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Closure of singular foliations: the proof of
Mbolino’s conjecture

Marcos M. Alexandrino and Marco Radeschi

ABSTRACT

In this paper we prove the conjecture of Molino that for every singular Riemannian
foliation (M, F), the partition F given by the closures of the leaves of F is again a
singular Riemannian foliation.

1. Introduction

Given a Riemannian manifold M, a singular Riemannian foliation F on M is, roughly speaking,
a partition of M into smooth connected and locally equidistant submanifolds of possibly varying
dimension (the leaves of F), which is spanned by a family of smooth vector fields. The precise
definition, given in §2, was suggested by Molino, by combining the concepts of transnormal
system of Bolton [Bol73] and of singular foliation by Sussmann [Sus73].

A typical example of a singular Riemannian foliation is the decomposition of a Riemannian
manifold M into the orbits of an isometric group action G on M. Such a foliation is called
homogeneous. Another example of a foliation is given by the partition of a Euclidean vector
bundle £ — L, endowed with a metric connection, into the holonomy tubes around the zero
section (cf. Example 2.7). Such a foliation, which we call a holonomy foliation, will be a sort-of
prototype in the structural results that will appear later on. Holonomy foliations are in general
not homogeneous (the zero section L is always a leaf but in general not a homogeneous manifold);
however, they are locally homogeneous, in the sense that the infinitesimal foliation at every
point of E is homogeneous (cf. §§2.3 and 2.4). This construction is related to other important
types of foliations, like polar foliations [Toe06] or Wilking’s dual foliation to the Sharafutdinov
projection [Wil07]; see Remark 2.8.

In general, the leaves of a singular Riemannian foliation might not be closed, even in
the simple cases defined above. In the homogeneous case, consider for example the foliation
on the flat torus T2 by parallel lines, of irrational slope. These are non-closed orbits of an
isometric R-action on T2

Given a (regular) Riemannian foliation (M, F) with non-closed leaves, Molino proved that
replacing the leaves of F with their closure yields a new singular Riemannian foliation F
(cf. [Mol88, ch. 5]). Moreover, he conjectured that the same result should hold true if one starts
with a singular Riemannian foliation and this has become known, in recent decades, as Molino’s
conjecture.

Molino proved that the closure F of a singular Riemannian foliation (M, F) is a transnormal
system [Mol88], thus leaving to prove that it is a singular foliation as well. Moreover, in [Mol94]
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he suggested a strategy to prove the conjecture for the case of orbit-like foliations, i.e. foliations
which, roughly speaking, are locally diffeomorphic to the orbits of some proper isometric group
action around each point (cf. §2.4). A formal alternative proof in this case can be found in
[AR17]. Molino’s conjecture was also proved for polar foliations and then infinitesimally polar
foliations in [Ale06] and [AL11], respectively.

These partial results do not cover every possible foliation. Since the 1980s there are examples
of non-orbit-like foliations and, in recent years, there was shown the existence of a remarkably
large class of ‘infinitesimal’ foliations that are neither homogeneous nor polar, the so-called
Clifford foliations [Radl4] (these infinitesimal foliations have been shown, however, to have
an algebraic nature; cf. [LR16]). Therefore, it is important to give a complete answer to the
conjecture, to fully understand the semi-local dynamic of singular Riemannian foliations.

The goal of this paper is to prove the full Molino’s conjecture.

THEOREM (Molino’s conjecture). Let (M, F) be a singular Riemannian foliation on a complete
manifold M and let F = {L | L € F} be the partition of M into the closures of the leaves of F.
Then (M, F) is a singular Riemannian foliation.

This result is in fact a direct consequence of the following.

MAIN THEOREM. Let (M, F) be a singular Riemannian foliation, let L be a (possibly not closed)
leaf, and let U be an e-neighbourhood around the closure of L. Then for € small enough, there
are a metric g¢ on U and a singular foliation F* such that:

(1) (U,g, ]?K) is an orbit-like singular Riemannian foliation;
(2) the foliation F! coincides with F on L;
(3) the closure of F' is contained in the closure of F.

In short, the foliation F! is obtained by first constructing the linearized foliation F¢ of F
in U, which is a subfoliation of F spanned by the first-order approximations, around L, of the
vector fields tangent to F (see §2.5 for a precise definition). The foliation Ft is then obtained
from F¢ by taking the ‘local closure’ of the leaves of F*. The foliations F, F¢, F¢, together with
their closures, are then related by the following inclusions:

F 2 F c F

N N N
FoF = F

Example 1.1. Consider a Euclidean vector bundle E over a complete Riemannian manifold L,
with a metric connection V¥ and a connection metric g¥ (cf. Example 2.7). Let H,, denote the
holonomy group of (E, VF) at p, acting by isometries on the Euclidean fiber E,, and let (E,, ]-"g)
be a singular Riemannian foliation preserved by the Hp-action. Finally, let K, be the maximal
connected group of isometries of E, that fixes each leaf of ]:z? as a set.

Letting F be the partition of F into the holonomy translates of the leaves of ]-'19 (i.e. for every
leaf L € ]-']? , Lr denotes the set of points in E that can be reached via V-parallel translation
from a point in £), then F is a singular Riemannian foliation. In this case, the linearized foliation
Ft is the foliation by the holonomy translates of the K-orbits in E,, and the local closure of Ft
is the foliation by the holonomy translates of the K ,-orbits in E,, where K, denotes the closure
of K, in O(Ep).
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This can be restated in the language of groupoids: defining H as the holonomy groupoid of
the connection V¥, then F = {H (L) | £ € F}}, F! is given by the orbits of HK,, and its local

closure F* is given by the orbits of HK .

This paper is organized as follows: after a section of preliminaries (§2) we show how Molino’s
conjecture follows from the main theorem (§3). In §4 we fix the setup in which we work for the
rest of the paper. In §5 we define three distributions of the tangent bundle TU. We first use
these to obtain information on the local structure of F* and define the local closure F? (§6) and
then to define the metric g used in the main theorem (§7). In this final section we also prove
the main theorem.

2. Preliminaries

Given a Riemannian manifold (M, g), a partition F of M into complete connected submanifolds
(the leaves of F) is called a transnormal system if geodesics starting perpendicular to a leaf stay
perpendicular to all leaves, and a singular foliation if every vector tangent to a leaf can be locally
extended to a vector field everywhere tangent to the leaves.

A singular Riemannian foliation will be denoted by the triple (M,g, F). However, if the
Riemannian metric of M is understood, we will drop it and simply write (M, F).

The following notation will be used throughout the rest of the paper. Given a point p € M,
the leaf of 7 through p will be denoted by L,. A small relatively compact open subset P C L
is called a plague. The tangent and normal spaces to L, at p are denoted by T,L, and v,L,,
respectively. Given some € > 0, v;L;, denotes the set of vectors x € v, L, with norm < e. If € is
small enough that the normal exponential map exp : v;L, — M is a diffeomorphism onto the
image, such image is called a slice of L, at p and it is denoted by S,. The slice foliation F|g,
denotes the partition of S, into the connected components of the intersections L N S,, where
LeF.

2.1 Vector fields of a singular Riemannian foliation
We review here the main notations about vector fields of a singular Riemannian foliation.

A vector field V is called vertical if it is tangent to the leaves at each point. The set of smooth
vertical vector fields is a Lie algebra, which is denoted by X(M, F).

A vector field X is called foliated if its flow takes leaves to leaves or, equivalently, if
(X, V] € X(M,F) for every V € X(M,F). Any vertical vector field is foliated, but there are
other foliated vector fields. A vector field is called basic if it is both foliated and everywhere
normal to the leaves.

2.2 Homothetic transformation lemma

One of the most fundamental results in the theory of singular Riemannian foliations is
the homothetic transformation lemma. A deeper discussion of this lemma, with proof and
applications, can be found in Molino [Mol88, ch. 6], in particular Lemma 6.1 and Proposition
6.7.

Let (M,F) be a singular foliation, let L be a leaf of F, and let P C L be a plaque. Let
€ > 0 be such that the normal exponential map exp : v*P — M is a diffeomorphism onto its
image B¢(P). For any two radii r1,72 = Ary in (0, €), it makes sense to define the homothetic
transformation

hy: By, (P) = By, (P), hy(expv) = exp \v.
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The leaves of F intersect B, (P), i = 1,2, in plaques that foliate B, (P). We call F|p_(p) the
foliation of By, (P) into the path components of such intersections. One then has the following
result.

THEOREM 2.1 (Homothetic transformation lemma). The homothetic transformation h)y takes
the leaves of (By,, F|p, (p)) onto the leaves of (By,, F|g,,(p))-

This result still holds, more generally, if we replace the plaque P by an open subset B of
some submanifold N C M which is a union of leaves of the same dimension. In this case, we
consider some € > 0 such that exp : v°B — M is a diffeomorphism onto the image B(B), and
define the homothetic transformation around B, hy : B,(B) — Bx,(B), as before. In this case,
an analogous version of the homothetic transformation lemma applies.

2.3 Infinitesimal foliation
Let (M, F) be a singular Riemannian foliation, p € M a point, and S, a slice at p.

DEFINITION 2.2 (Infinitesimal foliation at p). The infinitesimal foliation of F at p, denoted by
(vpLyp, Fp), is defined as the partition of v, L, whose leaf at v € 1,L,, is given by

Ly, ={w € y,L, | exp, tw € Lexp, v V¢ > 0 small enough},
where Lexpptv denotes the leaf of (Sy, Fls,) through exp,, tv.

The leaf L, is well defined because, by the homothetic transformation lemma, if exp, tow
belongs to the same leaf of exp, tov for some small ¢y, then exp, tw belongs to the same leaf of
exp, tv for every t € (0,%p). In the following proposition we collect the important facts about
infinitesimal foliations that we will need.

THEOREM 2.3. Given a singular Riemannian foliation (M,F) and a point p € M with
infinitesimal foliation (v, Ly, F}), then:

(1) the foliation (vpLy, Fp) is a singular Riemannian foliation with respect to the flat metric g,
at p;

(2) the normal exponential map exp, : vyLp — M sends the leaves of F, to the leaves of
(Sps Fls, )

(3) (vpLyp, Fp) Is invariant under rescalings ry : vpLy, — vpLy, 7x(v) = Av.

Proof. (1) [Mol88, Proposition 6.5].

(2) Follows from the definitions of infinitesimal foliation and of slice foliation.

(3) Via the exponential map exp : v°L, — S),, this corresponds to the homothetic
transformation lemma on S),. O

The following fact will become very useful.

PROPOSITION 2.4. Given singular Riemannian foliations (M,F), (M',F') and a foliated
diffeomorphism ¢ : U — U’, between open sets U, U’ of M, M’ respectively, sending a point
p € U top € U', the differential of ¢ induces a linear, foliated isomorphism ¢, : (vpLy, Fp) —
(Vp Ly Fp).-

Proof. By substituting (M’,g’, F') with (M, ¢*g’, F), the problem can be reduced to the case

where M = M’ ¢ =1id, p = p/, and F = F’ is a singular Riemannian foliation with respect to
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two metrics, g and g. In the following, we will denote with a ‘tilde’ (7) every geometric object
related to the metric g, and without the tilde any geometric object related to g.

Let S, (respectively S),) denote a slice at p with respect to g (respectively g). Consider the
set {X1,..., Xk} CX(M,F), k=dim Ly, of vector fields such that {X;(p),..., Xi(p)} is a basis
of T, Ly. Denote by @} the flow of X; and define @, ;) = PF o0l

Around p, both S, and §p are transverse to span(Xi, ..., Xy) and, up to possibly replacing
Sp and §p with smaller open subsets, we can assume that for every ¢ € S, there exists a unique
q € §p of the form G = ®(;, 4 (q). This gives rise to a map H : S, — gp, H(q) = ¢ which is
differentiable and, since ¢ and ¢ belong to the same leaf of F, sends the leaves of F|g, to the
leaves of ]:|§p. In other words, there is a foliated diffeomorphism H : (Sy, Fls,) — (gp,]:|§p).

Consider the composition 1 of foliated diffeomorphisms

eip;l

. exp, H ~ e ~
(Vpra]:p) - (Spa]:|5p) — (Spa]:|§p) - (Vpra]:p)'

For any A € (0,1), one can define a new foliated diffeomorphism

On 0Ly ) = P Iy )y n0) = ).

As XA — 0, the maps v, converge to the differential dy of ¥ at 0. This is an invertible linear map
(in particular a diffeomorphism) and, as a limit of foliated maps, it is itself foliated. Therefore,
the map ~

¢x = doy : (vpL, Fp) — (DpL, Fp)

satisfies the statement of the proposition. a

Remark 2.5. Given a singular Riemannian foliation (M, F) and a submanifold N C M which is
a union of leaves of the same dimension, the infinitesimal foliation at a point p € M splits as
a product (vp(Ly, N) x v,N, {pts.} x Fp|,,~N), where vp(Ly, N) = v, L, N T,N. In this case, the
foliation (vpN, Fply,n) is the ‘essential part’ of the infinitesimal foliation (1,L,, F,). By abuse
of notation, we will call the foliation (v,NN, Fp|,,n) the infinitesimal foliation at p as well and
denote it by F,.

Given a singular Riemannian foliation (M, F) and a point p € M, the infinitesimal foliation
(vpLp, Fp) at p contains the origin as a leaf of F,. Based on this fact, we make the following
definition.

DEFINITION 2.6 (Infinitesimal foliation). An infinitesimal foliation is a singular Riemannian
foliation (V,F) on a Euclidean vector space, with the origin {0} being a zero-dimensional leaf.

2.4 Homogeneous and orbit-like foliations

A singular Riemannian foliation (M,F) is called homogeneous (sometimes Riemannian
homogeneous) if there exists a connected Lie group G acting by isometries on M, whose orbits are
precisely the leaves of F. Furthermore, a singular Riemannian foliation (M, F) is called orbit-like
if at every point p € M, the infinitesimal foliation (1,L,, F;,) is closed and homogeneous.

Ezample 2.7 (Holonomy foliations). An example of an orbit-like foliation, which will be useful

to keep in mind later on, can be constructed as follows. Consider a Riemannian manifold L and
a Euclidean vector bundle E over L, that is, a vector bundle over L with an inner product (, ),
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on each fiber E,, p € L. Let V¥ be a metric connection on E, i.e. a connection on E such that,
for every vector field X on L and sections &, of E, one has

X(&n) = (VXE D) + (&, VEn).

Given (E,VF), there is an induced Riemannian metric g on E, called the connection metric.
Moreover, V¥ induces a parallel transport on E: given &, € E, and a curve v : [0,1] — L with
~v(0) = p, there exists a unique lift £ : [0,1] = E of v, with £(0) = &y such that Vf,(t)f(t) = (0 for
every t € [0,1]. On E one can now define a foliation ¥, by declaring two vectors £1,& € E in
the same leaf if they can be connected to one another via a composition of parallel transports.
The leaves of FF are usually referred to as the holonomy tubes around the zero section L C F
and they define a singular Riemannian foliation on (E,g”). Moreover, the infinitesimal foliation
at any point of E is homogeneous: in fact, for any point p along the zero section L, one can first
construct the holonomy group H, of the connection VE, which acts by isometries on the fiber
E, in such a way that the orbits of the identity component Hg are precisely the leaves of the
infinitesimal foliation of F¥ at p. Similarly, the infinitesimal foliation at a point & € E, is given
by the orbits in v¢L¢ of the identity component of the stabilizer He C H), of . The foliation
FE coincides with its own linearization with respect to the zero section (see definition in §2.5).
Moreover, if the leaves of F¥ are closed, then (E, gl FE ) is an orbit-like foliation.

Remark 2.8. When L C M is a submanifold of somewhat special geometry, the holonomy
foliation on the normal bundle E of L, endowed with the Levi-Civita connection, induces via
the normal exponential map a foliation on the whole of M. For example, if L has parallel focal
structure, then the induced foliation on M is a polar foliation [Toe06]. If M is a complete,
non-compact manifold with sectional curvature > 0 and L is a soul of M [CGT2], then the
induced foliation on M is Wilking’s dual foliation to the Sharafutdinov projection [Wil07].

Although in principle the property of being orbit-like might depend on the metric,
the following proposition shows in fact that being orbit-like is invariant under foliated
diffeomorphisms.

PRrROPOSITION 2.9. The following hold.

(1) Given a foliated linear isomorphism ¢ : (V, F) — (V', F') between infinitesimal foliations,
(V, F) is homogeneous if and only if (V', F') is homogeneous.

(2) Given a foliated diffecomorphism ¢ : (M,F) — (M',F') between singular Riemannian
foliations, (M, F) is orbit-like if and only if (M', F') is orbit-like.

Proof. (1) By the symmetric roles of V and V”| it is enough to show that if (V, F) is homogeneous,
so is (V', F’). Suppose that (V,F) is homogeneous and therefore the foliation F is spanned by
Killing fields. Recall that a vector field X on a Euclidean space (V,g) is Killing if and only if it
is of the form X (v) = Av, where A is a skew-symmetric endomorphism of V, in the sense that
g(Av,v) = 0 for every v € V. Letting {X,..., X;} denote a set of Killing fields on V' spanning
the foliation F, the set {Y1,...,Ys} with Y;(v') = 0. (X;(¢~1(v'))) spans the foliation F’ as well.
Since ¢ is a linear map and the vector fields X; are linear, it follows that Y; can be written as
Y;(v') = Byv' for some endomorphism B; : V! — V' i =1,... k. Since (V', g/, F') is a singular
Riemannian foliation, the leaf L, through v’ lies in a distance sphere from the origin and in
particular g'(T,y L/, v") = 0. Since Y;(v') is tangent to L., it follows that

0=g(Y;(v'),v") = g(B;v',v).
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In other words, B; is skew symmetric and thus Y; is a Killing field as well. Therefore, the foliation
(V', F') is spanned by Killing vector fields and hence it is homogeneous as well.

(2) Up to exchanging the roles of M and M’, it is enough to show that if (M, F) is orbit-like,
so is (M', F'). Fixing a point p € M, Proposition 2.4 states that the foliated diffeomorphism ¢
induces a foliated linear isomorphism ¢, : (vpLy, Fp) —> (Vp Ly, Fpr), where p’ = ¢(p). Since
(M, F) is orbit-like, it follows that (v,L,,Fp) is closed and homogeneous. From the first point
above it follows that (v, L/, F,y) is homogeneous as well and by the continuity of ¢, one has that
(Vp Ly, Fp) is closed. Since p’ was chosen arbitrarily, it follows that (M’, F') is orbit-like. O

2.5 Linearization and linearized foliation

Let (M, F) be a singular Riemannian foliation, B C M a submanifold saturated by leaves, and
U C M an e-tubular neighbourhood of B with metric projection p: U — B. Given a vector field
V in U tangent to the leaves of F, it is possible to produce a new vector field V¥, called the
linearization of V with respect to B, as follows:

V= lim () (VI @),

where h) : U — U denotes the homothetic transformation around B. From [MR15, Proposition 5],
the linearization V¢ is a smooth vector field invariant under the homothetic transformation h
and it coincides with V along B. On U, consider the module X(U, F)¢ given by the linearization,
with respect to B, of the vector fields in X(U, F):

X(U,F)! ={V|VexUF))}

Let D be the pseudogroup of local diffeomorphisms of U, generated by the flows of linearized
vector fields, and let (U, F%) be the partition of U into the orbits of diffeomorphisms in D. By
Sussmann [Sus73, Theorem 4.1], such orbits are (possibly non-complete) smooth submanifolds
of M. Moreover, as noted by Molino [Mol88, Lemma 6.3], this foliation is spanned, at each point,
by the vector fields in X¢(U, F).

We call (U, F%) the linearized foliation of F with respect to B. We will show, later, that the
leaves of the linearized foliation are actually complete and have a particularly nice local structure
(cf. §6).

Given a point p € B, define U, = p~!(p) C U and let F, (respectively (F%),) denote the
partition of U, into the connected components of L N U,, as L ranges through the leaves of F
(respectively F*). If U, is given the flat metric g, of v, B via the exponential map exp,, : VB —
Up, then F, corresponds to the infinitesimal foliation at p (cf. Remark 2.5), which justifies
the notation of F, for this foliation. Furthermore, as noted in [Mol88, §6.4], (F*), is given
by the linearization of (U,, g, F,) with respect to the origin. In other words, (F*), = (F,)¢ and
it makes sense to denote this foliation simply by ]:]f. Moreover, letting O(F,) denote the Lie
group of (linear) isometries of (U, g,) sending every leaf to itself, one has the following result.

ProrosiTION 2.10. The foliation (Up,]-"g) is homogeneous, given by the orbits of the identity
component Hy, of O(F,).

Proof. We identify here U, with a neighbourhood of the origin in v, B via the exponential map
and we think of .7-"5 as the linearization of 7.

Given a vector field V € X(U,, F,), its linearization V* is linear, in the sense that Vpé =Ap
for some A € End(U,). Since F,, is a singular Riemannian foliation, the leaves are tangent to the
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distance spheres around the origin and therefore perpendicular to the radial directions from
the origin: <Vp£, p) = 0. In other words, Vpg = A.p with A skew symmetric, which implies that the
flow of V¢ is an isometry of U,. Moreover, since V¢ is everywhere tangent to the leaves of
fg, the flow of V¥ is a one-parameter group in H,, moving every leaf of (]-'p)e to itself. In
particular, the orbits of H, are contained in the leaves of (F,)".

However, by definition of H,, the tangent space of an Hp-orbit through a point ¢ € U, is
given by

T,(Hp - q) = {W, | W Killing vector field tangent to the leaves of F,}

and such vector fields coincide precisely with the vector fields in X(Up, ]:p)f . Therefore, H, - q is
the integral manifold of X(U,, F,)* through q. O

3. Molino’s conjecture, assuming the main theorem
Before proving the main theorem, we show how Molino’s conjecture follows from it as a corollary.

Proof of Molino’s conjecture. Let (M, F) be a singular Riemannian foliation and let F denote
the closure of F. Molino himself proved that F is a partition into complete smooth closed
submanifolds and that F is a transnormal system. Therefore, in order to prove the conjecture, it
is enough to show that for any leaf L € F with closure L and any vector v € v(L,L) := vLNTL,
there exists a smooth extension of v to a vector field V' everywhere tangent to the leaves of F.
Let U be a tubular neighbourhood of L and let (U, ]?Z) be the foliation satisfying the main
theorem. Since F* coincides with F along L, it follows that L is a leaf of F* as well. Since F*
is an orbit-like foliation, by [AR17, Theorem 1.6], given v € v(L, L) there is a vector field V
extending v which is tangent to the closure of F'. Since this closure is contained in F, it follows
that V is also tangent to F and this ends the proof of the conjecture. O

4. The setup

Fix a leaf L and a distance tube U = B.(L) around L. Using the normal exponential map exp :
vL — M, U can be identified with the e-tube v°L around the zero section. By the homothetic
transformation lemma, the pull-back foliation exp~! F on v¢L is invariant under the rescalings
ry: VL — VL, r)(p,v) = (p, M) for any X € (0,1).
For this reason, in the following sections we will be considering the (slightly more general)
setup:
e U is the e-tube around the zero section of some Euclidean vector bundle £ — B (in our
case B = L), with projection p : U — B;
e g is a Riemannian metric on U with the same radial function as the Euclidean metric on
each fiber of E;
e (U,g,F)isasingular Riemannian foliation on U, invariant under rescalings r. In particular,
the zero section B is saturated by leaves and the projection p sends leaves onto leaves;
e the restriction Fp = F|p is a regular Riemannian foliation;
for every leaf L C B and any point p € L, the normal exponential map v,L — U is an
embedding.

5. Three distributions

Let (U,g,F), p: U — B be as in §4. In order to prove the main theorem, it is first needed
to produce a nicer metric on U and for this we first need to split the tangent space of U into
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FI1GURE 1. The distributions at q.

three components. The first, K = ker p4, is the distribution tangent to the fibers of p. For the
remaining two notice that, since the foliation (B, Fp) is regular, the tangent bundle 7' B splits into
a tangent and a normal part to the foliation: TB = T'F|p @ vF|p. The last two distributions will
be constructed as (appropriately chosen) extensions 7 and N of TF|p and v.F|p, respectively,
to the whole of U; see Figure 1.

5.1 The distribution 7~
From [Alel0], there exists a distribution 7 of rank dim F|p, which extends TF|p and is
everywhere tangent to the leaves of F. N

The distribution 7 is simply defined as the linearization of T with respect to B, as follows:
consider a family of vector fields {V,, }, spanning 7. Since 7 |p is tangent to B, the vector fields
V, lie tangent to B as well and therefore it makes sense to consider their linearization V! with
respect to B. By the properties of the linearization, these linearized vector fields still span a
smooth distribution of the same rank as 7, which we call 7.

5.2 The distribution N/

At each point ¢ € U with p(g) = p, the slice S, = exp,(v,Lp) contains q as well as the whole
p-fiber U, through p. In particular, Ky lies tangent to .S,. Moreover, S, comes equipped with a
flat metric gy, inherited from the metric on v}, L via the diffeomorphism exp, : v°L, — Sp.

Define /\qu as the subspace of TS, which is g,-orthogonal to IC;. Finally, define N as the

linearization of N , as cleﬁned in the previous section.
The distributions N and N satisfy the following property.

PROPOSITION 5.1. For every smooth Fp-basic vector field X along a plaque P in B, there exists
a smooth extension X to an open subset of U such that:

(i) X is foliated and tangent to N';

(ii) the linearization X* of X with respect to B is tangent to N and it is foliated with respect
to both F and F*.

Proof. (1) Fix a leaf L in B, a plaque P C L, and a parametrization
o:(-1,1)* > PcCL,

where k = dim Fp. We first show that there exists a small neighbourhood of P in U, on which any
Fp-basic vector field X¢ along P can be extended to a foliated vector field X ' whose restriction
to p~1(P) is tangent to N.
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Let 0y,,...,0,, be coordinate vector fields on P and let Y7,...,Y} denote vector fields,
linearized with respect to L, that extend 0y,,...,dy, to a neighbourhood of P in U. There is a
foliated diffeomorphism

F: (P xSy, PxFs)— (UF)
(So(yla' . ayk)>Q) — (I)Zk O o@?{l(q)’

where @Y is the flow of Y;, after time y;.
Furthermore, the foliation (P x Sy, P x Fg,) locally splits as

(P x vy(L, B) x v, B, P x {pts.} x Fl,,5),

where v(L, B) = vL NTB. Moreover, if S, is endowed with the Euclidean metric g, on v, L, the
splitting S), = v,,(L, B) x 1, B is in fact Riemannian.

The map F satisfies the following.

e The set P x {0} x v5B is sent to p~!(P) = v*B|p.

e The set P x v;(L,B) x {0} is sent to a neighbourhood of P in B.

e Since F' is defined via linearized vector fields, each fiber {p'} x S, C P x S, is sent, via F,
to the slice Sy, isometrically with respect to the flat metrics on S, and S, (cf. [MR15]).

From the last point, it follows that the distribution of P x v,(L, B) x v,B tangent to the
second factor is sent, along vB|p, precisely to the distribution N.

Any Fp-basic vector field X along P corresponds, via F', to a vector field along P x {0} x {0}
of the form (0, o, 0), where zg € v,(L, B) is a fixed vector. One can clearly extend such a vector
field to the foliated vector field X’ = F,(0,x0,0). Since F is a foliated map, the vector field
X' is a foliated vector field, whose restriction to B is tangent to B by the second point above.
Moreover, by the discussion above the restriction of X’ to p~1(P) is tangent to N.

This proves the first claim, made at the beginning of the proof. In particular, since the plaque
P was chosen arbitrarily, this shows that the distribution N is foliated: that is, given a vector y
tangent to N at a point ¢, there exists a foliated extension Y along a plaque containing ¢ which
is everywhere tangent to N. Tt is easy to see that IC and 7 are foliated as well. In particular,
given the foliated vector field X', the (unique) decomposition

X'=Xp+ Xp+Xlg, XpeK XpeT XgeN

produces three vector fields X}, X7, X /’\7 which are foliated. In particular, the vector field X =

(X’)AA[ is foliated, everywhere tangent to ./\A/', and it extends Xo = (Xo) ¢ to an open set of U, as
we needed to show. N N

(2) Since X is tangent to A, its linearization X* is tangent to the linearization of A/, which
is A. Moreover, since X is foliated and ry : U — U is a foliated map, X¢ = lim,\_>0(1";1)*X ory
is foliated as well. Finally, since X is foliated, for every vector field V' tangent to F one has that
[X, V] is also tangent to F. Since r) is a diffeomorphism, one computes

X0V = i[5 X o, ()Y o)
= lim (r V). [X
)\I_I)I%)(T)\ ) [ 7V]OT)\
= [Xv V]g

Since the linearization V¢ are precisely the vector fields generating F¢, it follows from the
equation above that [X¢, V¥ is tangent to F¢ whenever V¢ is and therefore X* is foliated with
respect to F¢. O
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6. Structure of F¢ and the local closure F?*

Using the extensions X¢ defined in Proposition 5.1, one can prove the following.

PROPOSITION 6.1. Around any point p € B there is a neighbourhood W of p in B such that
(p~ (W), ]:£|p*1(W)) is foliated diffeomorphic to a product

(DF x D% x U,, D" x {pts.} x Fp),
where k = dim F|p and m = dim B.

Proof. Let W be a coordinate neighbourhood of B around p, with a foliated diffeomorphism
¢ (W, Flw) — (DF x D™F DF x {pts.}). Let /0y, ...,0/0yr denote a basis of vector fields
in W tangent to the leaves of F|y and let Vi,. ..,V denote vector fields on p~*(W), linearized
with respect to B, extending 0/0y;, i = 1,...,k, and spanning the foliation 7. Similarly, let
0/0x1,...,0/0x;,_r denote a basis of basic vector fields in W normal to the leaves and let X f ,
o, X f;l_ ;. denote linearized vector fields in 7~ 1(W) defined as in Proposition 5.1, extending the
vectors 8/dz;, i = 1,...,m — k. Finally, define ®! and ¥! as the flows of V; and Xf, respectively,
after time ¢, and let

G:DF x D™ F x U, — p L (W)
((t1y ey tr), (S5 vy Sm—k),q) —> @Z’“ 0---0 <I>§1 ) \Iffr’l'fé“ o---0W(q).

Since the V; and Xf are linearized, they take fibers of DF x D™~ x Up — Dk x D™ * to fibers
of p: p~ (W) — W. Since the flows ¥; send the leaves of F* to leaves and the flows ®; take the
leaves of F* to themselves, the leaves of D¥ x (D™~%, {pts.}) x (Up,}}f) are sent into the leaves
of F¢. Since the differential dG is invertible at (0,0,p) € DF x D™~k x Up, it is a diffeomorphism
around G(0, 0, p) = p and, by dimensional reasons, the leaves of (D* x D™~F x U, D¥ x {pts.} x ]-'5)
are mapped diffeomorphically onto the leaves of (p~1(W), .7-'€|p71(W)). O

The local closure of F*
Even though (U, .7-";) is homogeneous for every p € B, it might be the case that its leaves are
not closed, which happens when the group H, C O(U,) defined in Proposition 2.10 is not closed.
To obviate this problem we define a new foliation Ft , called the local closure of F¢, such that
F! c F! ¢ Ff and whose restriction ]?f; to each p-fiber U, is homogeneous and closed.

Recall that F¢ is defined by the orbits of the pseudogroup D of local diffeomorphisms,
generated by the flows of linearized vector fields. For each ¢ € U,, consider the closure Fp
of Hy, in O(U,) and define the Flleaf Eq through ¢ to be the D-orbit of H), - ¢:

Ly={d =®(h-q) | ®€D,heH,}.

Let ~ denote the relation ¢ ~ ¢’ if and only if ¢ = ®(h - q) for some ® € D and h € H. In this
way, the leaf of F¢ through ¢ can be rewritten as {¢ €U | ¢ ~ q}. As for the other foliations,
for every p € B we define (U, .7-"5) to be the partition of U, into the connected components of

the intersections of U, with the leaves in .7?5 .

ProprosITION 6.2. The following hold:

(1) F! is a well-defined partition of U;
(2) for every p € B, the leaves of ]/-:ﬁ are the orbits of H,, on U,.
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Proof. (1) One must prove that the relation ~ defined above is an equivalence relation. For this,
notice that, since any ® € D defines a foliated isometry between (U, ]-"ﬁ) and (U¢(p),.7:é(p)) for

any p € B, in particular it defines a foliated isometry between the respective closures (U, H,)

and (Uq>(p),ﬁ¢(p)). In particular, for any h € H, and ® € D, one has b’ = doho®~! ¢ ﬁé(p).
— Reflexivity of ~: if ¢’ ~ g, then ¢’ = ®(h(q)) for some h € H, and ® € D. Then ¢’ = h/(®(q)),

where i/ = doho®d ! € Fq;(p) and therefore ¢ = ®~1((h/)~'¢'), which means that ¢ ~ ¢'.

— Transitivity of ~: if ¢ ~ ¢ and ¢" ~ ¢/, then ¢ = ®(h(q)) and ¢" = ¥(g(¢')) for some
heH,gc Fq>(p), and ®, ¥ € D. Then ¢ = (¥ o ®)((¢’ o h)(q)), where ¢ = ® 1 ogo® € H,,
and therefore ¢ ~ q. R

(2) Let L' denote a leaf of F*. From (1), the intersection of L' with U, is a union of orbits of
Fp. On the other hand, we claim that the intersection L' N U, consists of countably many orbits
of ﬁp, so that each connected component of such intersection must consist of a single Fp—orbit.
From the definition of ]/-:é, it is enough to prove that the subgroup D, C D of diffeomorphisms
fixing p moves every H ,-orbit in L' N U, to at most countably many orbits. For this, consider a
piecewise-smooth loop 7 : [0,1] — L, with v(0) = (1) = p. Using linearized vector fields with ~
as integral curve, one can construct a continuous path ®; : [0,1] — D of diffeomorphisms such
that @y = idy and ®¢(p) = 7(t), as described in [MR15, Corollary 7). Fixing some H ,-orbit O in
L'NU,, its image ®1(0) is again some H p-orbit, which depends only on the class [y] € m1(Ly, p)
and not on the actual path v, nor on the specific choice of ®;. This gives a map

0 : m(Ly,p) = {Hp-orbits in L' N U,}.

This map admits a section, namely: for every orbit @' in L' N U,, take a path v in L’ from a
point in a (fixed) orbit O to a point in @'. Under the projection p : U — B, the composition
po-yisaloop in L,. The section of d sends O’ to [po~y] € m1(Ly,p). In particular, the map 9 is
surjective and therefore the set of Hp-orbits in L' N U, has at most the cardinality of 7 (Ly, p),
which is at most countable since L, is a manifold. O

As a corollary of Propositions 6.2 and 6.1, one gets the following result.

COROLLARY 6.3. Let (U, F) be a singular Riemannian foliation as in § 4, let F* be its linearized
foliation, and F* the local closure. Then F* is a singular foliation with complete leaves. Moreover,
around each point p € B there is a neighbourhood W of p in B such that (p_l(W),}“Elpﬂ(W))
is foliated diffeomorphic to a product

(D* x D™* x U, DF x {pts.} x {orbits of H, C O(U,)}),
which can be given the structure of a singular Riemannian foliation.

Once it is shown that F* is also a transnormal system with respect to some metric, then by
the corollary above it is globally a singular Riemannian foliation.

7. A new metric

Let T,N, K be the distributions as in the previous section. Clearly, one has TU =T & N & K.
Now define the new metric g on U, as the metric defined by the following properties:
e 7 @ N and K are orthogonal with respect to g;
o g’|7en = p*gB, where gp denotes the restriction of the original metric on B. In particular,
T and N are also orthogonal to one another;
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e for any g € U, recall that Kj; = T,U, and define g’ K, = &p as the flat metric on U, induced
from exp, : v, B — U),.
These conditions characterize the metric gf uniquely. The most useful property of this metric
is the following.

PROPOSITION 7.1. The triples (U, g, F*) and (U, ge’]?e) are singular Riemannian foliations.

Proof. The arguments for F¢ and F¢ are identical; therefore, we will only check the proposition
for (U,g’, F*) (which is the only case we need for the main theorem anyway).

Moreover, the statement is local in nature; therefore, it is enough to prove the statement on
certain open sets covering the whole of U. For any point p € B, let W denote a neighbourhood
of p in B and p~!(W) a neighbourhood of p in U. We need to check that (p~ (W), gf, F) is a
singular Riemannian foliation. To prove this, we apply [Alel0, Proposition 2.14], which states
that it is enough to check two conditions:

(1) (p~1(W),q,F%) is a singular Riemannian foliation with respect to some Riemannian
metric ¢';

(2) for every stratum ¥ C p~1(W) (i.e. union of leaves of the same dimension), the restriction
of ¢ to X is a (regular) Riemannian foliation.

The first condition is satisfied by Corollary 6.3. The second condition is equivalent to checking
that, for every leaf L, of F €|p71(W) and every basic vector field X along L, tangent to the stratum

through Eq, the norm ||.X ||, is constant along Eq.
By definition of the metric gf, the space l/fq is given by N|; @ (I/Eq N K). From
q

Proposition 5.1, along E the space N is spanned by linearized vector fields Xf, which are then
gl -basic (i.e. foliated cmd g-orthogonal to the leaves). In particular, any basic vector field X
along L splits as a sum X = X1+ X9, where X is tangent to A/, X5 is tangent to N/ := I/L NKC,
and g (X 1, X 22 = 0. Therefore, it is enough to check independently that for every basic Vector
field X along L,, tangent to either N or A, the norm of X is constant along L

If X is tangent toA/\/' , then by the construction in Proposition 5.1 it prOJeCtS to some basic
vector field X along L, C B. Since (B,gg,F|g) is a Riemannian foliation, the norm || X[, is
constant along Ep. By the construction of the metric g, one has || X|| ot = || X|lgz and, therefore,
the norm of X is constant along Eq.

If X is tangent to A7, then it is tangent to any fiber Uy, p’ € Ep. The restriction Y|Up/ is a

basic vector field of (U, ]?ﬁ,) along Eq NU,y and therefore the norm \|Y|Up, g,/ 1s locally constant

along Eq N U, . By the construction of g’ it follows that HY|UP, ¢ is also locally constant along

g
each Eq NU,y . However, given two points p/, p” € Ep and a vertical, foliated vector field V¥ whose
flow ® moves p’ to p”, one also has that ® moves U,y isometrically to U, and X |Up/ to X |Up,,. In

particular, |]Y|Up, ¢ = ||Y\Up, g, does not really depend on the point p’ € Ep and it is actually

[
constant along the whole leaf L,. O

With this in place, one can finally prove the main theorem.
Proof of the main theorem. Let U be an e-tubular neighbourhood around the closure L of a leaf

L € F. Letting B = L, we are under the assumptions of § 4. In particular, it is possible to define
the linearized foliation F* on U, its local closure F¢, and the metric g¢ as in Proposition 7.1.
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It is clear by construction that .ﬂ\f = F|r, and that the closure of F'is contained in the closure

of F. Moreover, by Corollary 6.3, the foliation (U, gl ]?g) is, locally arognd each point, foliated
diffeomorphic to the orbit-like foliation (D* x D™~* x Uy, D* x {pts.} x Ff). By Proposition 2.9,
the foliation (U, gf, F*) is orbit-like as well and this concludes the proof. O
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