligible. We performed an estimate of the history torque to confirm that
the obtained values for I∗

a are realistic. A complete discussion of this for both cylinders
and spheres is provided in Appendix B.

3.3. Who’s driving?
When considering the right-hand side of (1.2), there are two potential drivers of the
rotational motion, the viscous torque Tf and the translational–rotational coupling term
aC × p, the latter being a consequence of the COM offset. Here, we investigate their
respective role with respect to the resonance behaviour. We know from the analysis in
§ 3.2 that the maximum in rotational amplitude is related to resonance between the vortex
shedding time scale τv and the pendulum time scale τp. However, both the viscous and
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Figure 4. (a,b) Results for Ga = 200 and Γ = 0.5 for two cases; one without offset (grey line) and one with
offset (red line). (a) Dimensionless horizontal velocity of the cylinder (vx) and (b) dimensionless rotation rate
(rad) versus dimensionless time. During these runs at t = 0 the aC × p term for (1.2) is turned off, showing
that in the absence of this coupling term the dynamics of particles with offset almost completely reverts back
to that of particles without offset. (c) Phase lag �ψ between the rotational particle acceleration (α) and the
viscous torque (Tf ).

translational driving will occur at the vortex shedding frequency, such that a distinction of
their effects is not possible on this basis only. Answering the question of ‘who’s driving’
also provides insight into the effectiveness of COM offset in specific regimes of motion.

In order to untangle the effects of both contributions, simulations were performed where,
after a statistically steady state had been reached, the (aC × p) term was turned off in the
integration of (1.2). In figure 4(a) the horizontal component of the particle velocity vx is
shown as a function of time for these runs at Ga = 200, Γ = 0.5 and T = 0 (grey line)
and T = 0.285 (red line). At t = 0, the coupling term aC × p is turned off for the case
with offset. Figure 4(b) displays the rotation rate ω for the same simulations. These results
clearly indicate that as the coupling term is turned off, the particle dynamics returns to
that of the case without offset. Note here that the pendulum term (ey × p) is still present
for t ≥ 0, but evidently it has no effect without translational driving of the rotational
dynamics. Therefore, we conclude that the rotational resonance phenomenon is linked
to the translational coupling. As a consequence, we expect COM offset to have no impact
on particle dynamics for cases where no horizontal path oscillations (i.e. no horizontal
accelerations) are present, e.g. at low Ga. This also suggests that the resonance behaviour
might also be triggered by outside periodic forcing, as would be present in a turbulent
flow environment. It would be interesting to study how the settling/rising velocities of low
Galileo number bodies with COM offset are affected in turbulence via this mechanism.

On the role of Tf , it is further instructive to consider the phase lag �ψ between Tf and
the rotational acceleration α, which is shown in figure 4(c) for the full range for Γ and T
at Ga = 200. For zero or very small offsets, Tf is driving the (weak) rotational dynamics
as evidenced by α and Tf being close to in phase. However, as the offset increases towards
resonance and beyond, �ψ switches swiftly to values close to 180◦, such that the viscous
torque predominantly acts as damping in these cases. In essence, these trends also hold for
higher Ga. However, the dynamics becomes somewhat more chaotic at higher Ga, as will
be shown in § 6, resulting in slightly lower values of �ψ on the order of 120–150◦.
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Figure 5. Results for the path oscillation frequency ( f ) of rising particles at Ga = 200 as a function of T
and Γ . In (a) the marker colour indicates the dimensionless frequency (Str = f D/Vb) according to the
continuous variation in the top part of the colour bar provided below. The marker type indicates the different
regimes in terms of the resonance behaviour discussed in the following. The isocontours are based on a linear
interpolation of the data, and the colour of the regions between the isocontours corresponds to the discrete
increments at the bottom of the colour bar. Dashed white lines represent isocontours of T̃ , the time-scale
ratio including effects of fluid inertia. (b) Horizontal particle position over the cylinder diameter (x/D) as a
function of dimensionless time grouped in three values of T for three values of the Γ as indicated by the
line colours showing characteristic behaviour for each. (c) Ratio of the frequency ( f ) of the path oscillations
over the pendulum frequency fp versus the time-scale ratio T̃ . Here the marker colour indicates Γ as listed in
the legend below the figure. The two dashed black lines show a constant value of Str. Both of these show the
collapse of COM and Γ effects in terms of this parameter. The grey shaded region in this figure indicates the
frequency lock-in regime. We further see that the results also collapse with the results from spheres with COM
offset (Will & Krug 2021b) shown as black symbols. The inset of the figure shows the same data as (a) plotted
as Str vs T̃ .

4. The effects of density ratio on COM offset

4.1. Frequency of oscillation
In the following sections we discuss how the effect of the COM offset varies with the
density ratio. In doing so, we focus on the representative case of Ga = 200 and I∗ = 1.
We first consider the frequency of the path oscillations ( f ), as this parameter also
corresponds to the frequency at which the rotational dynamics is forced. In figure 5(a)
we plot the data in the form of the Strouhal number

Str = f D
Vb

(4.1)

as a function of T and Γ . The marker colour in the figure indicates the exact Str obtained
from the simulations as can be read from the legend, the isocontours and background
colours represent a linear interpolation of this data. The transparent white area bordered
by the black dashed line indicates the region where γ >

√
0.5. This corresponds to

the theoretical state where IG, the MOI of the particle around the COM, is zero in
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accordance with the parallel axis theorem (IC = IG + mp�
2) as a consequence of keeping

IC ≡ mpD2/8 = const. (i.e. I∗ = 1). Furthermore, we also add a line where γ = 1,
i.e. when the point G lies on the particle edge. Results within this marked region are
therefore not physically viable, yet still satisfy the governing equations.

Considering the zero offset (T = 0) cases in figure 5(a) first, we find that Str varies
quite significantly from Str = 0.195 at high density ratios (Γ ≥ 0.2) to Str = 0.127 for
Γ ≤ 0.1. This transition appears to be quite sudden, suggesting the existence of a critical
density ratio as previously observed for rising and settling blunt bodies (Namkoong, Yoo
& Choi 2008; Horowitz & Williamson 2010b; Mathai et al. 2017; Auguste & Magnaudet
2018; Will & Krug 2021a). The change in the path frequency at the lowest Γ is also
associated with an increase in the path amplitude as is evident from the trajectories at
T = 0.15 (which resemble those at T = 0) in figure 5(b).

Now let us consider the effects of COM offset for varying Γ (i.e. moving vertically in
the figure). Depending on Γ , three distinct effects of increased offset can be observed.
First of all, for Γ ≥ 0.9 (marked by square symbols throughout), we find that increasing
COM offset has almost no effect on the oscillation frequency. There is only a slight
decrease for Str at extreme offset as can best be seen in the inset of figure 5(c). The
general lack of response to COM offset in this regime can be explained by considering
the rotational equation of motion as presented in (1.4). Remember here that the system is
similar to a driven damped harmonic oscillator where the pendulum term is analogous to
the spring stiffness, the viscous torque is the damping term, and the accelerated reference
frame (aC × p) provides the driving. The restoring torque is proportional to |1 − Γ |−1

and, therefore, goes to infinity for Γ → 1. This is not the case for the driving term that
scales according to Γ −1. Therefore, when the body becomes close to neutrally buoyant,
the pendulum torque goes to infinity and, as a result, the forcing can not rotate the body
significantly enough to induce any circulation. Therefore, there will be no Magnus force
and no rotational–translational feedback loop leading to resonance. Thus, for the cases
where Γ is close to unity, the oscillation frequency (as well as other output parameters) of
the body remain unaffected by the offset.

The second regime is characterised by a sharp transition in particle dynamics where in a
narrow range of T the dynamics switches between the base state (near identical to γ = 0)
and the resonance state. This is best shown in the inset of figure 5(c) where we see that
at low values of T̃ for intermediate density ratios (0.2 ≤ Γ ≤ 0.8), Str stays constant at
approximately 0.195 (upper branch). However, as the offset increases, there is a sharp jump
to the lower branch of Str. The upper branch corresponds to a system state with minimal
body rotation and translation, and in the lower branch the vortex shedding latches on to
body motion and is affected by the pendulum frequency. The cases Γ = 0.2 and 0.8 are
edge cases and show characteristics of their neighbouring regimes.

Finally, the third regime is characterised by a gradual transition to the resonance state
and is encountered for Γ ≤ 0.1. Here we find that even at zero offset they are already
following the lower branch in figure 5(c). Since the particle is already exhibiting path
oscillations and minute rotational oscillations even at zero offset, no critical threshold of
offset needs to be exceeded for the coupling to begin occurring. For these cases, even at
T̃ below resonance, we already see offset affecting the particle dynamics. The footprint of
these three regimes is also evident in the amplitude and spatial path frequency as shown
in figure 5(b). For high Γ , there is no effect of increasing offset, at intermediate density
ratios we see a large difference between different T , and at low Γ we observe large path
oscillations even at small/zero offset.
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Beside the jump at the onset of resonance, Str also varies significantly beyond the
resonance state. The isocontours of Str in this region approximately follow the lines of
constant T̃ (white dashed lines) and, in particular, the minimum of Str coincides roughly
with T̃ = 0.08. The correlation between Str and T̃ is explicitly shown in the inset of
figure 5(c). This plot also highlights the existence of two branches of the system state and
the fact the COM offset can trigger a transition between the two, indicated for each Γ by
the coloured dashed section of the lines. The collapse of the data on these two curves is not
trivial and underlines the validity of the Stokes layer argument at the core of the definition
of T̃ . As T̃ becomes very large, Str appears to return to the trend at large Γ where higher
density ratios have a slightly higher Str. It is further clear that while T̃ is the relevant
parameter to describe the behaviour after the transition from the low Str to high Str state,
the transition itself does not coincide with T̃ = const., but occurs at lower values of T̃ for
lower Γ . The case with the lowest density of Γ = 0.001 spans only a tiny range in terms
of T̃ even for the largest offsets. This could explain why there is no noticeable variation in
the particle behaviour for this density ratio even at large offsets. However, since the driving
term is proportional to 1/Γ , it will likely dominate the pendulum torque, which does not
diverge for small Γ .

As mentioned at the beginning of this section, the frequency of the path oscillations is
important for the driving of the rotational dynamics through (1.2). As with any harmonic
oscillator, the parameter of prime importance is the ratio of the driving to natural
frequency of the system f /f̃p, which we show in the main panel of figure 5(c) as a function
of the time-scale ratio T̃ . Curves of constant Str corresponding to the two different states
are indicated by the black dashed lines. Importantly, we find that f /f̃p = 1 occurs around
T̃ = 0.11, which corresponds to the bold white dashed line in figure 5(a). We further see
in figure 5(c) that the path oscillation frequency of the body appears to be drawn towards
fp as it begins to deviate from Str = 0.127 to meet f /f̃p = 1, consistent with the so called
lock-in phenomenon (Bishop & Hassan 1964; Bearman & Obasaju 1982). The region of
(approximate) frequency lock-in, ranging from 0.09 ≤ T̃ ≤ 0.12 is indicated by a grey
shaded area in the figure background throughout this work. Finally, we included the results
for rising and settling spheres with COM offset from the work by Will & Krug (2021b) as
black circles in figure 5(c). The good agreement with the present results suggests that the
underlying physics of the resonance mechanism are indeed the same and that results and
trends presented here are also relevant for spherical bodies in a 3-D flow environment.

4.2. On the transition to resonance
In this section we discuss the transition to resonance in the intermediate Γ regime, i.e. for
0.2 ≤ Γ ≤ 0.8 in more detail. In the range 0.3 ≤ Γ ≤ 0.7, the transition from the high
Str number mode to the low Str one occurs within a narrow band of T . This is also visible
from figure 6(a), where the power spectra normalised by the maximum amplitude (F ) of
vx/Vb are shown for T = 0.159, 0.195 and 0.225 in the vicinity of the transition point at
Γ = 0.6 (yellow diamonds, pink pentagons and purple hexagons, respectively). For both
T = 0.159 and T = 0.225, the spectra feature singular peaks only at Str ≈ 0.1 and Str ≈
0.2, respectively. The former peak also dominates for the intermediate case T = 0.195,
however, a weaker secondary peak at Str ≈ 0.21 is also seen to emerge at this offset value.
Similar trends can be observed across the range 0.3 ≤ Γ ≤ 0.7 with varying ratios of
relative peak height, suggesting that the transition between modes happens in a narrow
band of T , but is not entirely discrete.
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Figure 6. (a) Single-sided amplitude spectrum (F ) based on the particle horizontal particle velocity (vx/Vb)

normalised by the maximum amplitude. (b) Dimensionless horizontal velocity and rotation rate (rad s−1) versus
time for Γ = 0.8 and T = 0.327. We see that the dynamics exhibits a cyclical behaviour on a time scale much
greater than that of the vortex shedding dynamics. This behaviour is split into three parts as indicated by the
colours in the background of the figure. (c) Instantaneous Strouhal number as a function of time for Γ = 0.8 and
T = 0.327, calculated based on the peak-to-peak times of |vx/Vb|. (d– f ) Vortex shedding and path oscillations
correlating to the modes in (b,c). (d) Very low frequency oscillations of minimal amplitude, attached wake is
very large. (e) The buildup vorticity is rapidly shed in the wake at a high frequency, resulting in small amplitude
high frequency path oscillations. ( f ) Slower periodic vortex shedding with larger amplitude path oscillations,
the attached vorticity slowly grows throughout this phase until the cycle begins anew.

In § 4.1 we mentioned that Γ = 0.2 and 0.8 were on the edges of the Γ range for which
a sharp transition to the resonance regime was encountered. We investigate these cases in
more detail here. For Γ = 0.2, the range of T where multiple modes are observed widens
significantly as compare to 0.3 ≤ Γ ≤ 0.7. We observe multiple peaks in the spectra for
0.138 ≤ T ≤ 0.225 as exemplified by the case shown in figure 6(a) (green circles). This
extended range is most likely due to the intrinsic rotational and transitional oscillations
present at γ = 0 for Γ close to 0 and is similar to the cases of Γ ≤ 0.1. However, looking
at figure 5(c), we still observe that the cases at Γ = 0.2 and γ ≈ 0 follow the upper branch
in terms of f /fp and Str, making the behaviour transitional between the Γ regimes.

At Γ = 0.8, we find only a single case (T = 0.327) for which the system state jumps
to the lower branch in figure 5(c). In figure 6(a) (blue squares) we observe that this
jump is accompanied by a wide range of frequency peaks. The occurrence of multiple
peaks originates from a very unique frequency and amplitude-modulation cycle in the
fluid–structure interaction, the signature of which is shown in terms of the time evolution
of vx/Vb and ωD/Vb in figure 6(b). For both quantities, a modulation of the amplitude but
also of the frequency is evident at time scales much larger than that of the path oscillations.
This behaviour stands in stark contrast to the rest of the cases that exhibit very regular
periodic motion. Specifically, the parameter combinations that show this characteristic
behaviour are: Γ = 0.8 with T = 0.327 and T = 0.365, and Γ = 0.7 with T = 0.411.
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A video showing this behaviour along with the vorticity in the wake can be found in
supplementary movie 2.

To quantify the frequency variations, we plot the instantaneous Str in figure 6(c)
based on determining the distance between the maxima and minima in the signal vx/Vb.
Instances where the frequency is relatively low are indicated by the blue regions in
figure 6(b,c). The corresponding particle kinematics, showing a marked reduction in the
lateral amplitude, and the associated vortical structures for the low Str mode are illustrated
in figure 6(d). In this case, the cylinder rises almost vertically and the length of the attached
wake is at its maximum extent. After this, in the transitional period marked in yellow, the
path amplitude remains low but the frequency of the oscillations increases. Figure 6(e)
shows that this is linked to the rapid shedding of the buildup attached wake, quickly
reducing its length. This state is similar to the dynamics observed at higher Γ . Finally,
in the period indicated by red shading, the lateral amplitude is relatively large and the
oscillation frequency is intermediate. In the corresponding figure 6( f ), it is seen that over
the course of a number oscillation periods the attached wake slowly grows again until
this cycle repeats. Due to the large amplitude and longest duration of this phase, the red
region manifests as the strongest peak in the Fourier spectrum and, thus, the result for Str.
This behaviour is characteristic for the cases near Γ = 0.8 and T = 0.327 at this Galileo
number and is indicative of the density regime transitions, where the dynamics exhibits
signs of both regimes. These observations highlight that in the transition range, multiple
states can coexist.

4.3. Drag coefficient and Magnus force
In this section we concern ourselves with the mean vertical velocity, i.e. the terminal
rising/settling velocity, which is of particular practical relevance. We define the drag
coefficient Cd obtained from the time-averaged vertical force balance between the
buoyancy and the drag force, given that the particle has reached terminal velocity. For
a 2-D cylinder, this results in

Cd = π|1 − Γ |gD
2〈vy〉2 . (4.2)

Note that in this definition Cd solely reflects variations in the vertical velocity of the
particle. When plotted as a function of Γ and T (figure 7a), the drag coefficient exhibits
considerable variations almost up to a factor of 4 across the parameter space that are
predominantly induced by COM effects. At T = 0, Cd is found to be lowest for Γ = 0.2.
Moving to the right in the figure, i.e. towards increasing γ , the previously (§ 4.1) defined Γ
regimes can again be noted. For Γ ≥ 0.8, no increase in Cd is observed as a consequence
of the COM offset. However, for Γ ≤ 0.7, the resonance behaviour manifests itself in a
strong increase in Cd. These trends are explicitly plotted in terms of T̃ in figure 7(b,c).
For Γ ≤ 0.7, the resonance behaviour reaches a maximum for T̃ ≈ 0.11. This is indicated
in figure 7(a) by the bold white dashed line, and even more evident from the location
of the peak in Cd in figure 7(b). The value of T̃ = 0.11 corresponds to f /f ∗

p = 1 in
figure 5(c), i.e. where the driving frequency f and the pendulum frequency are identical.
The magnitude of the peak drag monotonically increases with Γ . Beyond T̃ = 0.11, Cd
gradually decreases again in all resonance cases. Finally, figure 7(c) also shows that, for
all cases at large offsets, even those that did not exhibit resonance (i.e. Γ ≥ 0.8), the drag
decreases slightly. It appears that the magnitude of the decrease is inversely correlated
with the mass density, resulting in a larger reduction for lighter particles (figure 7c).
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Figure 7. (a) Particle drag coefficient as a function of the particle-to-fluid density ratio Γ and the time-scale
ratio T for rising particles at Ga = 200 and I∗ = 1. (b) Drag coefficient plotted explicitly versus T̃ , the
time-scale ratio including fluid inertia effects. Capturing the maximum drag trend reasonably well. (c) Zoomed
in version of (b) showing the slight reduction of drag beyond the resonance peak. (d) Phase lag �φ between
the horizontal Magnus force and the horizontal component of instantaneous acceleration versus T̃ alongside
the experimental results for spheres (Will & Krug 2021b). The inset shows the correlation between Cd and�φ.

This phenomenon does not appear to occur at fixed values of T or T̃ . It is noteworthy,
though, that a similar drag reduction was encountered around similar values of T̃ for
settling and rising spheres with COM offset (Will & Krug 2021b).

In previous work by Will & Krug (2021b), the connection was made between the drag
increase and the maximum in the enhancement of horizontal particle acceleration (ax)
through the rotation induced Magnus lift force (Fm,x ∼ −ωzvy). Besides Fm,x, lateral
accelerations can also be driven by pressure fluctuations induced by the vortex shedding.
To study the enhancement of the path oscillations via the Magnus force, we consider
the phase lag (�φ) between Fm,x and ax. Examples of time series with different phase
lags for three values of T are shown in figure 1(c). When Fm,x and ax are in phase
(�φ = 0), the enhancement of the horizontal particle motion by the Magnus force is
maximum. The connection between �φ and Cd is established for the current dataset in
the inset of figure 7(d). In the main panel of figure 7(d), the phase lag is plotted explicitly
versus T̃ . Again there is excellent collapse of the data onto two branches, representing
the oscillating and non-oscillating states, identical to those encountered for Str in § 4.1.
We further see that �φ = 0◦ around T̃ = 0.11 for all cases where resonance is present,
whereas acceleration and Magnus force are significantly out of phase (�φ ≈ −60◦) in the
same range on the lower branch. This point is emphasised by the inset of figure 7(d), where
the peaks in Cd are seen to align with�φ = 0. The good agreement with the experimental
sphere data of Will & Krug (2021b), included in figure 7(d), again underlining the fact
that the resonance phenomenon in two dimensions is indeed comparable to that in three
dimensions.
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Figure 8. (a) Normalised velocity fluctuations v∗ =
√

〈v′2
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ω∗ = 〈ω〉rmsD/Vb (in deg.) as a function of Γ and T . Correlations between the particle drag coefficient and
v∗2 (c) and ω∗2 (d). The density ratio (Γ ) in represented by the line colour. The marker edge colour, white or
grey, represents �φ < 0 or �φ ≥ 0, respectively.

4.4. Drag correlations
The question to what extent the drag of freely rising and settling bodies is correlated to path
oscillations and/or particle rotations is subject to an ongoing discussion. It is indisputable
that the presence of horizontal oscillations affects the overall drag coefficient (Horowitz
& Williamson 2010a). However, the presence of rotations was also clearly found to play a
prominent role (Namkoong et al. 2008; Auguste & Magnaudet 2018; Mathai et al. 2018).
In the work on spheres with COM offset by Will & Krug (2021b), it was shown that the
drag correlated better with the mean rotation rate than with the amplitude of the path
oscillations or the horizontal velocity fluctuations for cases at or beyond resonance. On
the other hand, for zero offset, the drag appeared to correlate equally well with both in the
3-D chaotic regime when varying the MOI of spheres (Will & Krug 2021a) and both of
these quantities did not result in an adequate prediction of drag for the spiralling regime.

To add to this, we investigate how variations in Cd relate to the presence and strength
of rotational and translational fluctuations in the present data. To this end, we define the

dimensionless fluctuating velocity v∗ =
√

〈v′2
C 〉rms/Vb, where v′

C = vC − 〈vC〉, presented
in figure 8(a), and dimensionless root-mean-squared rotation rate ω∗ = 〈ω〉rmsD/Vb,
shown in figure 8(b), for all rising cases at Ga = 200. Since particle velocity fluctuations
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are dominated by their horizontal component, they are qualitatively similar to the
amplitude of the path oscillations Â/D. A striking difference between the distributions of
v∗ and ω∗ concerns the region at low density ratios (Γ < 0.2) and small offsets (T < 0.2),
where significant velocity fluctuations, and hence, path oscillations, are present in the
almost complete absence of body rotation (a feature that is different from the findings of
Mathai et al. (2017) as discussed in Appendix C). In figure 8(c,d) we plot Cd vs v∗ and
ω∗, respectively. In all panels of figure 8 the marker edge colour is white if �φ < 0 and
black if�φ ≥ 0. For a subset of the markers labelled with a white border, an approximately
linear scaling of Cd with v∗2 can be observed in figure 8c). This linear range corresponds to
the region of small offsets and low density ratios featuring path oscillations but importantly
no rotations. These cases adhere to the scaling Cd(v

∗) = 2.0036v∗2 + 1.1 as indicate by
the dashed black line in figure 8(c). However, once rotation begins to become significant,
we find that it dominates the drag behaviour. This is demonstrated in figure 8(d), from
which it is clear that, for the markers with black borders, Cd is approximately proportional
to ω∗2. For cases beyond resonance, results are reasonably well represented by the
fit Cd(ω

∗2) = 0.0024ω∗2 + 1.15. We find similar quadratic relationships for the higher
Galileo number cases examined in this work, but not in the case of settling particles.

4.5. Settling particles
Up until this point, the focus was exclusively on light (rising) 2-D cylinders. For heavy
particles, it was already demonstrated in Will & Krug (2021b) that the feedback between
the Magnus lift force and particle acceleration becomes negative, effectively suppressing
the resonance mode. This implies that the strong coupling between rotation and translation
and the associated drag increase are absent, but not necessarily that the COM offset has
no effect at Γ > 1. To explore this, the density ratio range from Γ = 1.1 up to 5 was
studied with T ranging from 0 to the contour IG = 0 at Ga = 200, 500 and 700 and I∗ = 1.
We present only the results for Ga = 200 in figure 9(a–e) since the trends for the higher
Galileo numbers are similar.

Figure 9(a) confirms that the drag coefficient does vary as a function of T also for
settling particles. Yet, the magnitude of the increase in Cd (from around 1.2 to 1.8) is
much smaller compared with that observed for rising bodies (from around 1.1 up to 4).
Furthermore, the drag increase is more pronounced at larger Γ and contrary to rising
cylinders, the contours of constant Cd do not align well with isocontours of either T or T̃
(dashed white lines), suggesting that the mechanism of drag increase here is not resonance
related. This is further evidenced by figure 9(b), where for the phase lag �φ is shown
for the same cases as in figure 7(d). Unlike for rising particles, there is no monotonic
increasing trend between offset and �φ and no regime where �φ = 0 can be identified.
In fact, the phase lag is strongly positive (between 90◦ and 135◦) in the regions of elevated
Cd, which implies that Fm (at least in part) counteracts ax. The drag behaviour for settling
particles rather seems correlated with a reduction of the rotational inertia around point
G, as the latter tends to zero (black dashed line) for increasing offset due to the fact
we maintain I∗ = 1. In the inset of figure 9(a) we show this explicitly by rescaling the
horizontal axis according to T /T |IG=0. Doing so reveals that the drag is maximum for low,
but non-zero, rotational inertia (around T /T |IG=0 = 0.9). Similarly to rising cylinders, the
increase in drag coincides with a decrease in Str (see figure 9c) although this effect is much
smaller here as compared with the resonance mode encountered for Γ < 1. Consistent
with the trends established for light cylinders at zero offset, the lateral (figure 9d) and
rotational (figure 9e) amplitudes are also elevated in this parameter region. This behaviour
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Figure 9. Results for settling (Γ > 1) 2-D cylinders at Ga = 200 and I∗ = 1. With (a) showing the drag
coefficient, (b) the Strouhal number, (c) the phase angle between Magnus force and particle horizontal
acceleration, (d) the path amplitude and (e) the rotational amplitude. White lines in (a) represent isocontours
of T̃ .

can also be observed in supplementary movie 3 showing six values of T for Γ = 2.5.
While the magnitude of all the path oscillations remains significantly lower than those
encountered in the resonance regime for Γ < 1, surprisingly the rotational amplitudes are
on a similar level.

The relation between drag and path/rotational oscillations for settling cylinders, shown
in figure 8(c,d), is qualitatively similar to that discussed in § 4.4 for rising bodies. However,
the exact scaling of Cd with ω∗2 is not exactly identical. Furthermore, due to the absence of
rotational–translational coupling, the observed increase in body rotation is not reflected in
a similar increase in the path oscillations. We suspect that, for settling, the increase in drag
primarily results from the rotational motion given the minute increase in the translational
dynamics in this case. Finally, we observe that the magnitudes of Cd, Â/D and θ̂ all
decrease towards Γ = 1. This behaviour is consistent with the previous results for Γ < 1
and the explanation provided in § 4.1, namely the divergence of the pendulum term.

5. Effects of varying MOI

In this section we explore the effects of variations in the particle MOI around G, which
thus far has been kept constant. Since particle rotation proved to be a critical aspect in
the preceding analysis, it is anticipated that the variations of the MOI will also affect
the overall dynamics. We investigate this by varying the dimensionless MOI around the
geometric centre (I∗) in the range I∗ ∈ [0.5, 16] for the cases of Γ = 0.4, Ga = 200
and T ∈ [0, 0.5]. The corresponding results for Cd, �φ, Str, Â/D and θ̂ are presented
in figure 10. In these figures, physically feasible boundaries are represented by the solid
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Figure 10. Investigation on the effect of the dimensionless MOI I∗ in combination with the time-scale ratio
(T ) for Ga = 200 and Γ = 0.4 on the drag coefficient (a), Strouhal number (b), phase lag (c), translational
amplitude (d) and the rotational amplitude (e). In these figures the solid and dashed black lines, respectively,
represent contours along which γ = 1 and IG = 0. In (a) the inset shows the same data as the main panel;
however, it is plotted against the modified time-scale ratio T̃ to include effects of the rotational added mass due
to the Stokes layer.

black line, which indicates the line where γ = 1 and the dashed black line indicates where
IG = 0. The grey shaded region marks parameter combinations beyond both these two
criteria. This region is probed less extensively and, therefore, no linear interpolation of the
data is provided there.

The results for Cd as a function of I∗ and T in figure 10(a) clearly underline the need to
include the fluid inertia in the analysis of the problem. This is obvious from the fact that
the T values at the maximum in Cd show significant variation as a function of I∗, while
inclusion of the fluid inertia in the definition of T̃ resolves this dependence. The latter
can be seen from the white dashed lines in figure 10(a), but is even more evident from the
inset, where the same data are plotted directly versus T̃ ; the maxima in Cd collapse onto
T̃ = 0.11. Besides the dependence on T̃ , our data further show that higher values of I∗
lead to an increased peak drag coefficient at resonance.

In figure 10(b), �φ is shown for the same dataset. Identically to the results described
in § 4.3, we find that peak drag occurs for �φ = 0 when the system is in resonance. The
phase data are the best way to asses the validity of the inclusion of fluid inertia as shown in
figure 10(b), the isocontours of T̃ almost exactly match the interpolated �φ data proving
the efficacy of this model. Note that this match is obtained with no additional fitting such
that this validates also our choice for the value of I∗

a , that was obtained based on Ga trends
in § 3.2.

In figure 10(c–e) we present corresponding results for the Strouhal number and for the
translational and rotational amplitudes, respectively. Consistent with the observations for
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Cd and�φ, isocontours of all these quantities also line up with lines for which T̃ = const.
Also in line with the Cd results, the resonance induced changes become stronger with
increasing I∗ in all quantities considered. This behaviour can be understood by considering
the systems as a driven and damped harmonic oscillator noting that when the rotational
inertia of the system increases, the damping ratio decreases resulting in larger rotational
amplitudes θ̂ . This, in turn, then affects the other parameters (Cd, Str and Â/D), for which
the known effects of rotation become enhanced.

As an aside, we would like to remark on the zero offset case, γ = T = 0, which was
studied in detail in Mathai et al. (2017). Based on their simulations, these authors identified
a transition in particle dynamics and vortex shedding mode as a function of I∗. We were
unable to reproduce such a transition in our simulations. In order to clarify this difference,
a direct comparison of these two contradictory results is provided in Appendix C at a
matching Galileo number (Ga = 500) and overlapping range of I∗ and Γ . Finally, we
would like to point out that the conclusion based on the present data, i.e. that rotation
plays a very marginal role in affecting regime transition in the absence of a COM offset, is
also consistent with the experimental study on the effect of varying MOI for rising spheres
by Will & Krug (2021a).

6. Galileo number effects

In this section we revisit the Galileo number, previously discussed in § 3.2; however, here
we take a broader scope and look beyond the effects of fluid inertia. In this work seven
Galileo numbers, ranging from 50 up to 2000, were examined for varying COM offset at
fixed Γ = 0.6 and I∗ = 1. These results are presented in figure 11. Furthermore, for Ga
= 500 and 700, we also varied Γ from 0.001 up to 5 identical to what was previously
presented for Ga = 200. The only difference in the results for higher Galileo number
settling particles is that, for 0.16 < T < 0.19, a significant horizontal drift is encountered
vd/Vb > 0.1, resulting in oblique trajectories. Results for the drift velocity for all cases
can be found in the supplementary data.

In figure 11(a) the drag coefficient is shown as a function of Ga and T . For all cases
depicted here, an increase in drag associated with COM offset is observed. The magnitude
of this increase in drag is found to become larger with increasing Galileo number. At
γ = 0, a minimum drag (Cd = 1.2) occurs for Ga = 200. The increase in Cd towards
lower Ga is related to the viscous dominance in this regime and, for higher Ga, the increase
in Cd is associated with increasing path and rotational oscillations. Furthermore, the
isocontours of T̃ , including fluid inertia effects, capture the essential features of Galileo
number dependence of the Cd variation reasonably well. This is highlighted in the inset of
figure 11(a), where we rescale the horizontal axis to T̃ . This also reveals that the onset of
resonance occurs at near constant T̃ . Additionally, the range of offsets where Cd is affected
extends to larger T̃ for increasing Ga in a similar way as decreasing Γ or I∗ would.

Figure 11(b) shows �φ for the same parameter range. Here, the T̃ = const. contours
match with constant�φ predominantly over the range −45◦ < �φ < −15◦ (0.08 < T̃ <

0.11). This is a consequence of our choice to base the value of I∗
a and, more specifically,

the fitting coefficient c1 on collapsing the rising edge of 〈θ̂〉; see figure 3(c). An alternate
choice would have been to fit c1 to align �φ = 0 across all Ga. Doing so results in a
value c1 of approximately 0.5 (note that this yields more than 80 % reduction in I∗

a for
Ga < 2000), resulting in T̃ contours overlapping the �φ = 0 isocontour in figure 11(b).
This does not alter the conclusion that added rotational mass is responsible for the
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Â/D

(a) (b)

(c)

(d)

(e)

1.0

Figure 11. Exploration of the combined effects of COM offset and Galileo number for fixed density ratio
Γ = 0.6 and dimensionless MOI I∗ = 1. With (a) showing the drag coefficient Cd and the inset highlighting
the scaling in terms of T̃ , (b) the phase lag �φ, (c) the mean rotational amplitude θ̂ , (d) the Strouhal number
Str and (e) the mean path amplitude Â/D. The white dashed lines indicate isocontours in T̃ , the black dashed
line indicates γ = √

0.5.

observed behaviour. Previously discussed results collapse in a similar way for both
c1 = 0.5 or c1 = 2.3, but the differences highlight the fact that the actual value depends
on the particle dynamics and kinematics for a given parameter combination of T , Γ , I∗
and Ga and is, in fact, not constant in time altogether.

For all Galileo numbers, a reduction in the Strouhal is encountered around T̃ = 0.11;
see figure 11(d). This drop is contingent on the presence of rotational oscillations: when
rotation is absent, the path-oscillation frequency is high and when it is present, it is much
lower, identical to the behaviour observed in § 4.1. Based on the results here, rotational
amplitudes of approximately 5◦ at high Galileo numbers are sufficient to cause a drastic
drop in Str.

In figure 11(e) the path-amplitude response is depicted. The behaviour here is similar
to that of Cd and θ̂ except for the large increase in path amplitude at high Ga and
small values of T . We can see that as Ga increases, the path amplitude at γ = 0 also
grows for Ga ≥ 500, whereas the rotational amplitude remains low in the same parameter
region (see figure 11c). This behaviour is akin to that observed for spheres as reported
in Auguste & Magnaudet (2018) and Will & Krug (2021a), where a Γ threshold is
encountered demarcating the transition between a vertical and chaotic rise mode, notably
in the absence of strong rotation. The Γ value of this threshold was shown to increase
with Ga, which is what we find here as well since, for Ga = 200, this transition was
encountered for 0.1 < Γ < 0.2; see § 4.1. And indeed, for Ga ≥ 500 the behaviour of
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Figure 12. (a) Amplitude of the path oscillations for Ga = 700 and I∗ = 1 as a function T and Γ .
(b) Plot showing the standard deviation of the peak path amplitude for the same parameter space as in (a).
(d,e) Trajectories and wake structure for Ga = 50, Γ = 0.6, I∗ = 1 and T = 0, 0.3, and 0.6, respectively. The
colour gradient in the wake indicates non-dimensional fluid vorticity (ωf D/Vb) as indicated by the colour bar.

the 2D cylinders is chaotic with large fluctuations in both path and rotational amplitudes
without period-to-period regularity.

To highlight this period-to-period irregularity and to demonstrate the effect of COM
offset on these dynamics, we show the path amplitude (Â/D) for Ga = 700 in figure 12(a)
as well as the standard deviation of Â′/D of this quantity in figure 12(b). For these higher
Galileo number cases, the magnitude of the fluctuations in the amplitude is comparable to
the path amplitude itself. The irregularity is also much higher than at Ga = 200, for which
Â′/D ≤ 0.1 even for the transitional cases discussed in § 4.2. This stresses that behaviour
at higher Ga is in fact chaotic and it is therefore quite remarkable that the mean quantities
are reasonably well behaved and in-line with results for lower Galileo numbers. This can
in part be explained by a second observation pertaining to figure 12(b), namely that when
the resonance threshold is exceeded, i.e. T̃ > 0.11, the value of Â′/D drops drastically.
The periodicity imposed by the pendulum frequency becomes dominant and stabilises
the chaotic motion resulting from the body–fluid interaction. Qualitatively, this chaotic
behaviour at low offset and the stabilising effect of large offsets is visible in supplementary
movies 4 and 5 showing results for Ga = 500 and 700, respectively.

Finally, we focus on the lowest Galileo number (Ga = 50), where the zero offset case
exhibited a vertical (non-oblique) rise mode with superimposed path oscillations. For these
cases, the discrete vortex shedding that is characteristic of high Re flow around a blunt
body is no longer observed. Instead, an oscillating wake is encountered as depicted for
the γ = 0 case in figure 12(c), where the particle path and wake pattern (in terms of
fluid vorticity) are visualised. Importantly, however, we find that even the small pressure
asymmetry induced by the oscillating wake and the associated small path oscillations
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(Â/D = 0.06 at γ = 0) combined with COM offset are enough to trigger resonance
behaviour similar to that observed for the Ga = 200 case. In figure 12(d) a snapshot of the
simulations for the resonance case is shown, featuring larger amplitude path oscillations
and a wider wake. Similar to the Ga = 200 case, increasing the offset beyond resonance
again leads to a reduction of the amplitude of the oscillations as shown in figure 12(e).
Based on this result, we conclude that COM offset will affect the dynamics as long as the
base state at γ = 0 exhibits path oscillations.

7. Summary and conclusions

In this work we have systematically studied COM offset effects for a freely rising or
settling cylinder in a quiescent fluid via direct numerical simulations employing the IBPM.
The non-dimensional parameter characterising the COM offset is given by the time-scale
ratio (1.5) T ≡ τv/τp, with τv defining the vortex shedding frequency time scale (set by
the buoyancy velocity and particle diameter), and τp a time scale originating from the
‘pendulum’-like restoring torque resulting from the offset between the centres of mass
and buoyancy (cf. Will & Krug 2021b). The main goal of this work has been to confirm
that the behaviour of COM offset can be predicted in terms of this time-scale ratio,
which depends on both Γ and I∗. Additionally, a dependence on the Galileo number is
expected but this is not reflected in the definition of T by Will & Krug (2021b). These
dependencies could not be adequately confirmed experimentally in previous work due to
physical constraints, therefore, a numerical study was desirable since then one can exactly
set all of the control parameters. Simplification to two dimensions, i.e. cylinders, allowed
us to examine the four-dimensional control parameter space that is not numerically feasible
for three dimensions. The thus studied parameter space ranges from 0 ≤ T ≤ 0.6 for COM
offset for Galileo numbers ranging from 50 up to 2000, 0.001 ≤ Γ ≤ 5 and 0.5 ≤ I∗ ≤ 16.

First of all, we found that for rising particles, the dynamics and response to the offset
was qualitatively similar to that of spheres; a resonance mode was encountered at a
particular offset for which the particle rotation and drag are significantly enhanced. For
increasing offset, this effect slowly reduces towards a case where no rotation is present.
This behaviour at larger Γ , constant (or large) Ga and constant I∗ appeared to be well
described by T (as was the case for Will & Krug 2021b). However, for lower Γ or Ga, we
found that an additional effect was playing a role. This was identified as the contribution
of rotational fluid inertia (Ia). We modelled this contribution as an annulus surrounding
the cylinder, the thickness of which scales according to a boundary layer (1/

√
Ga, which

is identical to 1/
√

Ga when Cd is constant). This hence introduces a Galileo (or Reynolds)
number dependence in the definition of the time-scale ratio resulting in (3.1b), that was
previously not explored. For rising cylinders, for which the resonance phenomenon is
present, this modified time-scale ratio (T̃ ) was seen to capture the trends in the observed
resonance behaviour with resonance occurring at T̃ = 0.11.

Secondly, we find that body rotation is of crucial importance when considering the
dynamics and kinematics of a body moving through a fluid. When altering COM offset,
only the rotational equation of motion of the body is affected, and indeed we note a
substantial increase in rotation around T̃ = 0.11. But more importantly, this also affects
the frequency of oscillation, path amplitude and drag coefficient (terminal velocity).
Altering the COM a couple of per cent can induce a more than three-fold increase in
Cd. This increase in drag can be attributed to an increase in both rotational and path
oscillations. However, the effect of rotation typically is way more significant and instances
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exhibiting translational oscillations without rotation featured only relatively small drag
increases. While T̃ describes the behaviour of the output parameters relative to the
offset, the magnitude of the variation (such as the drag increase) still depends on the full
parameter combination; for instance, the magnitude of the drag increase in resonance still
depends on both Γ and I∗.

Thirdly, we determined that the driving of the rotational dynamics for bodies with COM
offset originates from the torque generated by horizontal path oscillations, i.e. the aC × p
term in (3.1b). When switching only this coupling term off in the equations of motion
while leaving the pendulum term unchanged, there was almost no difference in the particle
behaviour with or without offset for both rising and settling particles. Conversely, the
(viscous) fluid torque almost entirely acts as a damping term in the presence of an offset
limiting the rotational oscillations. Generally, the magnitude of the viscous torque was
found to be too low to drive significant rotations. This applies also at zero offset where the
present data did not reproduce the regime transition for varying rotational inertia reported
in Mathai et al. (2017).

Finally, we confirmed that for Γ > 1, i.e. settling cylinders, the resonance phenomenon
is no longer present. As outlined by Will & Krug (2021b), the feedback between the
rotation induced Magnus lift force and the direction of horizontal acceleration becomes
negative for heavy particles. Nevertheless, some effects of the offset also exists for Γ > 1,
however, they occur at larger offsets than expected based on the light counterparts and
the effect on Cd is significantly smaller (and importantly does not scale according to
T̃ ). Instead of the resonance mechanism, the explanation for this behaviour appears to
be related to the reduction of IG resulting from us enforcing I∗ = 1. Surprisingly, we also
uncover that, for both rising and settling, no effect of COM occurs when Γ is around unity.
This can be explained by the fact that the ratio of the pendulum torque over the driving
torque (Γ/|1 − Γ |), (3.1b), goes to infinity for Γ → 1. Thus, the driving can not overcome
the restoring force of the pendulum and rotations remain too small to engage the feedback
mechanism.

To summarise, we have given a complete overview of how COM offset depends on the
four control parameters governing the system for both rising and settling cylinders in a
quiescent fluid. The dynamics and kinematics uncovered here in terms of T̃ qualitatively
match those uncovered by Will & Krug (2021b) for rising and settling spheres. This
suggests that the present findings largely transfer to the behaviour of spherical particles.
Especially, this concerns the behaviour at low Galileo numbers, where also for spheres
fluid inertia will become increasingly important, which can be accounted for analogously
via an added mass term.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2024.30.
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Appendix A. Verification and validations of the IBPM

In order to validate and verify the correct implementation of the IBPM, we performed a
series of checks and compared our results with those available in the literature.

A.1. Accuracy verification of the Lagrangian multipliers
In the following we present the performance of the IBPM. First, we test how accurate
un+1 complies with the Lagrangian multipliers, i.e. the newly implemented pressure solver
should produce solutions that are divergence free, and provide a machine accurate no-slip
condition at the particle edge (see (2.2b)). To this point, a freely moving cylinder with
Γ = 0.001 is released at Ga = 10 in a domain of 16D × 16D. We present results for two
cases with an evenly spaced grid of 128 × 128 and 256 × 256 grid points, yielding 8 to
16 grid points per diameter, respectively. The case is integrated in time until the cylinder
reaches terminal velocity, after which statistics are collected.

The maximum divergence, observed via GTqn+1, was found to be of O(10−14), which
verifies that the velocity field is divergence free. Next, let e = Eqn+1 − (vn+1

C − ω × L)
define the error vector of the no-slip condition.

The maximum error of the velocity boundary condition max |e| is presented for various
time steps in figure 13. To put the results in perspective, we compare them to the findings
of Breugem (2012) who studied the accuracy of the multi-direct forcing for a fixed sphere.
Overall, results for L∞ are found to be of O(10−14) or lower, which confirms that the
pressure solver accurately obtains the solution ϕn+1/2 such that qn+1 satisfies the no-slip
condition. Achieving a much more accurate no-slip condition up to machine precision
is a clear advantage over the multi-direct forcing scheme, but is computationally more
demanding.

A.2. The order of convergence
In the following we assess the convergence properties of the fluid solver coupled to the
particle equations of motion. Here, we select a 2-D problem of a cylinder under the
influence of gravity in a viscous fluid, which is initially at rest. The domain is square
and has a width of 12.288D. The particle-to-fluid density ratio is set to Γ = 1.1, and the
Galileo number to Ga = 100. We position the cylinder at the centre of the domain. For
each case, we use constant grid spacing and time steps.

First, we investigate the spatial and temporal convergence of the vertical velocity field.
We start with the spatial convergence by fixing the time step to�t = 1.0 × 10−4D/Vb, and
varying the grid spacing �x ∈ [0.016, 0.256]. After a time period of 6D/Vb we compare
the vertical velocity field uy for each case to that of the reference case (�x = 0.008).
We present a snapshot of the latter in figure 14(a). Note that at this point in time, the
horizontal particle velocity is still negligible (vx/vy = O(1 × 10−12)). Let ei define the
error between the vertical velocity field of a simulated case and the reference case, i.e. ei =
[uref

y (i)− uy(i)]/Vb, with uref
y (i) the reference velocity interpolated onto the coarser grid

using a third-order interpolation method. Note that uref
y (i) and uy(i) are rewritten from a

2-D field to the vector form. In this study we shall make use of the L2 and L∞ norm to
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represent the no-slip condition for qn, which verifies a correct implementation of the no-slip Lagrangian
multiplier.
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Figure 14. Convergence analysis for the vertical velocity field around a settling cylinder. (a) Snapshot of
vy/Vb at time instance t = 6D/Vb for the reference case (�x = 8 × 10−3) of the spatial convergence analysis.
(b) Spatial convergence. (c) Temporal convergence with constant �x = 1.6 × 10−2 for each case, and a
reference temporal spacing of �t = 1 × 10−4.

report the convergence rate of the implemented IBPM. For this, we define a normalised
non-negative vector norm as

‖x‖p =
(

1
Ω0

∑
i

|xi|p�xi�yi

)1/p

, (A1)
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2-D cylinders with centre-of-mass offset

with p = 1, 2, . . . an integer and Ω0 the corresponding domain surface. For the L2 norm
and L∞ norm, it is readily obtained that

‖x‖2 =
√

xTx/N and ‖x‖∞ = max(|xi|), (A2a,b)

when �xi = �yi = �x and N is the number of entries in the field.
Figure 14 presents the spatial convergence results. We observe that the L2 error

converges at a rate of O(�x), whereas the L∞ norm convergence rate becomes of O(�x)
for small enough grid spacings only. These results for the convergence are consistent
with those reported in Stein, Guy & Thomases (2017) for a 2-D test problem. Note that
Lǎcis et al. (2016) employed ‖x‖2 =

√
xTx/N instead of the definition for ‖x‖2 provided

in (A2a,b), where the present definition is preferred because it is consistent between
continuous and discrete forms. This difference explains the somewhat faster convergence
rate reported in their case.

Next, we investigate the temporal convergence for uy by selecting a grid spacing of�x =
0.016D for each case, and varying the time step �t ∈ [1.0 × 10−3, 1.0 × 10−2]D/Vb.
A reference case is chosen with the same grid spacing and a smaller time step of
�t = 1.0 × 10−4D/Vb. At t = 0.9D/Vb the convergence results are assessed. Note that the
reference case has reached a velocity of vy ≈ 0.32Vb at this point in time. The results of
L2 and L∞ for the temporal convergence test are depicted in figure 14(c). Here, we observe
first-order convergence for both norms. This result is expected due to the approximation
of A−1 ≈ B1, where the leading term of B is of �t and is in agreement with that of Lǎcis
et al. (2016), who observed the same temporal convergence for a freely falling cylinder.

Now, we turn our attention to the spatial and temporal convergence of the pressure
field. The datasets for this analysis are the same as those used for the vertical velocity
field. We start with the analysis of spatial convergence. Figure 15(a) presents the pressure
field of the reference case at t = 6D/Vb for the spatial convergence analysis. Let ei =
( pref (i)− p(i))/Vb, define the error with pref the interpolated reference data and p the
pressure field of a coarser grid. Here, we note that the pressure nodes that reside in the
particle’s interior are excluded from ei to measure only the convergence from the pressure
field surrounding the particle. By doing so, we find the spatial convergence to be of O(

√
x)

for the L2 norm and of zeroth order for the L∞ norm. The absence of convergence for L∞
was also observed by Stein et al. (2017) for a cylinder in a prescribed flow. They addressed
the lack of smoothness (in the vicinity of the particle) as the main cause for the reduced
convergence and proposed a forcing scheme that makes the solution globally smooth. The
latter approach is promising, as the grid only needs to be uniform in a small neighbourhood
of the boundary, with the same width as the regularised δ function, but is not implemented
here.

Figure 15 presents the temporal convergence, where we observe L2 and L∞ to be of first
order, owing to the approximation of A−1 = O(�t), similarly as observed for the velocity
field.

A.3. Validations for a freely moving cylinder
In this analysis we validate the implemented IBPM against the case of a freely rising or
settling cylinder. The reference data are taken from Namkoong et al. (2008). In that study,
an implicit coupling approach within a finite element framework was used, with a body
fitted mesh and adaptive refinement to resolve the cylinder wake. The settling particle has
a particle-to-density ratio of Γ = 1.01 and the rising of Γ = 0.99. Our computations are
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Figure 15. Convergence analysis for the pressure field around a settling cylinder for the same problem as in
figure 14. (a) Snapshot of vy/Vb at time instance t = 6D/Vb for the reference case (�x = 8 × 10−3) of the
spatial convergence analysis. (b) Spatial convergence. (c) Temporal convergence with constant �x = 1.6 ×
10−2 for each case, and a reference temporal spacing of �t = 1 × 10−4.
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Figure 16. Comparison of the present results for a freely falling or rising cylinder with Namkoong et al.
(2008).

performed on a domain size of 20D × 60D. The grid spacing is constant in the vicinity of
the cylinder and complies with D/�x = 50.

In figure 16(a) we present our results of Ga vs Ret, where Ret ≡ VtD/ν is obtained from
the terminal vertical velocity Vt. Here, we observe a good agreement with Namkoong et al.
(2008) for the falling and rising cylinders. Next, we compare the corresponding Strouhal
number based on the mean vertical velocity of the particle Vt for the same dataset. We find
the agreement of Str to be very good as well.

Appendix B. On the value of I∗
a

In this appendix we address how the added inertia I∗
a may be estimated, with I∗

a the added
inertia due to the surrounding Stokes layer. The torque induced by this layer is estimated
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for a body that starts spinning in a quiescent viscous fluid such that squares of the velocity
field may be neglected. For a sphere, it may be shown that this layer yields an effective
torque that can be analytically expressed. For a cylinder, the analytical solution takes the
form of an infinite series expansion (Basset 1888). For our analysis, we shall assume the
torque of the cylinder to take the same form as that of a sphere. The analysis further applies
under the condition that the relevant time scale is small enough such that effectively only
the history torque contributes (see, e.g. Feuillebois & Lasek 1978; Auguste & Magnaudet
2018). Here, we introduce a fitting parameter that we estimate through a series of numerical
experiments to match the history torque to that of the cylinder.

B.1. History torque of a sphere
Here, we present the main results for the history torque of a sphere, which is the dominating
contribution of the Stokes layer (see, e.g. Auguste & Magnaudet 2018), and then find
an approximate analogue history torque for a cylinder. For small time t, the leading
contribution of the history torque for a sphere is (see, e.g. Feuillebois & Lasek 1978)

Th ≈ −1
6
√

πμD4ν−1/2
∫ t

0

dω/dτ√
t − τ

dτ, (B1)

with the rotational velocity ω assumed to be continuously differentiable. Discretising the
integral in (B1) for small t one finds that

Th ≈ −1
3
ρf

√
πνD4�ω/

√
�t, (B2)

with �ω ≡ ωn+1 − ωn, and the difference between time levels n and n + 1 being equal to
�t. If one then introduces

δ =
√
ν�t/(πD2), (B3)

one can write for the rotational equation (cf. Auguste & Magnaudet 2018),

1
10
Γ
�ω

�t
∼ −2δ

�ω

�t
. (B4)

B.2. History torque of a cylinder
Our goal is to find the history torque Th acting on a cylinder. Here, we assume that Th
approximately takes a similar form as that of a sphere described in § B.1. To this point, we
consider a rotating cylinder in a viscous fluid that is at rest initially. The flow is assumed
to be axisymmetric and squares of the velocity field are neglected, yielding the expression
for the azimuthal velocity component ûθ (non-dimensionalised with length scale D and
velocity scale ωD),

Reθ ∂t̂ ûθ = ∂2
r̂ ûθ + r̂−1∂r̂ ûθ − ûθ /r̂2, (B5)

with Reθ ≡ 0.25ωD2/ν. Here, we solve (B5) numerically, by using the fourth-order
Runge–Kutta scheme for the time discretisation and a second-order central difference
scheme for spatial gradients. In addition, we point out that ω was given a fixed value
when solving (B5). We selected multiple Reθ ≈ O(1) and integrated up to times such that
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t � D2/ν (the used time interval ranged from 10−4D2/ν down to 10−8D2ν). In this time
interval we assume the history torque

Th ≈ −0.25πD3μc1
ω√
πνt

(B6)

to be dominating the torque on the cylinder. The torque on the cylinder in (B6) has the
fitting parameter c1, which we find by calculating the actual torque on the cylinder from
our numerical experiment via T = 0.25D2μω

∫ 2π

0 [∂r̂ ûθ − ûθ /r̂]r̂=D/2 dθ . Alternatively,
the analytical expression of the viscous torque derived by Mallick (1957) may be used,
i.e.

T = 4πμ

[
(ω0 − ω)a2 + ωa3

π

∫ ∞

0

y1(ax)J0(ax)− y0(ax)J1(ax)

J2
1(ax)+ y2

1(ax)
e−x2νt dx

]
, (B7)

with ω0 the initial rotational velocity of the cylinder, a the radius of the cylinder and Jn,
yn Bessel functions of the first and second kind, respectively. Given that the initial field is
quiescent, we have the initial cylinder rotational velocity ω0 = 0.

In the limit of time t → 0, we find that, for the analytical expression and numerical
experiment, Th = T when the fitting parameter takes the value of

c1 = 1. (B8)

Now that we have an approximate form of the torque on the cylinder, we can find the
analogue form of (B4) for a cylinder. We then plug the obtained expression for the torque
in the angular momentum balance and find that

Γ
π

32
D4θ̈ ∼ −0.25

√
πν

t
ωD3. (B9)

To convert the expression for continuously differentiable ω, we apply Duhamel’s principle
and find that (by approximating �ω = ωn+1 − ωn)

Γ
1
8
�ω

�t
∼ −2.00δ

�ω

�t
. (B10)

The expression in (B10) teaches us that the added inertia I∗
a takes the form

I∗
a = 16δ. (B11)

B.3. Dataset fit and comparison
The MOI for an annulus is obtained via

Ia = 1
2
ρπ(r4

2 − r4
1), (B12)

with r1 = 0.5D and r2 = (0.5 + c1/
√

Ga)D, and c1 a constant. Plugging in the latter radii
and calculating I∗

a ≡ Ia/If yields

I∗
a = 8c1√

Ga
+ 24c2

1
Ga

+ 32c3
1

Ga3/2 + 16c4
1

Ga2 . (B13)

We fitted c1 such that the rotational data depicted in figure 3(a) collapses with respect to T∗
(presented in figure 3b). For this fit, we found c1 ≈ 2.3 to yield good results for cylinders.
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Figure 17. (a) Path and (b) rotational amplitude for Galileo 500 cases without COM offset and I∗ = 1
compared with results from Mathai et al. (2017) (extracted from their figures).

To compare with the history torque value from the analysis in § B.2, we follow Mathai
et al. (2018) and set the time scale as half the oscillation time yielding �t = 0.5StrD/Vb.
From this it follows that δ = (2πStrGa)−1/2. By plugging this relationship into (B11)
and assuming that Str ≈ 0.11 (the value for resonance where rotation is dominant), we
find a value c1 = 2.4, which does match the leading term of our fit (c1 = 2.3) in (B13)
surprisingly well. In previous work by Mathai et al. (2018) only the leading-order term
was taken into account, however, the inclusion of the additional higher-order terms in
(B13) results in a large mismatch in the actual value of I∗

a ; more than a factor 2 at a
Galileo number of 50. However, we found that inclusion of the higher-order terms resulted
in a better collapse of the data presented in the current work, their inclusion is therefore
recommended.

Appendix C. Comparison to previous work

For the cases at Ga = 500 with zero offset, we examined a parameter space spanning Γ
and I∗ that was already explored extensively in the work by Mathai et al. (2017). Here, we
take a closer look into the differences between that work and the present one.

We compare our result for Ga = 500 with γ = 0 and Γ ranging from 0.001 to 0.99
to results of Mathai et al. (2017) at identical parameters. A note on the difference in
convention: in the work by Mathai et al. (2017) the parameter I∗ is equal to I∗Γ in the
present work. We extracted the results from Mathai et al. (2017, figure 2a,b), where, due
to the difference in the definitions of the non-dimensional rotational inertia, our results
lie on the diagonal m∗ = I∗, i.e. the line from (A) to (D). One of the main findings in
Mathai et al. (2017) was a change in the vortex shedding mode from a 2S mode at high Γ
and I∗ to a 2P mode at low values of these two parameters. We found no such transition
as all cases in the present work exhibited a 2S mode. Furthermore, Mathai et al. (2017)
reported that this transition was accompanied by large increases in the path and rotational
amplitudes, Â/D and θ̂ , respectively. A direct comparison between the results for these two
parameters is presented in figure 17(a,b). While the general trends of a gradual increase
for decreasing Γ (i.e. low I∗Γ ) for both amplitudes is consistent between the works, there
are large deviations in the magnitudes of both translational and rotational amplitudes for
identical cases, especially towards lower density ratios.

These differences for identical parameter combinations raise the question if their
employed virtual mass approach (Schwarz, Kempe & Fröhlich 2015) could explain these
variations. The use of the virtual mass approach was required to stabilise the explicit
scheme in Mathai et al. (2017). We tested this hypothesis by modifying (1.1) and (1.2)
to include a virtual mass contribution on both sides scaled by coefficient Cv (for which we
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discretised the added time derivatives on the right-hand side with a forward Euler scheme),

(Γ + Cv)
dvG

dt
= F f

mf
+ (1 − Γ )gez + Cv

dvG

dt
, (C1a)

1
8
(Γ + Cv)D2I∗ d2θ

dt2
= 1

mf
Tf + 1

8
CvD2I∗ d2θ

dt2
. (C1b)

A value of Cv = 0 corresponds to the present approach, while typical values to stabilise
explicit schemes are of the order of the added mass, i.e. Cv = 1 for a cylinder (Schwarz
et al. 2015). We did not observe appreciable changes in the particle dynamics when varying
Cv in the range Cv ∈ [0, 5] and it therefore appears that the discrepancies between our
work and Mathai et al. (2017) are not related to the virtual mass approach and may be
caused by other unknown factors.
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