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MODULARITY IN THE LATTICE OF PROJECTIONS 
OF A VON NEUMANN ALGEBRA 

DONALD BURES 

Introduction. We say that two elements e and / of a lattice are 
moderately separated provided e A f = 0 and both (e\ff) and ( / ' , er) are 
modular pairs for all e' = e a n d / ' = / Here (e\ff) a modular pair means 
that, for all g ^ e\ 

gA(e'Vf') = e 'V(g A f). 

In the lattice of projections of a factor we show that e and/, with e A / = 
0, are modularly separated if and only if || (e — k)f\\ < 1 for some finite 
projection k ^ e. From there we can show that a kind of "independence 
property" holds for modular separation in this case: if e and / are 
modularly separated and if e V /and g are modularly separated, then e and 
/ A g are modularly separated. In the lattice of projections of a von 
Neumann algebra which is not a factor, the necessary and sufficient 
condition for modular separation becomes 

|| (e - k)fcn\\ < 1 

for some finite projection k ^ e and some sequence (cn) of central 
projections with 2 cn = 1. 

The condition "e a n d / a r e modularly separated" arises naturally in the 
study of co-ordinatization of lattices which are not modular. It may be 
possible to prove a generalized von Neumann co-ordinatization theorem 
[9] for lattices in which modular separation has reasonable properties 
(strong enough to imply, for example, the independence property of 
Section 3). In this general geometric context, the lattice of projections of a 
von Neumann algebra can be regarded as a testing ground. 

On the other hand, if we are interested in the von Neumann algebras 
themselves, the properties of modular separation proved in this paper may 
be regarded as the first step in determining when an isomorphism of 
projection lattices "extends" to an isomorphism (not necessarily a 
*-isomorphism) of algebras. In fact, H. A. Dye, [3], and J. Feldman, [4] 
and [5], utilized certain features of the von Neumann co-ordinatization 
theorem in their proof that (in the absence of a type I2 part) an 
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1022 DONALD BURES 

orthomorphism of projection lattices extends to a *-isomorphism of 
algebras. In this connection it is important that the lattice theoretic 
property modular separation is equivalent to an algebraic property. For 
example, if $ is an automorphism of the lattice of projections of a type III 
factor, we see immediately that \\ef\\ < 1 implies 

|| (<KO )(</>(/)) II < 1-

We begin, in Section 1, with a proof that the condition 

|| (e — k)f\\ < 1 for some finite k ^ e 

is sufficient for e and / to be modularly separated. The proof proceeds 
easily by standard techniques (see especially [6] ). In Section 2 we prove 
the necessity of the condition in the factor case. The heart of the proof is a 
delicate adaptation of the classical construction in a Hilbert space of two 
closed subspaces whose linear sum fails to be closed. In Section 3 we show 
that modular separation has an independence property in the case of 
projection lattices of factors. In Section 4 we discuss the non-factor 
case. 

Notations. Our definition of modular pair is the dual of Birkhoff s [1] 
but coincides with Mackey's [7]. We denote the Hilbert space on which the 
von Neumann algebra j / a c t s by 3fc We write ^(H) for the algebra of all 
bounded linear operators on //, and J / ' for the commutant of j / i n J£(H). 
stfp will denote the lattice of projections of J ^ For e mstfp we write [e] to 
mean eH, the range of e. ~ denotes the Murray-von Neumann 
equivalence relation o n ^ [8]: e —/means that there exists u instfwith e 
= u*u a n d / = ww*. e mstfp is called finite provided e ~ / = e implies e 
= f If s/is a factor dim denotes a dimension function onstfp\ we assume, 
in the type I case, that dim(e) = 1 if e is an atom. In general we follow the 
standard notation of [2]. 

1. Sufficiency. 

THEOREM 1. Suppose that s^ is a von Neumann algebra and that e and f 
are projections in s/with 

e A / = 0 and \\(e- *,)/H < 1 

for some finite e\ ins/p with e\ = e. Then e and f are modularly separated in 

Proof. Let us assume that we have proved Lemmas 1 to 5 which follow. 
Because the condition is symmetric on e and / (Lemma 2) and evidently 
holds for e' ^ e a n d / ' ^ / it is sufficient to show that (e,f) is a modular 
pair. Suppose that g = e. We note that {e\,(e — e\) V / ) and (e — e\,f) are 
modular pairs by Lemmas 5 and 1. Therefore: 
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gA(eVf) = gA(e{V(e-e])Vf) 

= e i V ( g A ( ( e - e , ) V / ) ) 

= elV(e-el)V{gAf) = eV(gAf). 

Then the proof is completed by the following lemmas, in which we are 
working within the lattices/p and e,/and g, denote elements of s/p. 

LEMMA 1. \\ef\\ < 1 if and only if[e] + [f] is closed. If\\ef\\ < 1 then 
(e,f) is a modular pair and [e V f] = [e] + [/]. 

Proof. This is well known. See [7] for the lattice (ifpf ) )p, and notice 
that stfp is a sub-lattice of ( £ p f ) )p. 

LEMMA 2. j / / is finite with 

fi^f and | k ( / - / , ) | | < 1, 
//ẑ ft zTzere exists a finite e\ with 

ex ^ e and \\ (e - ex)f\\ < 1. 

Proo/ 

(e A (1 - / , ) ) / = (e A (1 - / ,) )(e(l - / , ) / ) 

= M ( i - / 0 ) ( e ( / - / i ) ) . 

Therefore lk( / — / ) II < 1 implies 

|| (e A ( l - / , ) ) / | | < 1. 

Take e, = e - e A (1 - / , ) . Then || (e - e,)/| | < 1 and 

e, = e - e A (1 - / ,) ~ e V (1 - / ,) - (1 - / ,) ^ / , 

so î is finite if/] is finite. 

LEMMA 3. Iff is finite and g\ = g2 with each gl a complement for f in some 
g^f, then g! = g2. 

Proof Since each gz is a complement for / in g, we have 

f~ g ~ g\ a n d / — g - g2. 

Therefore g — g\ is finite and 

g - gi ~ g ~ gl = g ~ gh 

which shows that g\ = g2. 

LEMMA 4. If f is finite then (e,f) is a modular pair for all e. 

Proof Suppose g = e. Let 

h = g A (e V / ) and k = e V (g A / ) . 
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Evidently 

h^k,hAf=gAf^kAf9kVf=eVf^hVf: 

thus we conclude that k — h A / a n d h — h A / a r e complements fo r / in 

eVf. 
By Lemma 3 then k — h A f = h — h A f so k = h. 

LEMMA 5. If f is finite then ( / e) is a modular pair for all e. 

Proof. We can assume e\l f = \ and then 1 — e is finite. We want to 
show that, for all g = f 

g A (fV e) = fV (g A e). 

Using orthocomplementation, this is equivalent to; 

(1 - g ) V ( ( l - / ) A (1 - * ) ) = 0 " / ) 

A ( ( l - g ) V ( l - e)) 

which is true because (1 - g, 1 - e) is a modular pair by Lemma 4. 

COROLLARY TO THEOREM 1. Suppose that se'is a von Neumann algebra 
and that e and f are ins/p with e A / = 0. Suppose there exists a finite e\ in 
stfp with e\ = e, and a sequence (cn)nŒ^ of central projections ofs^ with 2 cn 

= 1, such that for all n G N, 

|| (e - e0fcn\\ < 1. 

Then e and f are modularly separated. 

2. Necessity of the condition in the factor case. 

THEOREM 2. Suppose that s^ is a von Neumann algebra and that e and f 
are projections of se with e A f = 0. Suppose further that there exist 
sequences e\, 2̂» • • • and f\, fj, . . . of non-zero projections of se with the 
following properties'. 

(2.1) For all n, e„ ^ ejn g / en ~ f„ ~ fh 

(2.2) en M fn _L em V fmfor all n ^ m. 
(2.3) For all n, 

\\ejn\\ < 1 andfnejn ^ (1 - 8„)f„ 

where Sn —> 0. 
77z£« //zere exist projections ë ,f and g in s^ with é ^ e,f ~ f e' < g = 

e' \l f and g Aff — 0. In particular e and ffail to be modularly separated in 
s/p. 

Proof. We can assume 8n < n~]. We set ë = 2 en and f = 2 /„. 
Then 
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e' A f = 0 and *' V / ' = (V en) V (V/„) = V (e„ V/w) 

so that by (2.2): 

oo 

[ e ' V / ' ] = 0 [e„Mf„]. 
n = \ 

By (2.1) and e A / = 0, there exist partial isometries 

^ i V / , ] ^ f c V / J 

with w j ^ ] = [en]\ i.e., 

i/„ww* = e„ V/w, «„*«„ = *?i V/ i and Mwé?iww* = e„. 

Fix <J>! e [^ V/j] with H ĵll = 1 and e\<j>\ = 0. Let <j>n = w ^ . Then 

<t>„ e K v / « ] w i th ll^ll = 1 and en<t>n = 0. 
Let h denote the orthogonal projection onto the subspace generated by 
^' 2 n~l4>„. Evidently h e j% 0 < h ^ e' V / ' and he' = 0. 

By assumption (3.3) and Lemma 1, 

[e„ V/„] = k , ] + [/„]. 

Let;?,, denote the skew projection of [e„ V/„] onto [/„] along [e„]. Then: 

(2.4) \\p„ i„\\ i= n|WI for all ^, e [e„ V/„] with e ,^„ = 0. 

For we can write 

^« = 0 - i^W^ + />/A 

and applying 1 — en we obtain: 

^ = (1 - en)pn\pn 

W\2 + \\enpM\2 = \\PnU2 

Hn\\2 = ( ( / « ~ fnenfn)Pn^n\Pn^n) 

s «2 ll/v/J2 ^ «~2ll/v/J2-
For £ in [e' V / ' ] = 0 [en V/w] write 

£ = 2 ^ withfe, G feV/J. 

We will show the following: 

(2.5) For all { e [h], n\\Z„\\ = lléill and e£„ = 0. 

(2.6) For all | e [A] n ( [*'] + [/'] ), 2 «2 lll„l|2 < oo. 

Evidently (2.5) and (2.6) together demonstrate that 

[h] n ([e'] + [ / ' ] ) = 0; 

hence that the subspaces [h], [e'] and [/'] are linearly independent. Since 
[h] J_ [e'l 
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[h] + [e'] = [h V e'] 

and we conclude 

(h V e') A / ' = 0. 

Taking g = h V e' we have: 

e' < g g e' V / ' and g A / ' = 0. 

To demonstrate (2.5) it evidently suffices to show that it holds for | of 
the form 

£ = r 2 «_ 1 <f>„ with r G j / ' . 

For such an £, 

so e„ 4? = 0 a n d : 

\\U\ =n-]\\T'u„4>i\\ = n-l\\T^\\ =#i _ 1 l lÉi l | . 

That proves (2.5). 
To demonstrate (2.6), suppose that £ = £' + £" is in [h] with £' G [ef] 

and £" = [/ '] . Then £' = 2 & with & G [<?„] and £" = 2 % with ^ G 
[fn]: therefore 

£,, = en + C and C = pn£n 

in the notation of (2.4). Now by (2.5) we have e£n = 0: therefore (2.4) 
shows 

nai = \\P„U\ ^ «liai. 
From there 

2 n2 nai2 s 2 liai2 = urn2 < oo 
and we have obtained (2.6). 

THEOREM 3. Suppose that s/is a semi-finite factor and that e and f are 
projections ofstf with 

e A / = 0 and\\ (e - k)f\\ = 1 

for all finite projections k in s^ with k = e. Then e and ffail to be modular ly 
separated. 

Proof. We can, by replacing e by e — e A (1 — / ) a n d / b y / — / A ( 1 — 
e), assume that 

e A ( l - / ) = / A ( l - e) = 0. 

Then, letting ef have polar decomposition ef = up, we obtain a partial 
isometry u:f —> e9 i.e., with MM* = e and w*w = / . Let p2 = fef have 
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spectral resolution E(X). Suppose 0 < X < 1 and k = 1 — E(X): then 
evidently 

\Hf-k)\\ < 1 

so by assumption k must be infinite. Thus given any sequence 8n > 0, 8n 

—» 0 we can choose a sequence/^ of mutually orthogonal projections of s/ 
such that: 

(2.8) f'n ^ / a n d d i m t A ) §= 1 

(2.9) /,/;, = / > 

(2.10) / ; ^ E{\ - c ) - £(1 - 82
n) where C|I > 0. 

In fact/J, can be taken to be E(\Ln) — E(Xn) where 0 = Xn < \in < 1 and 
Xn and /x„ are chosen inductively: 

Xn = max( l - S2
n, iin-x) 

and then /x„ large enough to satisfy (2.8). This uses the fact that 1 — E(Xn) 
is infinite and that 

EQi) - E(Xn)î 1 - E(Xn) as / iT 1, 

which holds because 1 is not an eigenvalue offef. 
Now, since s/ is a semi-finite factor, we can choose fn in J / S O tha t / , = 

/J, and d im/ , = 1. Let en = ufn u*. We proceed to verify that en and/,, 
satisfy the hypothesis of Theorem 2. Evidently (2.1) holds. Since 

en V/„ ^ t / />* V/J, 

and since the /^ ' s are mutually orthogonal, to verify (2.2) it suffices to 
show that, for n ¥= m, 

f'n(uf'mU*) = 0. 

Using (2.9), we see 

fn(Mf'mU*) = f'n{fe)(uf'mU*) = f'n(pu*)(uf'mU*) 

= f'nPf'mU* = 0. 

To verify (2.3) we begin with (2.11). First 

f'nP2 = f'nef'n ^ I ~ *n 

SO 

| | / > | | < 1 and ||/„e„|| < 1. 

Secondly: 

f'nP
2f'n ^(l-82„)f'n 
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f'nPf'n § (1 " ÙU2fn 

f„pfn è (1 - Sl)i/2fn 

fnPfnPfn = 0 ~ $n)fn 

fn*Jn = fn(fe)(MfrM*)(ef)fn 

= fnPU*ufnll*Upfn = fnpfnpfn. 

We have now constructed ew and /„ satisfying all the conditions of 
Theorem 2. Therefore e and / fa i l to be modularly separated. 

THEOREM 4. Suppose that stf is a type III factor and that e and f are 
projections of sewith e A / = 0 and \\ef\\ = 1. Then e and f fail to be 
modularly separated. 

Proof. We proceed as in the preceding proof, except that (2.8) is 
replaced by: 

(2.11) / ; ^ / a n d / ; , # 0. 

In a type III factor every projection majorizes a separable non-zero 
projection (take a cyclic projection) and all separable non-zero projections 
are equivalent [2]. Thus we choose fn ^ f'n such tha t / , G j^/is separable 
and non-zero, and the proof proceeds as before. 

THEOREM 5. Suppose that s/is a factor and that e and f are projections of 
se with e A / = 0. Then e and fare modularly separated in srfp if and only if 
there exists a finite projection k in srf, k = e and \\{e — k)f\\ < 1. 

COROLLARY. Suppose that se is a factor of type I or III, and that <J> is a 
lattice automorphism of srf?. Then \\ef\\ = 1 if and only if 

||<K*M/)|| = 1. 

Remark. The corollary fails for se of type II ( [4, p. 62] ). 

3. The independence property for modular separation. 

THEOREM 6. Suppose that se'is a factor and that e, f and g are elements of 
s/ . If e and f are modularly separated and e V / and g are modularly 
separated, then e and / V g are modularly separated. 

Proof. Assume that e a n d / a r e modularly separated and that e V / a n d g 
are modularly separated. Then 

e A / = 0and(é>V/ ) A g - 0. 

It follows that: 

e A ( / V g ) = e A ( / V ( ( e V / ) A g) ) = e A / = 0 
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where we have used that (g , / ) is a modular pair, true because e V / a n d g 
are modularly separated. 

Now we will confirm the condition of Theorem 5 for e,f\l g. 
Suppose first that \\ef\\ < 1 and || (e V/)g| | < 1. By Lemma 1, 

[e V / ] = [e] + [/], [ (e V / ) V g) ] = [e V / ] + [g], 

and, because ||/g|| < 1, 

[ / v g] = [/] + [g]. 

Therefore 

[*] + [ / V g ] = M + ( [ / ] + [g]) 

= [*V/] + [g] = [ ( e V / ) V g ] 

is closed. Hence l k ( / V g) || < 1 by Lemma 1 again. 
In the general case we have e\ finite with e\ = e, and g\ finite with g\ = 

g such that 

|| (e - e , ) / | | < 1 and || (g - g,)( (e - e,) V / ) || < 1. 

According to the preceding paragraph, then, 

|| (e - e , ) ( /V(g - g , ) ) | | < 1. 

Now ( / V (g - g0 ) V g, = / V g implies that 

fV(g-g\) =fV g - k 

with /c finite. By Theorem 5 we conclude that e is modularly separated 
f rom/V g. 

4. The non-factor case. 

THEOREM 7. Supposerais a von Neumann algebra, and that e andf are in 
srf with e Af— 0. Then e and fare modularly separated if and only if there 
exits a finite e\ in stfp with e\ = e and a sequence (cn)n^ of central 
projections of s^ such that 2 cn = 1 and: 

\\(e- ex)fcn\\ < 1 for all n G N. 

COROLLARY. If e is modularly separated from f and e V / is modularly 
separated from g, then e is modularly separated from f M g. 

Notes on the proof. The corollary can be proved from the theorem as in 
the proof of Theorem 6. 

The sufficiency of the condition for modular separation in Theorem 7 is 
the corollary to Theorem 1. If the condition fails, then it is easy to see that 
there exists a central projection c ¥= 0 such that 

IK* " eOAill = 1 
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for ail central projections c\ = c and all finite projections e\ = e. We can 
then construct sequences of projections satisfying the conditions of 
Theorem 2 as we did in the proofs of Theorems 3 and 4. This seems to 
require the use of the center-valued trace and a measure on the center. 
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