

COMPOSITIO MATHEMATICA

Closure of singular foliations: the proof of Molino's conjecture

Marcos M. Alexandrino and Marco Radeschi

Compositio Math. **153** (2017), 2577–2590.

 ${\rm doi:} 10.1112/S0010437X17007485$

Compositio Math. 153 (2017) 2577–2590 doi:10.1112/S0010437X17007485

Closure of singular foliations: the proof of Molino's conjecture

Marcos M. Alexandrino and Marco Radeschi

Abstract

In this paper we prove the conjecture of Molino that for every singular Riemannian foliation (M, \mathcal{F}) , the partition $\overline{\mathcal{F}}$ given by the closures of the leaves of \mathcal{F} is again a singular Riemannian foliation.

1. Introduction

Given a Riemannian manifold M, a singular Riemannian foliation \mathcal{F} on M is, roughly speaking, a partition of M into smooth connected and locally equidistant submanifolds of possibly varying dimension (the *leaves* of \mathcal{F}), which is spanned by a family of smooth vector fields. The precise definition, given in §2, was suggested by Molino, by combining the concepts of *transnormal* system of Bolton [Bol73] and of singular foliation by Sussmann [Sus73].

A typical example of a singular Riemannian foliation is the decomposition of a Riemannian manifold M into the orbits of an isometric group action G on M. Such a foliation is called homogeneous. Another example of a foliation is given by the partition of a Euclidean vector bundle $E \rightarrow L$, endowed with a metric connection, into the holonomy tubes around the zero section (cf. Example 2.7). Such a foliation, which we call a holonomy foliation, will be a sort-of prototype in the structural results that will appear later on. Holonomy foliations are in general not homogeneous (the zero section L is always a leaf but in general not a homogeneous manifold); however, they are locally homogeneous, in the sense that the infinitesimal foliation at every point of E is homogeneous (cf. §§ 2.3 and 2.4). This construction is related to other important types of foliations, like polar foliations [Toe06] or Wilking's dual foliation to the Sharafutdinov projection [Wil07]; see Remark 2.8.

In general, the leaves of a singular Riemannian foliation might not be closed, even in the simple cases defined above. In the homogeneous case, consider for example the foliation on the flat torus T^2 by parallel lines, of irrational slope. These are non-closed orbits of an isometric \mathbb{R} -action on T^2 .

Given a (regular) Riemannian foliation (M, \mathcal{F}) with non-closed leaves, Molino proved that replacing the leaves of \mathcal{F} with their closure yields a new singular Riemannian foliation $\overline{\mathcal{F}}$ (cf. [Mol88, ch. 5]). Moreover, he conjectured that the same result should hold true if one starts with a singular Riemannian foliation and this has become known, in recent decades, as *Molino's conjecture*.

Molino proved that the closure $\overline{\mathcal{F}}$ of a singular Riemannian foliation (M, \mathcal{F}) is a transnormal system [Mol88], thus leaving to prove that it is a singular foliation as well. Moreover, in [Mol94]

Received 9 February 2017, accepted in final form 9 June 2017, published online 13 September 2017.

2010 Mathematics Subject Classification 53C12 (primary), 57R30 (secondary).

Keywords: singular Riemannian foliation, linearization, Molino's conjecture.

The first author was partially supported by FAPESP. The second author is part of the DFG project SFB 878: Groups, Geometry & Actions.

This journal is © Foundation Compositio Mathematica 2017.

M. M. Alexandrino and M. Radeschi

he suggested a strategy to prove the conjecture for the case of *orbit-like foliations*, i.e. foliations which, roughly speaking, are locally diffeomorphic to the orbits of some proper isometric group action around each point (cf. $\S 2.4$). A formal alternative proof in this case can be found in [AR17]. Molino's conjecture was also proved for *polar foliations* and then *infinitesimally polar foliations* in [Ale06] and [AL11], respectively.

These partial results do not cover every possible foliation. Since the 1980s there are examples of non-orbit-like foliations and, in recent years, there was shown the existence of a remarkably large class of 'infinitesimal' foliations that are neither homogeneous nor polar, the so-called Clifford foliations [Rad14] (these infinitesimal foliations have been shown, however, to have an algebraic nature; cf. [LR16]). Therefore, it is important to give a complete answer to the conjecture, to fully understand the semi-local dynamic of singular Riemannian foliations.

The goal of this paper is to prove the full Molino's conjecture.

THEOREM (Molino's conjecture). Let (M, \mathcal{F}) be a singular Riemannian foliation on a complete manifold M and let $\overline{\mathcal{F}} = \{\overline{L} \mid L \in \mathcal{F}\}$ be the partition of M into the closures of the leaves of \mathcal{F} . Then $(M, \overline{\mathcal{F}})$ is a singular Riemannian foliation.

This result is in fact a direct consequence of the following.

MAIN THEOREM. Let (M, \mathcal{F}) be a singular Riemannian foliation, let L be a (possibly not closed) leaf, and let U be an ϵ -neighbourhood around the closure of L. Then for ϵ small enough, there are a metric g^{ℓ} on U and a singular foliation $\widehat{\mathcal{F}}^{\ell}$ such that:

- (1) $(U, g^{\ell}, \widehat{\mathcal{F}}^{\ell})$ is an orbit-like singular Riemannian foliation;
- (2) the foliation $\widehat{\mathcal{F}}^{\ell}$ coincides with \mathcal{F} on \overline{L} ;
- (3) the closure of $\widehat{\mathcal{F}}^{\ell}$ is contained in the closure of \mathcal{F} .

In short, the foliation $\widehat{\mathcal{F}}^{\ell}$ is obtained by first constructing the *linearized foliation* \mathcal{F}^{ℓ} of \mathcal{F} in U, which is a subfoliation of \mathcal{F} spanned by the first-order approximations, around L, of the vector fields tangent to \mathcal{F} (see § 2.5 for a precise definition). The foliation $\widehat{\mathcal{F}}^{\ell}$ is then obtained from \mathcal{F}^{ℓ} by taking the 'local closure' of the leaves of \mathcal{F}^{ℓ} . The foliations $\mathcal{F}, \mathcal{F}^{\ell}, \widehat{\mathcal{F}}^{\ell}$, together with their closures, are then related by the following inclusions:

$$\begin{array}{ccccc} \mathcal{F} &\supseteq & \mathcal{F}^{\ell} &\subseteq & \widehat{\mathcal{F}}^{\ell} \\ \mathrm{I} \cap & & \mathrm{I} \cap & & \mathrm{I} \cap \\ \overline{\mathcal{F}} &\supseteq & \overline{\mathcal{F}}^{\ell} &= & \overline{\widehat{\mathcal{F}}}^{\ell}. \end{array}$$

Example 1.1. Consider a Euclidean vector bundle E over a complete Riemannian manifold L, with a metric connection ∇^E and a connection metric g^E (cf. Example 2.7). Let H_p denote the holonomy group of (E, ∇^E) at p, acting by isometries on the Euclidean fiber E_p , and let (E_p, \mathcal{F}_p^0) be a singular Riemannian foliation preserved by the H_p -action. Finally, let K_p be the maximal connected group of isometries of E_p that fixes each leaf of \mathcal{F}_p^0 as a set. Letting \mathcal{F} be the partition of E into the holonomy translates of the leaves of \mathcal{F}_p^0 (i.e. for every

Letting \mathcal{F} be the partition of E into the holonomy translates of the leaves of \mathcal{F}_p^0 (i.e. for every leaf $\mathcal{L} \in \mathcal{F}_p^0$, $L_{\mathcal{L}}$ denotes the set of points in E that can be reached via ∇^E -parallel translation from a point in \mathcal{L}), then \mathcal{F} is a singular Riemannian foliation. In this case, the linearized foliation \mathcal{F}^{ℓ} is the foliation by the holonomy translates of the K_p -orbits in E_p , and the local closure of $\widehat{\mathcal{F}}^{\ell}$ is the foliation by the holonomy translates of the \overline{K}_p -orbits in E_p , where \overline{K}_p denotes the closure of K_p in $O(E_p)$. This can be restated in the language of groupoids: defining H as the holonomy groupoid of the connection ∇^E , then $\mathcal{F} = \{H(\mathcal{L}) \mid \mathcal{L} \in \mathcal{F}_p^0\}, \mathcal{F}^\ell$ is given by the orbits of HK_p , and its local closure $\hat{\mathcal{F}}^\ell$ is given by the orbits of $H\overline{K}_p$.

This paper is organized as follows: after a section of preliminaries (§ 2) we show how Molino's conjecture follows from the main theorem (§ 3). In § 4 we fix the setup in which we work for the rest of the paper. In § 5 we define three distributions of the tangent bundle TU. We first use these to obtain information on the local structure of \mathcal{F}^{ℓ} and define the local closure $\hat{\mathcal{F}}^{\ell}$ (§ 6) and then to define the metric g^{ℓ} used in the main theorem (§ 7). In this final section we also prove the main theorem.

2. Preliminaries

Given a Riemannian manifold (M, g), a partition \mathcal{F} of M into complete connected submanifolds (the *leaves* of \mathcal{F}) is called a *transnormal system* if geodesics starting perpendicular to a leaf stay perpendicular to all leaves, and a *singular foliation* if every vector tangent to a leaf can be locally extended to a vector field everywhere tangent to the leaves.

A singular Riemannian foliation will be denoted by the triple (M, g, \mathcal{F}) . However, if the Riemannian metric of M is understood, we will drop it and simply write (M, \mathcal{F}) .

The following notation will be used throughout the rest of the paper. Given a point $p \in M$, the leaf of \mathcal{F} through p will be denoted by L_p . A small relatively compact open subset $P \subset L$ is called a *plaque*. The tangent and normal spaces to L_p at p are denoted by T_pL_p and ν_pL_p , respectively. Given some $\epsilon > 0$, $\nu_p^{\epsilon}L_p$ denotes the set of vectors $x \in \nu_pL_p$ with norm $< \epsilon$. If ϵ is small enough that the normal exponential map $\exp : \nu_p^{\epsilon}L_p \to M$ is a diffeomorphism onto the image, such image is called a *slice* of L_p at p and it is denoted by S_p . The *slice foliation* $\mathcal{F}|_{S_p}$ denotes the partition of S_p into the connected components of the intersections $L \cap S_p$, where $L \in \mathcal{F}$.

2.1 Vector fields of a singular Riemannian foliation

We review here the main notations about vector fields of a singular Riemannian foliation.

A vector field V is called *vertical* if it is tangent to the leaves at each point. The set of smooth vertical vector fields is a Lie algebra, which is denoted by $\mathfrak{X}(M, \mathcal{F})$.

A vector field X is called *foliated* if its flow takes leaves to leaves or, equivalently, if $[X, V] \in \mathfrak{X}(M, \mathcal{F})$ for every $V \in \mathfrak{X}(M, \mathcal{F})$. Any vertical vector field is foliated, but there are other foliated vector fields. A vector field is called *basic* if it is both foliated and everywhere normal to the leaves.

2.2 Homothetic transformation lemma

One of the most fundamental results in the theory of singular Riemannian foliations is the homothetic transformation lemma. A deeper discussion of this lemma, with proof and applications, can be found in Molino [Mol88, ch. 6], in particular Lemma 6.1 and Proposition 6.7.

Let (M, \mathcal{F}) be a singular foliation, let L be a leaf of \mathcal{F} , and let $P \subset L$ be a plaque. Let $\epsilon > 0$ be such that the normal exponential map $\exp : \nu^{\epsilon}P \to M$ is a diffeomorphism onto its image $B_{\epsilon}(P)$. For any two radii $r_1, r_2 = \lambda r_1$ in $(0, \epsilon)$, it makes sense to define the homothetic transformation

$$h_{\lambda}: B_{r_1}(P) \to B_{r_2}(P), \quad h_{\lambda}(\exp v) = \exp \lambda v.$$

M. M. Alexandrino and M. Radeschi

The leaves of \mathcal{F} intersect $B_{r_i}(P)$, i = 1, 2, in plaques that foliate $B_{r_i}(P)$. We call $\mathcal{F}|_{B_{r_i}(P)}$ the foliation of $B_{r_i}(P)$ into the path components of such intersections. One then has the following result.

THEOREM 2.1 (Homothetic transformation lemma). The homothetic transformation h_{λ} takes the leaves of $(B_{r_1}, \mathcal{F}|_{B_{r_1}(P)})$ onto the leaves of $(B_{r_2}, \mathcal{F}|_{B_{r_2}(P)})$.

This result still holds, more generally, if we replace the plaque P by an open subset B of some submanifold $N \subset M$ which is a union of leaves of the same dimension. In this case, we consider some $\epsilon > 0$ such that $\exp : \nu^{\epsilon}B \to M$ is a diffeomorphism onto the image $B_{\epsilon}(B)$, and define the homothetic transformation around B, $h_{\lambda} : B_r(B) \to B_{\lambda r}(B)$, as before. In this case, an analogous version of the homothetic transformation lemma applies.

2.3 Infinitesimal foliation

Let (M, \mathcal{F}) be a singular Riemannian foliation, $p \in M$ a point, and S_p a slice at p.

DEFINITION 2.2 (Infinitesimal foliation at p). The *infinitesimal foliation of* \mathcal{F} at p, denoted by $(\nu_p L_p, \mathcal{F}_p)$, is defined as the partition of $\nu_p L_p$ whose leaf at $v \in \nu_p L_p$ is given by

 $L_{v} = \{ w \in \nu_{p} L_{p} \mid \exp_{p} t w \in L_{\exp_{n} t v} \forall t > 0 \text{ small enough} \},\$

where $L_{\exp_n tv}$ denotes the leaf of $(S_p, \mathcal{F}|_{S_p})$ through $\exp_p tv$.

The leaf L_v is well defined because, by the homothetic transformation lemma, if $\exp_p t_0 w$ belongs to the same leaf of $\exp_p t_0 v$ for some small t_0 , then $\exp_p t w$ belongs to the same leaf of $\exp_p t v$ for every $t \in (0, t_0)$. In the following proposition we collect the important facts about infinitesimal foliations that we will need.

THEOREM 2.3. Given a singular Riemannian foliation (M, \mathcal{F}) and a point $p \in M$ with infinitesimal foliation $(\nu_p L_p, \mathcal{F}_p)$, then:

- (1) the foliation $(\nu_p L_p, \mathcal{F}_p)$ is a singular Riemannian foliation with respect to the flat metric g_p at p;
- (2) the normal exponential map $\exp_p : \nu_p^{\epsilon} L_p \to M$ sends the leaves of \mathcal{F}_p to the leaves of $(S_p, \mathcal{F}|_{S_p})$;
- (3) $(\nu_p L_p, \mathcal{F}_p)$ is invariant under rescalings $r_{\lambda} : \nu_p L_p \to \nu_p L_p, r_{\lambda}(v) = \lambda v.$

Proof. (1) [Mol88, Proposition 6.5].

(2) Follows from the definitions of infinitesimal foliation and of slice foliation.

(3) Via the exponential map exp : $\nu^{\epsilon}L_p \to S_p$, this corresponds to the homothetic transformation lemma on S_p .

The following fact will become very useful.

PROPOSITION 2.4. Given singular Riemannian foliations (M, \mathcal{F}) , (M', \mathcal{F}') and a foliated diffeomorphism $\phi : U \to U'$, between open sets U, U' of M, M' respectively, sending a point $p \in U$ to $p' \in U'$, the differential of ϕ induces a linear, foliated isomorphism $\phi_* : (\nu_p L_p, \mathcal{F}_p) \to (\nu_{p'} L_{p'}, \mathcal{F}'_{p'})$.

Proof. By substituting (M', g', \mathcal{F}') with $(M, \phi^*g', \mathcal{F})$, the problem can be reduced to the case where M = M', $\phi = id$, p = p', and $\mathcal{F} = \mathcal{F}'$ is a singular Riemannian foliation with respect to

two metrics, g and \tilde{g} . In the following, we will denote with a 'tilde' ($\tilde{}$) every geometric object related to the metric \tilde{g} , and without the tilde any geometric object related to g.

Let S_p (respectively S_p) denote a slice at p with respect to g (respectively \tilde{g}). Consider the set $\{X_1, \ldots, X_k\} \subset \mathfrak{X}(M, \mathcal{F}), k = \dim L_p$, of vector fields such that $\{X_1(p), \ldots, X_k(p)\}$ is a basis of $T_p L_p$. Denote by Φ_i^t the flow of X_i and define $\Phi_{(t_1,\ldots,t_k)} = \Phi_k^{t_k} \circ \cdots \circ \Phi_1^{t_1}$.

Around p, both S_p and \widetilde{S}_p are transverse to $\operatorname{span}(X_1, \ldots, X_k)$ and, up to possibly replacing S_p and \widetilde{S}_p with smaller open subsets, we can assume that for every $q \in S_p$ there exists a unique $\widetilde{q} \in \widetilde{S}_p$ of the form $\widetilde{q} = \Phi_{(t_1,\ldots,t_k)}(q)$. This gives rise to a map $H: S_p \to \widetilde{S}_p$, $H(q) = \widetilde{q}$ which is differentiable and, since q and \widetilde{q} belong to the same leaf of \mathcal{F} , sends the leaves of $\mathcal{F}|_{S_p}$ to the leaves of $\mathcal{F}|_{\widetilde{S}_p}$. In other words, there is a foliated diffeomorphism $H: (S_p, \mathcal{F}|_{S_p}) \to (\widetilde{S}_p, \mathcal{F}|_{\widetilde{S}_p})$.

Consider the composition ψ of foliated diffeomorphisms

$$(\nu_p^{\epsilon}L_p, \mathcal{F}_p) \xrightarrow{\exp_p} (S_p, \mathcal{F}|_{S_p}) \xrightarrow{H} (\widetilde{S}_p, \mathcal{F}|_{\widetilde{S}_p}) \xrightarrow{\exp_p^{-1}} (\widetilde{\nu}_p^{\epsilon}L_p, \widetilde{\mathcal{F}}_p).$$

For any $\lambda \in (0, 1)$, one can define a new foliated diffeomorphism

$$\psi_{\lambda} : (\nu_p^{\epsilon/\lambda} L_p, \mathcal{F}_p) \to (\tilde{\nu}_p^{\epsilon/\lambda} L_p, \widetilde{\mathcal{F}}_p), \quad \psi_{\lambda}(v) = \frac{1}{\lambda} \psi(\lambda v).$$

As $\lambda \to 0$, the maps ψ_{λ} converge to the differential $d_0\psi$ of ψ at 0. This is an invertible linear map (in particular a diffeomorphism) and, as a limit of foliated maps, it is itself foliated. Therefore, the map

$$\phi_* := d_0 \psi : (\nu_p L, \mathcal{F}_p) \longrightarrow (\tilde{\nu}_p L, \tilde{\mathcal{F}}_p)$$

satisfies the statement of the proposition.

Remark 2.5. Given a singular Riemannian foliation (M, \mathcal{F}) and a submanifold $N \subset M$ which is a union of leaves of the same dimension, the infinitesimal foliation at a point $p \in M$ splits as a product $(\nu_p(L_p, N) \times \nu_p N, \{\text{pts.}\} \times \mathcal{F}_p|_{\nu_p N})$, where $\nu_p(L_p, N) = \nu_p L_p \cap T_p N$. In this case, the foliation $(\nu_p N, \mathcal{F}_p|_{\nu_p N})$ is the 'essential part' of the infinitesimal foliation $(\nu_p L_p, \mathcal{F}_p)$. By abuse of notation, we will call the foliation $(\nu_p N, \mathcal{F}_p|_{\nu_p N})$ the *infinitesimal foliation at p* as well and denote it by \mathcal{F}_p .

Given a singular Riemannian foliation (M, \mathcal{F}) and a point $p \in M$, the infinitesimal foliation $(\nu_p L_p, \mathcal{F}_p)$ at p contains the origin as a leaf of \mathcal{F}_p . Based on this fact, we make the following definition.

DEFINITION 2.6 (Infinitesimal foliation). An *infinitesimal foliation* is a singular Riemannian foliation (V, \mathcal{F}) on a Euclidean vector space, with the origin $\{0\}$ being a zero-dimensional leaf.

2.4 Homogeneous and orbit-like foliations

A singular Riemannian foliation (M, \mathcal{F}) is called *homogeneous* (sometimes *Riemannian homogeneous*) if there exists a connected Lie group G acting by isometries on M, whose orbits are precisely the leaves of \mathcal{F} . Furthermore, a singular Riemannian foliation (M, \mathcal{F}) is called *orbit-like* if at every point $p \in M$, the infinitesimal foliation $(\nu_p L_p, \mathcal{F}_p)$ is closed and homogeneous.

Example 2.7 (Holonomy foliations). An example of an orbit-like foliation, which will be useful to keep in mind later on, can be constructed as follows. Consider a Riemannian manifold L and a Euclidean vector bundle E over L, that is, a vector bundle over L with an inner product \langle , \rangle_p

M. M. Alexandrino and M. Radeschi

on each fiber E_p , $p \in L$. Let ∇^E be a metric connection on E, i.e. a connection on E such that, for every vector field X on L and sections ξ, η of E, one has

$$X\langle \xi,\eta
angle = \langle
abla^E_X \xi,\eta
angle + \langle \xi,
abla^E_X \eta
angle.$$

Given (E, ∇^E) , there is an induced Riemannian metric g^E on E, called the *connection metric*. Moreover, ∇^E induces a *parallel transport* on E: given $\xi_0 \in E_p$ and a curve $\gamma : [0,1] \to L$ with $\gamma(0) = p$, there exists a unique lift $\xi : [0,1] \to E$ of γ , with $\xi(0) = \xi_0$ such that $\nabla^E_{\gamma'(t)}\xi(t) = 0$ for every $t \in [0,1]$. On E one can now define a foliation \mathcal{F}^E , by declaring two vectors $\xi_1, \xi_2 \in E$ in the same leaf if they can be connected to one another via a composition of parallel transports. The leaves of \mathcal{F}^E are usually referred to as the *holonomy tubes* around the zero section $L \subset E$ and they define a singular Riemannian foliation on (E, g^E) . Moreover, the infinitesimal foliation at any point of E is homogeneous: in fact, for any point p along the zero section L, one can first construct the holonomy group H_p of the connection ∇^E , which acts by isometries on the fiber E_p in such a way that the orbits of the identity component H_p^0 are precisely the leaves of the infinitesimal foliation of \mathcal{F}^E at p. Similarly, the infinitesimal foliation at a point $\xi \in E_p$ is given by the orbits in $\nu_{\xi}L_{\xi}$ of the identity component of the stabilizer $H_{\xi} \subset H_p$ of ξ . The foliation \mathcal{F}^E coincides with its own linearization with respect to the zero section (see definition in § 2.5). Moreover, if the leaves of \mathcal{F}^E are closed, then (E, g^E, \mathcal{F}^E) is an orbit-like foliation.

Remark 2.8. When $L \subset M$ is a submanifold of somewhat special geometry, the holonomy foliation on the normal bundle E of L, endowed with the Levi-Civita connection, induces via the normal exponential map a foliation on the whole of M. For example, if L has parallel focal structure, then the induced foliation on M is a polar foliation [Toe06]. If M is a complete, non-compact manifold with sectional curvature ≥ 0 and L is a soul of M [CG72], then the induced foliation on M is Wilking's dual foliation to the Sharafutdinov projection [Wil07].

Although in principle the property of being orbit-like might depend on the metric, the following proposition shows in fact that being orbit-like is invariant under foliated diffeomorphisms.

PROPOSITION 2.9. The following hold.

- (1) Given a foliated linear isomorphism $\varphi : (V, \mathcal{F}) \to (V', \mathcal{F}')$ between infinitesimal foliations, (V, \mathcal{F}) is homogeneous if and only if (V', \mathcal{F}') is homogeneous.
- (2) Given a foliated diffeomorphism $\phi : (M, \mathcal{F}) \to (M', \mathcal{F}')$ between singular Riemannian foliations, (M, \mathcal{F}) is orbit-like if and only if (M', \mathcal{F}') is orbit-like.

Proof. (1) By the symmetric roles of V and V', it is enough to show that if (V, \mathcal{F}) is homogeneous, so is (V', \mathcal{F}') . Suppose that (V, \mathcal{F}) is homogeneous and therefore the foliation \mathcal{F} is spanned by Killing fields. Recall that a vector field X on a Euclidean space (V, g) is Killing if and only if it is of the form X(v) = Av, where A is a skew-symmetric endomorphism of V, in the sense that g(Av, v) = 0 for every $v \in V$. Letting $\{X_1, \ldots, X_k\}$ denote a set of Killing fields on V spanning the foliation \mathcal{F} , the set $\{Y_1, \ldots, Y_k\}$ with $Y_i(v') = \varphi_*(X_i(\varphi^{-1}(v')))$ spans the foliation \mathcal{F}' as well. Since φ is a linear map and the vector fields X_i are linear, it follows that Y_i can be written as $Y_i(v') = B_i v'$ for some endomorphism $B_i : V' \to V', i = 1, \ldots, k$. Since (V', g', \mathcal{F}') is a singular Riemannian foliation, the leaf $L_{v'}$ through v' lies in a distance sphere from the origin and in particular $g'(T_{v'}L_{v'}, v') = 0$. Since $Y_i(v')$ is tangent to $L_{v'}$, it follows that

$$0 = g'(Y_i(v'), v') = g(B_i v', v').$$

In other words, B_i is skew symmetric and thus Y_i is a Killing field as well. Therefore, the foliation (V', \mathcal{F}') is spanned by Killing vector fields and hence it is homogeneous as well.

(2) Up to exchanging the roles of M and M', it is enough to show that if (M, \mathcal{F}) is orbit-like, so is (M', \mathcal{F}') . Fixing a point $p \in M$, Proposition 2.4 states that the foliated diffeomorphism ϕ induces a foliated linear isomorphism $\phi_* : (\nu_p L_p, \mathcal{F}_p) \longrightarrow (\nu_{p'} L_{p'}, \mathcal{F}_{p'})$, where $p' = \phi(p)$. Since (M, \mathcal{F}) is orbit-like, it follows that $(\nu_p L_p, \mathcal{F}_p)$ is closed and homogeneous. From the first point above it follows that $(\nu_{p'} L_{p'}, \mathcal{F}_{p'})$ is homogeneous as well and by the continuity of ϕ_* one has that $(\nu_{p'} L_{p'}, \mathcal{F}_{p'})$ is closed. Since p' was chosen arbitrarily, it follows that (M', \mathcal{F}') is orbit-like. \Box

2.5 Linearization and linearized foliation

Let (M, \mathcal{F}) be a singular Riemannian foliation, $B \subset M$ a submanifold saturated by leaves, and $U \subset M$ an ϵ -tubular neighbourhood of B with metric projection $p: U \to B$. Given a vector field V in U tangent to the leaves of \mathcal{F} , it is possible to produce a new vector field V^{ℓ} , called the *linearization of* V with respect to B, as follows:

$$V^{\ell} = \lim_{\lambda \to 0} (h_{\lambda}^{-1})_* (V|_{h_{\lambda}(U)}),$$

where $h_{\lambda}: U \to U$ denotes the homothetic transformation around *B*. From [MR15, Proposition 5], the linearization V^{ℓ} is a smooth vector field invariant under the homothetic transformation h_{λ} and it coincides with *V* along *B*. On *U*, consider the module $\mathfrak{X}(U, \mathcal{F})^{\ell}$ given by the linearization, with respect to *B*, of the vector fields in $\mathfrak{X}(U, \mathcal{F})$:

$$\mathfrak{X}(U,\mathcal{F})^{\ell} = \{ V^{\ell} \mid V \in \mathfrak{X}(U,\mathcal{F}) \}.$$

Let D be the pseudogroup of local diffeomorphisms of U, generated by the flows of linearized vector fields, and let (U, \mathcal{F}^{ℓ}) be the partition of U into the orbits of diffeomorphisms in D. By Sussmann [Sus73, Theorem 4.1], such orbits are (possibly non-complete) smooth submanifolds of M. Moreover, as noted by Molino [Mol88, Lemma 6.3], this foliation is spanned, at each point, by the vector fields in $\mathfrak{X}^{\ell}(U, \mathcal{F})$.

We call (U, \mathcal{F}^{ℓ}) the linearized foliation of \mathcal{F} with respect to B. We will show, later, that the leaves of the linearized foliation are actually complete and have a particularly nice local structure (cf. § 6).

Given a point $p \in B$, define $U_p = p^{-1}(p) \subset U$ and let \mathcal{F}_p (respectively $(\mathcal{F}^{\ell})_p$) denote the partition of U_p into the connected components of $L \cap U_p$, as L ranges through the leaves of \mathcal{F} (respectively \mathcal{F}^{ℓ}). If U_p is given the flat metric g_p of $\nu_p B$ via the exponential map $\exp_p : \nu_p^{\epsilon} B \to U_p$, then \mathcal{F}_p corresponds to the infinitesimal foliation at p (cf. Remark 2.5), which justifies the notation of \mathcal{F}_p for this foliation. Furthermore, as noted in [Mol88, § 6.4], $(\mathcal{F}^{\ell})_p$ is given by the linearization of $(U_p, g_p, \mathcal{F}_p)$ with respect to the origin. In other words, $(\mathcal{F}^{\ell})_p = (\mathcal{F}_p)^{\ell}$ and it makes sense to denote this foliation simply by \mathcal{F}_p^{ℓ} . Moreover, letting $O(\mathcal{F}_p)$ denote the Lie group of (linear) isometries of (U_p, g_p) sending every leaf to itself, one has the following result.

PROPOSITION 2.10. The foliation $(U_p, \mathcal{F}_p^{\ell})$ is homogeneous, given by the orbits of the identity component H_p of $O(\mathcal{F}_p)$.

Proof. We identify here U_p with a neighbourhood of the origin in $\nu_p B$ via the exponential map and we think of \mathcal{F}_p^{ℓ} as the linearization of \mathcal{F}_p .

Given a vector field $V \in \mathfrak{X}(U_p, \mathcal{F}_p)$, its linearization V^{ℓ} is linear, in the sense that $V_p^{\ell} = A \cdot p$ for some $A \in \operatorname{End}(U_p)$. Since \mathcal{F}_p is a singular Riemannian foliation, the leaves are tangent to the distance spheres around the origin and therefore perpendicular to the radial directions from the origin: $\langle V_p^{\ell}, p \rangle = 0$. In other words, $V_p^{\ell} = A \cdot p$ with A skew symmetric, which implies that the flow of V^{ℓ} is an isometry of U_p . Moreover, since V^{ℓ} is everywhere tangent to the leaves of \mathcal{F}_p^{ℓ} , the flow of V^{ℓ} is a one-parameter group in H_p , moving every leaf of $(\mathcal{F}_p)^{\ell}$ to itself. In particular, the orbits of H_p are contained in the leaves of $(\mathcal{F}_p)^{\ell}$.

However, by definition of H_p , the tangent space of an H_p -orbit through a point $q \in U_p$ is given by

 $T_q(H_p \cdot q) = \{W_q \mid W \text{ Killing vector field tangent to the leaves of } \mathcal{F}_p\}$

and such vector fields coincide precisely with the vector fields in $\mathfrak{X}(U_p, \mathcal{F}_p)^{\ell}$. Therefore, $H_p \cdot q$ is the integral manifold of $\mathfrak{X}(U_p, \mathcal{F}_p)^{\ell}$ through q. \Box

3. Molino's conjecture, assuming the main theorem

Before proving the main theorem, we show how Molino's conjecture follows from it as a corollary.

Proof of Molino's conjecture. Let (M, \mathcal{F}) be a singular Riemannian foliation and let $\overline{\mathcal{F}}$ denote the closure of \mathcal{F} . Molino himself proved that $\overline{\mathcal{F}}$ is a partition into complete smooth closed submanifolds and that $\overline{\mathcal{F}}$ is a transnormal system. Therefore, in order to prove the conjecture, it is enough to show that for any leaf $L \in \mathcal{F}$ with closure \overline{L} and any vector $v \in \nu(L, \overline{L}) := \nu L \cap T\overline{L}$, there exists a smooth extension of v to a vector field V everywhere tangent to the leaves of $\overline{\mathcal{F}}$.

Let U be a tubular neighbourhood of \overline{L} and let $(U, \widehat{\mathcal{F}}^{\ell})$ be the foliation satisfying the main theorem. Since $\widehat{\mathcal{F}}^{\ell}$ coincides with \mathcal{F} along \overline{L} , it follows that L is a leaf of $\widehat{\mathcal{F}}^{\ell}$ as well. Since $\widehat{\mathcal{F}}^{\ell}$ is an orbit-like foliation, by [AR17, Theorem 1.6], given $v \in \nu(L, \overline{L})$ there is a vector field Vextending v which is tangent to the closure of $\widehat{\mathcal{F}}^{\ell}$. Since this closure is contained in $\overline{\mathcal{F}}$, it follows that V is also tangent to $\overline{\mathcal{F}}$ and this ends the proof of the conjecture. \Box

4. The setup

Fix a leaf L and a distance tube $U = B_{\epsilon}(L)$ around \overline{L} . Using the normal exponential map exp : $\nu \overline{L} \to M$, U can be identified with the ϵ -tube $\nu^{\epsilon} \overline{L}$ around the zero section. By the homothetic transformation lemma, the pull-back foliation $\exp^{-1} \mathcal{F}$ on $\nu^{\epsilon} \overline{L}$ is invariant under the rescalings $r_{\lambda} : \nu^{\epsilon} \overline{L} \to \nu^{\epsilon} \overline{L}, r_{\lambda}(p, v) = (p, \lambda v)$ for any $\lambda \in (0, 1)$.

For this reason, in the following sections we will be considering the (slightly more general) setup:

- U is the ϵ -tube around the zero section of some Euclidean vector bundle $E \to B$ (in our case $B = \overline{L}$), with projection $\mathbf{p} : U \to B$;
- g is a Riemannian metric on U with the same radial function as the Euclidean metric on each fiber of E;
- (U, g, \mathcal{F}) is a singular Riemannian foliation on U, invariant under rescalings r_{λ} . In particular, the zero section B is saturated by leaves and the projection p sends leaves onto leaves;
- the restriction $\mathcal{F}_B = \mathcal{F}|_B$ is a regular Riemannian foliation;
- for every leaf $L \subseteq B$ and any point $p \in L$, the normal exponential map $\nu_p^{\epsilon}L \to U$ is an embedding.

5. Three distributions

Let (U, g, \mathcal{F}) , $p : U \to B$ be as in §4. In order to prove the main theorem, it is first needed to produce a nicer metric on U and for this we first need to split the tangent space of U into

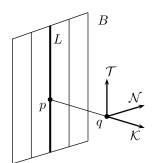


FIGURE 1. The distributions at q.

three components. The first, $\mathcal{K} = \ker \mathbf{p}_*$, is the distribution tangent to the fibers of \mathbf{p} . For the remaining two notice that, since the foliation (B, \mathcal{F}_B) is regular, the tangent bundle TB splits into a tangent and a normal part to the foliation: $TB = T\mathcal{F}|_B \oplus \nu \mathcal{F}|_B$. The last two distributions will be constructed as (appropriately chosen) extensions \mathcal{T} and \mathcal{N} of $T\mathcal{F}|_B$ and $\nu \mathcal{F}|_B$, respectively, to the whole of U; see Figure 1.

5.1 The distribution \mathcal{T}

From [Ale10], there exists a distribution $\widehat{\mathcal{T}}$ of rank dim $\mathcal{F}|_B$, which extends $T\mathcal{F}|_B$ and is everywhere tangent to the leaves of \mathcal{F} .

The distribution \mathcal{T} is simply defined as the *linearization of* $\widehat{\mathcal{T}}$ with respect to B, as follows: consider a family of vector fields $\{V_{\alpha}\}_{\alpha}$ spanning $\widehat{\mathcal{T}}$. Since $\widehat{\mathcal{T}}|_{B}$ is tangent to B, the vector fields V_{α} lie tangent to B as well and therefore it makes sense to consider their linearization V_{α}^{ℓ} with respect to B. By the properties of the linearization, these linearized vector fields still span a smooth distribution of the same rank as $\widehat{\mathcal{T}}$, which we call \mathcal{T} .

5.2 The distribution ${\cal N}$

At each point $q \in U$ with $\mathbf{p}(q) = p$, the slice $S_p = \exp_p(\nu_p^{\epsilon}L_p)$ contains q as well as the whole \mathbf{p} -fiber U_p through p. In particular, \mathcal{K}_q lies tangent to S_p . Moreover, S_p comes equipped with a flat metric g_p , inherited from the metric on $\nu_p L$ via the diffeomorphism $\exp_p : \nu^{\epsilon}L_p \to S_p$.

Define $\widehat{\mathcal{N}}_q$ as the subspace of $T_q S_p$ which is g_p -orthogonal to \mathcal{K}_q . Finally, define \mathcal{N} as the *linearization* of $\widehat{\mathcal{N}}$, as defined in the previous section.

The distributions $\hat{\mathcal{N}}$ and \mathcal{N} satisfy the following property.

PROPOSITION 5.1. For every smooth \mathcal{F}_B -basic vector field X_0 along a plaque P in B, there exists a smooth extension X to an open subset of U such that:

- (i) X is foliated and tangent to $\widehat{\mathcal{N}}$;
- (ii) the linearization X^{ℓ} of X with respect to B is tangent to \mathcal{N} and it is foliated with respect to both \mathcal{F} and \mathcal{F}^{ℓ} .

Proof. (1) Fix a leaf L in B, a plaque $P \subset L$, and a parametrization

$$\varphi: (-1,1)^k \to P \subset L,$$

where $k = \dim \mathcal{F}_B$. We first show that there exists a small neighbourhood of P in U, on which any \mathcal{F}_B -basic vector field X_0 along P can be extended to a foliated vector field X', whose restriction to $\mathbf{p}^{-1}(P)$ is tangent to $\widehat{\mathcal{N}}$.

Let $\partial_{y_1}, \ldots, \partial_{y_k}$ be coordinate vector fields on P and let Y_1, \ldots, Y_k denote vector fields, linearized with respect to L, that extend $\partial_{y_1}, \ldots, \partial_{y_k}$ to a neighbourhood of P in U. There is a foliated diffeomorphism

$$F: (P \times S_p, P \times \mathcal{F}_{S_p}) \longrightarrow (U, \mathcal{F})$$
$$(\varphi(y_1, \dots, y_k), q) \longmapsto \Phi_k^{y_k} \circ \dots \circ \Phi_1^{y_1}(q),$$

where $\Phi_i^{y_i}$ is the flow of Y_i , after time y_i .

Furthermore, the foliation $(P \times S_p, P \times \mathcal{F}_{S_p})$ locally splits as

$$(P \times \nu_p(L, B) \times \nu_p B, P \times \{\text{pts.}\} \times \mathcal{F}|_{\nu_p B}),$$

where $\nu(L, B) = \nu L \cap TB$. Moreover, if S_p is endowed with the Euclidean metric g_p on $\nu_p L$, the splitting $S_p = \nu_p(L, B) \times \nu_p B$ is in fact Riemannian.

The map F satisfies the following.

- The set $P \times \{0\} \times \nu_p^{\epsilon} B$ is sent to $p^{-1}(P) = \nu^{\epsilon} B|_P$.
- The set $P \times \nu_p^{\epsilon}(L, B) \times \{0\}$ is sent to a neighbourhood of P in B.
- Since F is defined via linearized vector fields, each fiber $\{p'\} \times S_p \subset P \times S_p$ is sent, via F, to the slice $S_{p'}$, isometrically with respect to the flat metrics on S_p and $S_{p'}$ (cf. [MR15]).

From the last point, it follows that the distribution of $P \times \nu_p(L, B) \times \nu_p B$ tangent to the second factor is sent, along $\nu^{\epsilon} B|_P$, precisely to the distribution $\widehat{\mathcal{N}}$.

Any \mathcal{F}_B -basic vector field X_0 along P corresponds, via F, to a vector field along $P \times \{0\} \times \{0\}$ of the form $(0, x_0, 0)$, where $x_0 \in \nu_p(L, B)$ is a fixed vector. One can clearly extend such a vector field to the foliated vector field $X' = F_*(0, x_0, 0)$. Since F is a foliated map, the vector field X' is a foliated vector field, whose restriction to B is tangent to B by the second point above. Moreover, by the discussion above the restriction of X' to $\mathbf{p}^{-1}(P)$ is tangent to $\hat{\mathcal{N}}$.

This proves the first claim, made at the beginning of the proof. In particular, since the plaque P was chosen arbitrarily, this shows that the distribution $\hat{\mathcal{N}}$ is *foliated*: that is, given a vector y tangent to $\hat{\mathcal{N}}$ at a point q, there exists a foliated extension Y along a plaque containing q which is everywhere tangent to $\hat{\mathcal{N}}$. It is easy to see that \mathcal{K} and \mathcal{T} are foliated as well. In particular, given the foliated vector field X', the (unique) decomposition

$$X' = X'_{\mathcal{K}} + X'_{\mathcal{T}} + X'_{\widehat{\mathcal{N}}}, \quad X'_{\mathcal{K}} \in \mathcal{K}, X'_{\mathcal{T}} \in \mathcal{T}, X'_{\widehat{\mathcal{N}}} \in \widehat{\mathcal{N}}$$

produces three vector fields $X'_{\mathcal{K}}, X'_{\mathcal{T}}, X'_{\widehat{\mathcal{N}}}$ which are foliated. In particular, the vector field $X = (X')_{\widehat{\mathcal{N}}}$ is foliated, everywhere tangent to $\widehat{\mathcal{N}}$, and it extends $X_0 = (X_0)_{\widehat{\mathcal{N}}}$ to an open set of U, as we needed to show.

(2) Since X is tangent to $\widehat{\mathcal{N}}$, its linearization X^{ℓ} is tangent to the linearization of $\widehat{\mathcal{N}}$, which is \mathcal{N} . Moreover, since X is foliated and $r_{\lambda}: U \to U$ is a foliated map, $X^{\ell} = \lim_{\lambda \to 0} (r_{\lambda}^{-1})_* X \circ r_{\lambda}$ is foliated as well. Finally, since X is foliated, for every vector field V tangent to \mathcal{F} one has that [X, V] is also tangent to \mathcal{F} . Since r_{λ} is a diffeomorphism, one computes

$$[X^{\ell}, V^{\ell}] = \lim_{\lambda \to 0} [(r_{\lambda}^{-1})_* X \circ r_{\lambda}, (r_{\lambda}^{-1})_* V \circ r_{\lambda}]$$
$$= \lim_{\lambda \to 0} (r_{\lambda}^{-1})_* [X, V] \circ r_{\lambda}$$
$$= [X, V]^{\ell}.$$

Since the linearization V^{ℓ} are precisely the vector fields generating \mathcal{F}^{ℓ} , it follows from the equation above that $[X^{\ell}, V^{\ell}]$ is tangent to \mathcal{F}^{ℓ} whenever V^{ℓ} is and therefore X^{ℓ} is foliated with respect to \mathcal{F}^{ℓ} .

6. Structure of \mathcal{F}^{ℓ} and the local closure $\widehat{\mathcal{F}}^{\ell}$

Using the extensions X^{ℓ} defined in Proposition 5.1, one can prove the following.

PROPOSITION 6.1. Around any point $p \in B$ there is a neighbourhood W of p in B such that $(\mathbf{p}^{-1}(W), \mathcal{F}^{\ell}|_{\mathbf{p}^{-1}(W)})$ is foliated diffeomorphic to a product

$$(\mathbb{D}^k \times \mathbb{D}^{m-k} \times U_p, \mathbb{D}^k \times \{\text{pts.}\} \times \mathcal{F}_p^\ell),$$

where $k = \dim \mathcal{F}|_B$ and $m = \dim B$.

Proof. Let W be a coordinate neighbourhood of B around p, with a foliated diffeomorphism $\varphi: (W, \mathcal{F}|_W) \to (\mathbb{D}^k \times \mathbb{D}^{m-k}, \mathbb{D}^k \times \{\text{pts.}\})$. Let $\partial/\partial y_1, \ldots, \partial/\partial y_k$ denote a basis of vector fields in W tangent to the leaves of $\mathcal{F}|_W$ and let V_1, \ldots, V_k denote vector fields on $\mathbf{p}^{-1}(W)$, linearized with respect to B, extending $\partial/\partial y_i$, $i = 1, \ldots, k$, and spanning the foliation \mathcal{T} . Similarly, let $\partial/\partial x_1, \ldots, \partial/\partial x_{m-k}$ denote a basis of basic vector fields in W normal to the leaves and let $X_1^{\ell}, \ldots, X_{m-k}^{\ell}$ denote linearized vector fields in $\pi^{-1}(W)$ defined as in Proposition 5.1, extending the vectors $\partial/\partial x_i$, $i = 1, \ldots, m-k$. Finally, define Φ_i^t and Ψ_i^t as the flows of V_i and X_i^{ℓ} , respectively, after time t, and let

$$G: \mathbb{D}^k \times \mathbb{D}^{m-k} \times U_p \longrightarrow \mathsf{p}^{-1}(W)$$
$$((t_1, \dots, t_k), (s_1, \dots, s_{m-k}), q) \longmapsto \Phi_k^{t_k} \circ \dots \circ \Phi_1^{t_1} \circ \Psi_{m-k}^{s_{m-k}} \circ \dots \circ \Psi_1^{s_1}(q).$$

Since the V_i and X_i^{ℓ} are linearized, they take fibers of $\mathbb{D}^k \times \mathbb{D}^{m-k} \times U_p \to \mathbb{D}^k \times \mathbb{D}^{m-k}$ to fibers of $\mathbf{p} : \mathbf{p}^{-1}(W) \to W$. Since the flows Ψ_i send the leaves of \mathcal{F}^{ℓ} to leaves and the flows Φ_i take the leaves of \mathcal{F}^{ℓ} to themselves, the leaves of $\mathbb{D}^k \times (\mathbb{D}^{m-k}, \{\text{pts.}\}) \times (U_p, \mathcal{F}_p^{\ell})$ are sent into the leaves of \mathcal{F}^{ℓ} . Since the differential dG is invertible at $(0, 0, p) \in \mathbb{D}^k \times \mathbb{D}^{m-k} \times U_p$, it is a diffeomorphism around G(0, 0, p) = p and, by dimensional reasons, the leaves of $(\mathbb{D}^k \times \mathbb{D}^{m-k} \times U_p, \mathbb{D}^k \times \{\text{pts.}\} \times \mathcal{F}_p^{\ell})$ are mapped diffeomorphically onto the leaves of $(\mathbf{p}^{-1}(W), \mathcal{F}^{\ell}|_{\mathbf{p}^{-1}(W)})$. \Box

The local closure of \mathcal{F}^{ℓ}

Even though $(U_p, \mathcal{F}_p^{\ell})$ is homogeneous for every $p \in B$, it might be the case that its leaves are not closed, which happens when the group $H_p \subseteq O(U_p)$ defined in Proposition 2.10 is not closed. To obviate this problem we define a new foliation $\widehat{\mathcal{F}}^{\ell}$, called the *local closure* of \mathcal{F}^{ℓ} , such that $\mathcal{F}^{\ell} \subset \widehat{\mathcal{F}}^{\ell} \subset \overline{\mathcal{F}}^{\ell}$ and whose restriction $\widehat{\mathcal{F}}_p^{\ell}$ to each p-fiber U_p is homogeneous and closed.

Recall that \mathcal{F}^{ℓ} is defined by the orbits of the pseudogroup D of local diffeomorphisms, generated by the flows of linearized vector fields. For each $q \in U_p$, consider the closure \overline{H}_p of H_p in $O(U_p)$ and define the $\widehat{\mathcal{F}}^{\ell}$ -leaf \widehat{L}_q through q to be the D-orbit of $\overline{H}_p \cdot q$:

$$\widehat{L}_q = \{q' = \Phi(h \cdot q) \mid \Phi \in \mathsf{D}, h \in \overline{H}_p\}.$$

Let ~ denote the relation $q \sim q'$ if and only if $q' = \Phi(h \cdot q)$ for some $\Phi \in \mathsf{D}$ and $h \in \overline{H}_p$. In this way, the leaf of $\widehat{\mathcal{F}}^{\ell}$ through q can be rewritten as $\{q' \in U \mid q' \sim q\}$. As for the other foliations, for every $p \in B$ we define $(U_p, \widehat{\mathcal{F}}_p^{\ell})$ to be the partition of U_p into the connected components of the intersections of U_p with the leaves in $\widehat{\mathcal{F}}^{\ell}$.

PROPOSITION 6.2. The following hold:

- (1) $\widehat{\mathcal{F}}^{\ell}$ is a well-defined partition of U;
- (2) for every $p \in B$, the leaves of $\widehat{\mathcal{F}}_p^{\ell}$ are the orbits of \overline{H}_p on U_p .

Proof. (1) One must prove that the relation ~ defined above is an equivalence relation. For this, notice that, since any $\Phi \in \mathsf{D}$ defines a foliated isometry between $(U_p, \mathcal{F}_p^\ell)$ and $(U_{\Phi(p)}, \mathcal{F}_{\Phi(p)}^\ell)$ for any $p \in B$, in particular it defines a foliated isometry between the respective closures (U_p, \overline{H}_p) and $(U_{\Phi(p)}, \overline{H}_{\Phi(p)})$. In particular, for any $h \in \overline{H}_p$ and $\Phi \in \mathsf{D}$, one has $h' = \Phi \circ h \circ \Phi^{-1} \in \overline{H}_{\Phi(p)}$. - Reflexivity of ~: if $q' \sim q$, then $q' = \Phi(h(q))$ for some $h \in \overline{H}_p$ and $\Phi \in \mathsf{D}$. Then $q' = h'(\Phi(q))$,

where $h' = \Phi \circ h \circ \Phi^{-1} \in \overline{H}_{\Phi(p)}$ and therefore $q = \Phi^{-1}((h')^{-1}q')$, which means that $q \sim q'$. – Transitivity of \sim : if $q' \sim q$ and $q'' \sim q'$, then $q' = \Phi(h(q))$ and $q'' = \Psi(g(q'))$ for some $h \in \overline{H}_p$, $g \in \overline{H}_{\Phi(p)}$, and $\Phi, \Psi \in D$. Then $q'' = (\Psi \circ \Phi)((g' \circ h)(q))$, where $g' = \Phi^{-1} \circ g \circ \Phi \in \overline{H}_p$, and therefore $q'' \sim q$.

(2) Let L' denote a leaf of $\widehat{\mathcal{F}}^{\ell}$. From (1), the intersection of L' with U_p is a union of orbits of \overline{H}_p . On the other hand, we claim that the intersection $L' \cap U_p$ consists of countably many orbits of \overline{H}_p , so that each connected component of such intersection must consist of a single \overline{H}_p -orbit. From the definition of $\widehat{\mathcal{F}}^{\ell}$, it is enough to prove that the subgroup $\mathsf{D}_p \subset \mathsf{D}$ of diffeomorphisms fixing p moves every \overline{H}_p -orbit in $L' \cap U_p$ to at most countably many orbits. For this, consider a piecewise-smooth loop $\gamma: [0,1] \to L_p$ with $\gamma(0) = \gamma(1) = p$. Using linearized vector fields with γ as integral curve, one can construct a continuous path $\Phi_t: [0,1] \to \mathsf{D}$ of diffeomorphisms such that $\Phi_0 = \mathrm{id}_U$ and $\Phi_t(p) = \gamma(t)$, as described in [MR15, Corollary 7]. Fixing some \overline{H}_p -orbit \mathcal{O} in $L' \cap U_p$, its image $\Phi_1(\mathcal{O})$ is again some \overline{H}_p -orbit, which depends only on the class $[\gamma] \in \pi_1(L_p, p)$ and not on the actual path γ , nor on the specific choice of Φ_t . This gives a map

$$\partial: \pi_1(L_p, p) \to \{\overline{H}_p \text{-orbits in } L' \cap U_p\}.$$

This map admits a section, namely: for every orbit \mathcal{O}' in $L' \cap U_p$, take a path γ in L' from a point in a (fixed) orbit \mathcal{O} to a point in \mathcal{O}' . Under the projection $\mathbf{p} : U \to B$, the composition $\mathbf{p} \circ \gamma$ is a loop in L_p . The section of ∂ sends \mathcal{O}' to $[\mathbf{p} \circ \gamma] \in \pi_1(L_p, p)$. In particular, the map ∂ is surjective and therefore the set of \overline{H}_p -orbits in $L' \cap U_p$ has at most the cardinality of $\pi_1(L_p, p)$, which is at most countable since L_p is a manifold.

As a corollary of Propositions 6.2 and 6.1, one gets the following result.

COROLLARY 6.3. Let (U, \mathcal{F}) be a singular Riemannian foliation as in § 4, let \mathcal{F}^{ℓ} be its linearized foliation, and $\widehat{\mathcal{F}}^{\ell}$ the local closure. Then $\widehat{\mathcal{F}}^{\ell}$ is a singular foliation with complete leaves. Moreover, around each point $p \in B$ there is a neighbourhood W of p in B such that $(p^{-1}(W), \widehat{\mathcal{F}}^{\ell}|_{p^{-1}(W)})$ is foliated diffeomorphic to a product

$$(\mathbb{D}^k \times \mathbb{D}^{m-k} \times U_p, \mathbb{D}^k \times \{\text{pts.}\} \times \{\text{orbits of } \overline{H}_p \subseteq \mathsf{O}(U_p)\}),\$$

which can be given the structure of a singular Riemannian foliation.

Once it is shown that $\widehat{\mathcal{F}}^{\ell}$ is also a transnormal system with respect to some metric, then by the corollary above it is globally a singular Riemannian foliation.

7. A new metric

Let $\mathcal{T}, \mathcal{N}, \mathcal{K}$ be the distributions as in the previous section. Clearly, one has $TU = \mathcal{T} \oplus \mathcal{N} \oplus \mathcal{K}$. Now define the new metric g^{ℓ} on U, as the metric defined by the following properties:

- $\mathcal{T} \oplus \mathcal{N}$ and \mathcal{K} are orthogonal with respect to g^{ℓ} ;
- $g^{\ell}|_{\mathcal{T}\oplus\mathcal{N}} = p^*g_B$, where g_B denotes the restriction of the original metric on B. In particular, \mathcal{T} and \mathcal{N} are also orthogonal to one another;

CLOSURE OF SINGULAR FOLIATIONS: THE PROOF OF MOLINO'S CONJECTURE

• for any $q \in U_p$, recall that $\mathcal{K}_q = T_q U_p$ and define $g^{\ell}|_{\mathcal{K}_q} = g_p$ as the flat metric on U_p induced from $\exp_p : \nu_p B \to U_p$.

These conditions characterize the metric g^{ℓ} uniquely. The most useful property of this metric is the following.

PROPOSITION 7.1. The triples $(U, g^{\ell}, \mathcal{F}^{\ell})$ and $(U, g^{\ell}, \widehat{\mathcal{F}}^{\ell})$ are singular Riemannian foliations.

Proof. The arguments for \mathcal{F}^{ℓ} and $\widehat{\mathcal{F}}^{\ell}$ are identical; therefore, we will only check the proposition for $(U, g^{\ell}, \widehat{\mathcal{F}}^{\ell})$ (which is the only case we need for the main theorem anyway).

Moreover, the statement is local in nature; therefore, it is enough to prove the statement on certain open sets covering the whole of U. For any point $p \in B$, let W denote a neighbourhood of p in B and $p^{-1}(W)$ a neighbourhood of p in U. We need to check that $(p^{-1}(W), g^{\ell}, \hat{\mathcal{F}}^{\ell})$ is a singular Riemannian foliation. To prove this, we apply [Ale10, Proposition 2.14], which states that it is enough to check two conditions:

- (1) $(\mathbf{p}^{-1}(W), g', \widehat{\mathcal{F}}^{\ell})$ is a singular Riemannian foliation with respect to some Riemannian metric g';
- (2) for every stratum $\Sigma \subset \mathsf{p}^{-1}(W)$ (i.e. union of leaves of the same dimension), the restriction of $\widehat{\mathcal{F}}^{\ell}$ to Σ is a (regular) Riemannian foliation.

The first condition is satisfied by Corollary 6.3. The second condition is equivalent to checking that, for every leaf \hat{L}_q of $\hat{\mathcal{F}}^{\ell}|_{\mathsf{p}^{-1}(W)}$ and every basic vector field X along \hat{L}_q tangent to the stratum through \hat{L}_q , the norm $||X||_{\mathsf{g}^{\ell}}$ is constant along \hat{L}_q .

By definition of the metric g^{ℓ} , the space $\nu \widehat{L}_q$ is given by $\mathcal{N}|_{\widehat{L}_q} \oplus (\nu \widehat{L}_q \cap \mathcal{K})$. From Proposition 5.1, along \widehat{L}_q the space \mathcal{N} is spanned by linearized vector fields X_i^{ℓ} , which are then g^{ℓ} -basic (i.e. foliated and g^{ℓ} -orthogonal to the leaves). In particular, any basic vector field \overline{X} along \widehat{L}_q splits as a sum $\overline{X} = \overline{X}_1 + \overline{X}_2$, where \overline{X}_1 is tangent to $\mathcal{N}, \overline{X}_2$ is tangent to $\mathcal{N}' := \nu \widehat{L}_q \cap \mathcal{K}$, and $g^{\ell}(\overline{X}_1, \overline{X}_2) = 0$. Therefore, it is enough to check independently that for every basic vector field \overline{X} along \widehat{L}_q , tangent to either \mathcal{N} or \mathcal{N}' , the norm of \overline{X} is constant along \widehat{L}_q .

If \overline{X} is tangent to \mathcal{N} , then by the construction in Proposition 5.1 it projects to some basic vector field X along $\widehat{L}_p \subset B$. Since $(B, g_B, \mathcal{F}|_B)$ is a Riemannian foliation, the norm $||X||_{g_B}$ is constant along \widehat{L}_p . By the construction of the metric g^{ℓ} , one has $||\overline{X}||_{g^{\ell}} = ||X||_{g_B}$ and, therefore, the norm of \overline{X} is constant along \widehat{L}_q .

If \overline{X} is tangent to \mathcal{N}' , then it is tangent to any fiber $U_{p'}, p' \in \widehat{L}_p$. The restriction $\overline{X}|_{U_{p'}}$ is a basic vector field of $(U_{p'}, \widehat{\mathcal{F}}_{p'}^{\ell})$ along $\widehat{L}_q \cap U_{p'}$ and therefore the norm $\|\overline{X}|_{U_{p'}}\|_{g_{p'}}$ is locally constant along $\widehat{L}_q \cap U_{p'}$. By the construction of g^{ℓ} , it follows that $\|\overline{X}|_{U_{p'}}\|_{g^{\ell}}$ is also locally constant along each $\widehat{L}_q \cap U_{p'}$. However, given two points $p', p'' \in \widehat{L}_p$ and a vertical, foliated vector field V^{ℓ} whose flow Φ moves p' to p'', one also has that Φ moves $U_{p'}$ isometrically to $U_{p''}$ and $\overline{X}|_{U_{p'}}$ to $\overline{X}|_{U_{p''}}$. In particular, $\|\overline{X}|_{U_{p'}}\|_{g^{\ell}} = \|\overline{X}|_{U_{p'}}\|_{g_{p'}}$ does not really depend on the point $p' \in \widehat{L}_p$ and it is actually constant along the whole leaf \widehat{L}_q .

With this in place, one can finally prove the main theorem.

Proof of the main theorem. Let U be an ϵ -tubular neighbourhood around the closure \overline{L} of a leaf $L \in \mathcal{F}$. Letting $B = \overline{L}$, we are under the assumptions of § 4. In particular, it is possible to define the linearized foliation \mathcal{F}^{ℓ} on U, its local closure $\widehat{\mathcal{F}}^{\ell}$, and the metric g^{ℓ} as in Proposition 7.1.

It is clear by construction that $\widehat{\mathcal{F}}^{\ell}|_{\overline{L}} = \mathcal{F}|_{L}$ and that the closure of $\widehat{\mathcal{F}}^{\ell}$ is contained in the closure of \mathcal{F} . Moreover, by Corollary 6.3, the foliation $(U, g^{\ell}, \widehat{\mathcal{F}}^{\ell})$ is, locally around each point, foliated diffeomorphic to the orbit-like foliation $(\mathbb{D}^{k} \times \mathbb{D}^{m-k} \times U_{p}, \mathbb{D}^{k} \times \{\text{pts.}\} \times \widehat{\mathcal{F}}_{p}^{\ell})$. By Proposition 2.9, the foliation $(U, g^{\ell}, \widehat{\mathcal{F}}^{\ell})$ is orbit-like as well and this concludes the proof. \Box

Acknowledgements

The authors thank Professor Lytchak and Professor Thorbergsson for consistent support.

References

- Aleo6 M. M. Alexandrino, Proofs of conjectures about singular Riemannian foliations, Geom. Dedicata 119 (2006), 219–234.
- Ale10 M. M. Alexandrino, Desingularization of singular Riemannian foliation, Geom. Dedicata 149 (2010), 397–416.
- AL11 M. M. Alexandrino and A. Lytchak, On smoothness of isometries between orbit spaces, in Riemannian geometry and applications – Proc. RIGA (Ed. Univ. Bucureşti, Bucharest, 2011), 17–28.
- AR17 M. M. Alexandrino and M. Radeschi, Smoothness of isometric flows on orbit spaces and applications to the theory of foliations, Transform. Groups 22 (2017), 1–27, doi:10.1007/s00031-016-9386-5.
- Bol73 J. Bolton, Transnormal systems, Q. J. Math. 24 (1973), 385–395.
- CG72 J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413–443.
- LR16 A. Lytchak and M. Radeschi, Algebraic nature of singular Riemannian foliations in spheres, J. reine angew. Math., to appear, doi:10.1515/crelle-2016-0010.
- MR15 R. Mendes and M. Radeschi, *Smooth basic functions*, Preprint (2015), arXiv:1511.06174 [math.DG].
- Mol88 P. Molino, *Riemannian foliations*, Progress in Mathematics, vol. 73 (Birkhäuser, Boston, MA, 1988).
- Mol94 P. Molino, Orbit-like foliations, in Geometric study of foliations, eds T. Mizutani et al. (World Scientific, Singapore, 1994), 97–119.
- Rad14 M. Radeschi, Clifford algebras and new singular Riemannian foliations in spheres, Geom. Funct. Anal. 24 (2014), 1660–1682.
- Sus73 H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171–188.
- Toe06 D. Toeben, Parallel focal structure and singular Riemannian foliations, Trans. Amer. Math. Soc. 358 (2006), 1677–1704.
- Wil07 B. Wilking, A duality theorem for Riemannian foliations in nonnegative sectional curvature, Geom. Funct. Anal. 17 (2007), 1297–1320.

Marcos M. Alexandrino marcosmalex@yahoo.de, malex@ime.usp.br Universidade de São Paulo, Instituto de Matemática e Estatística, Rua do Matão 1010, 05508 090 São Paulo, Brazil

Marco Radeschi mradesch@nd.edu University of Notre Dame, Department of Mathematics, 255 Hurley, Notre Dame, IN 46556, USA