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Summary

In this research we estimated the contribution of a major-gene effect to the control of litter size in

hybrids between two local populations of the house musk shrew (Suncus murinus). Segregation

analysis was performed on the basis of a mixed polygene and major-gene model. The model

presumes that two parental populations may differ from each other in gene frequencies and in the

values of polygenic effects but not in the major-gene contribution of the trait. Moreover, the

peculiarity of the trait – litter size – is taken into account. This trait is not an individual attribute.

It characterizes the parental couple and may depend on the genotypes of both parents. Results of

segregation analysis of a large hybrid pedigree of Suncus murinus indicate that the parental

populations differ in the allele frequency of the major gene (one population is homozygous, while

the other contains the two alleles in approximately equal proportions) and in the values of average

polygenic effects. Both major-gene and polygenic components are necessary for the correct

description of litter size inheritance in interracial hybrids of S. murinus, inasmuch as the exclusion

of either of them leads to a significant drop in likelihood. The Elston–Stewart criterion also

confirms the Mendelian inheritance of the major gene.

1. Introduction

Inheritance of litter size has been extensively studied

in various laboratory and farm animals (Falconer,

1960, 1963, 1989; Land, 1972, 1973, 1978; Islam et

al., 1976; Eklund & Bradford, 1977; Eisen & Johnson,

1981 ; Henderson et al., 1985; Bradford et al., 1986;

Dilts et al., 1991 ; Davis et al., 1991 ; Lanneluc et al.,

1994; Montgomery et al., 1993, 1995). It has been

shown that litter size is genetically variable in outbred

strains. It can be gradually increased or decreased by

direct or correlated selection. These findings have

been interpreted as an indication of additive polygenic

control of this trait. However, genes with a large effect

on fertility have been identified recently. Bradford

et al. (1986) presented evidence for a gene with a large

effect on ovulation rate and litter size in Japanese
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sheep. The Booroola fecundity (Fec) autosomal gene

in sheep was isolated and characterized in detail

(Henderson et al., 1985; Lanneluc et al., 1994; Mont-

gomery et al., 1993, 1995). Another major gene

influencing ovulation rate was found on the X

chromosome of sheep (Davis et al., 1991). This

indicates that the inheritance of litter size can be

analysed within the framework of a mixed major-gene

and polygenic model.

In this research we estimated the contribution of a

major-gene effect to the control of variation in litter

size in the house musk shrew (Suncus murinus, L.,

Insectivora, Soricidae). This species is widely distri-

buted throughout Asia and East Africa. The animals

involved in our study originated from the crosses and

intercrosses of two geographically and historically

isolated S. murinus populations.

Hybrid analysis is a direct method for detecting

genes with a large effect. It demands, however, crosses

of homozygous inbred strains, which were not

available in S. murinus. In this case we may apply the
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method of segregation analysis that is used in human

genetics (Elston, 1992). It operates with pedigree data

rather than with fixed crosses and allows us to

estimate the effects of major genes.

2. Materials and methods

(i) Material

The shrews of the laboratory strains KAT, SRI and

hybrid stock SK were used in this study. The KAT

strain was derived from a wild population in

Kathmandu, Nepal and maintained as a closed

breeding colony during eight generations (Oda et al.,

1992). The SRI strain was derived from shrews

originally captured in Sri Lanka (Ishikawa et al.,

1989). The SK hybrid stock was established by

crossing individuals of KAT and SRI laboratory

strains. The hybrids of SRI¬KAT crosses were

intercrossed or backcrossed with parental strains

(mainly with KAT). The hybrids and their descendants

were called the SK hybrid stock. Based on breeding

records we constructed a pedigree involving SK

animals and their SRI and KAT progenitors.

The pedigree had a very complex structure. There

were 531 individuals in 601 nuclear pedigrees (mother,

father and offspring). Many individuals were involved

in multiple matings. The number of founders was very

small : 7 KAT and 11 SRI. There were many long

inbred loops in the pedigree, but brother–sister and

offspring–parent loops were rare. A fragment of the

pedigree is shown in Fig. 1.

KAT

SRI

Female

Male

Fig. 1. A fragment of the pedigree of the SK stock of S. murinus involved in the analysis.

(ii) Segregation analysis

We performed a complex segregation analysis using a

special version of the mixed model of major-gene and

polygene inheritance. Three mathematical com-

ponents form the basis of segregation analysis : the

penetrance function, the gene-frequency parameters

and the transmission probabilities. The mixed model

of inheritance assumes that a quantitative trait is

under control of a major gene and a large number of

additive genetic factors, and is contributed to by the

environment (Elston & Stewart, 1971). These com-

ponents of phenotypic variation (major-gene, the

polygenic and environmental) are considered to be

independent of each other.

The major-gene component is described through

mean values of trait µg defined for each major genotype

g. We assumed that the parental populations differed

in the distribution of the genotypes, but not in values

of µg. Consequently the genotype distribution should

be defined separately for each population. When

considering the diallelic autosomal major-gene model,

assuming that both parental strains meet Hardy–

Weinberg conditions, the genotype distribution can be

described by the frequencies of A
"
allele in KAT and

in SRI parental strains : p(KAT) and p(SRI), re-

spectively.

It is usually assumed that polygene effects are

normally distributed with a mean of zero and variance

of σ#
G
. In the case of a hybrid pedigree this assumption

seems incorrect, since the average polygenic effects

may be substantially different in parental populations.
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We suggested that the polygene effects are normally

distributed with the same variance σ#
G

in both

populations, but the mean value for SRI is zero and

that for KAT is α. Then the polygene effect G of each

member of the hybrid pedigree, which is a linear

function of the polygenotypes of its ancestors, might

be expressed based on the blood-share of KAT (z) of

this member of the hybrid pedigree (z¯1 for KAT

parents, z¯ 0 for SRI parents, z¯ 0±5 for F
"
and F

#

z¯ 0±25 or 0±75 for backcrosses, etc.). The polygenic

effect is described as G¯αz.

We also included the heterotic effect in the model.

This was proportional to the heterotic fraction

h : H¯β h. The heterotic fraction is equal to the

proportion of heterozygous polygenic loci, which is

maximal in the F
"

and half this value in the F
#

and

backcrosses, etc. We suggest describing h of each

individual on the basis of the blood-share of KAT in

its parents (z
m

and z
f

for mother and father,

respectively) ; h¯ z
m
(1®z

f
)z

f
(1®z

m
). This way of

describing the heterosis fraction is similar to the

method suggested by Cress (1966). The environmental

component was assumed to be normally distributed

with a mean of zero and variance of σ#
E
.

Thus, the probability of the phenotypes x given the

major genotype g and the blood-share of KAT z can

be expressed as the density of normal distribution

φ
x
(y,σ#) where

y¯µgGH¯µgαz®βh, (1)

and σ#¯σ#
E
σ#

G
is the variance due to the en-

vironmental and polygene effects. In order not to have

too many unknown parameters the variance is taken

to be the same for all major genotypes (Elston, 1981).

For each triplet of major genotypes, g, g
m

and g
f
,

the model provides a probability p(g
m
, g

f
) that parents

with genotypes g
m

and g
g

produce an offspring with

genotype g. In the case of a monogenic diallel model

this probability is described via three transmission

probabilities (τg), i.e. probabilities of transfer of allele

A
"
to offspring from the parent A

"
A

"
, A

"
A

#
, or A

#
A

#
.

When Mendelian transmission of the trait is valid, the

τg values must be 1, 0±5 and 0 for A
"
A

"
, A

"
A

#
and A

#

A
#
, respectively.

The estimates of the genetic parameters were

obtained using the maximum likelihood method. The

standard deviations of these estimates were calculated

through the inverse matrix of the second derivatives of

likelihood evaluated at its maximum (Kendall &

Stewart, 1951).

Hypotheses were tested against a more general

hypothesis using the likelihood ratio test in a

hierarchical manner. Twice the natural logarithm of

the likelihood ratio is distributed as χ# with degrees of

freedom equal to the difference in number of

independent parameters of the two models under

comparison (Neyman & Pearson, 1928).

Segregation analysis of quantitative traits is based

on the assumption that the trait is normally distributed

in the population. Deviation from a normal dis-

tribution (especially skewness) may lead to spurious

evidence for a major-gene effect (MacLean et al.,

1976; Demenais et al., 1986). Therefore, a math-

ematical transformation of raw data is usually used to

induce normality prior to analysis (MacLean et al.,

1976; Box & Cox, 1964). This transformation,

however, has been shown to reduce the power of

detection of major-gene effects within the framework

of the mixed model (Demenais et al., 1986). The

protection against a false conclusion requires es-

timation of all three transmission probabilities and

testing hypotheses of Mendelian and equal trans-

mission probabilities (Demenais et al., 1986). It has

been shown, however, that deviation of the dis-

tribution of the phenotypes from the normal affects

the results of segregation analysis only in the case of

nuclear pedigrees (Moldin et al., 1990; Price et al.,

1994), and not in the case of large complex pedigrees

(Siervogel et al., 1984). For all these reasons we

decided to analyse non-transformed data and to

perform a set of tests for a major-gene effect.

First, we compared the no-major-gene model with

the mixed model. Then the hypothesis of arbitrary

transmission probabilities was compared with the

hypothesis of Mendelian transmission probabilities

and with the hypothesis of equal transmission proba-

bilities (Elston & Stewart, 1971 ; Elston, 1981). Finally,

likelihoods were compared using Akaike’s (1974)

information criterion (AIC¯®2(log
e
LH®n), where

LH is maximum likelihood and n is the number of

independent parameters under estimation).

For this study we developed special software for

segregation analysis of quantitative traits on the basis

of zero-loop pedigrees of arbitrary structure coming

from inter-population crosses. We used approximate

calculation of the likelihood because the pedigree

contained multiple loops. The major idea of our

approach was to break the loops by copying some

pedigree members (Lange & Elston, 1975; Stricker et

al., 1995). In order to minimize the errors determined

by breaking loops we made the break in different

ways, to give several configurations of zero-loop

pedigrees. The segregation analysis has been done for

each of them separately.

3. Results

(i) Non-genetic �ariation in litter size

The crosses were set up throughout the year, not

during particular seasons. We did not detect, however,

a significant dependence of litter size on the month of

birth:

F
&#',""

¯σ#
betweenmonths

}σ#
withinmonths

¯ 0±87.
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Table 1. Mean litter size of the parental strains KAT

and SRI and their crosses

Dam Sire
No. of
litters

No. of
dams

Litter size
(mean³SE)

KAT KAT 300 213 3±99³0±08
SRI SRI 97 35 2±33³0±10
SRI KAT 4 4 2±50³0±65
KAT SRI 15 15 2±67³0±30
F1 F1 14 11 2±21³0±33
KAT F1 19 18 3±42³0±23
F1 KAT 30 15 2±87³0±20
F1 SRI 7 5 2±43³0±37
SRI F1 1 1 2±00

The data used in this analysis have been accumu-

lated over several years but this did not affect the

homogeneity of the data. The distribution of the

average annual litter size within the parental strains

did not differ significantly from the uniform dis-

tribution:

χ#

%
¯ 2±84 for KAT¬KAT; χ#

'
¯ 7±15 for SRI¬SRI.

This also indicates that fertility of the parental strains

did not decrease because of inbreeding depression.

The females in our sample differed in the number of

litters they produced. Fifty-six per cent of females

were crossed only once. In those that were crossed

more than once the parity effect was insignificant. The

average difference between litters did not differ

significantly from zero. ANOVA analysis revealed

significant variation between dams versus within dams

in litter size ;

F
"%(,#("

¯σ#
betweendams

}σ#
withindams

¯ 2±09; P! 0±001.

Thus, the fixed effects, such as birth date and parity,

can be ignored in segregation analysis.

(ii) Variation of litter size between strains and inter-

strain crosses

The pedigree was very complex in its structure. There

were a few crosses that corresponded to a classical

hybrid scheme. Table 1 shows the mean litter size in

these crosses. We should emphasize that the litter sizes

for the crosses presented in Table 1 are attributed to

the parents involved in the particular cross but not to

their offspring. For example, the value for the cross

KAT¬SRI represents the litter size of KAT females

when crossed to SRI males, but not the value of their

F
"

hybrids.

The litter size of KAT was almost twice that of SRI

(t
$*&

¯10±87, P! 0±001). It is remarkable that the

litter size in KAT¬SRI crosses did not differ from

that of the less fertile parent strain, SRI. In other

words, mating with an SRI male reduced the fertility

of a KAT female to the level of an SRI female. The

F
"
¬F

"
intercrosses also demonstrated low fertility

and did not differ significantly from SRI. The mean

litter sizes in KAT¬F
"

and F
"
¬KAT crosses had

intermediate values and differed significantly from the

litter sizes of SRI (t
"%%

¯ 4±24, P! 0±001) and KAT

(t
$%(

¯ 4±31,P! 0±001). It is worthwhile noting that

therewere insignificant reciprocal differences in crosses

KAT¬F
"
and KAT¬SRI: litter size was larger when

the mother was KAT.

Thus, there were three distinct groups of means: (1)

large litter size, which includes the cross KAT¬KAT

only; (2) small litter size, comprising all crosses with

SRI and F
"
¬F

"
; and (3) intermediate litter size of the

cross F
"
¬KAT.

Two important conclusions can be drawn from this

comparison: the size of the litter produced by a female

is substantially affected by her male partner ; and the

overall picture of the distribution of the mean values

in interracial crosses fits better with the model of

dominance of low fertility rather than the model of

fully additive polygenic inheritance.

However, we cannot consider these data as the

result of a hybrid experiment because the parental

strains were not proved to be genetically homogeneous

and the number of informative crosses was relatively

small. For these reasons we could not analyse these

crosses according to traditional statistical methods of

hybrid analysis.

(iii) Segregation analysis

Litter size is a peculiar trait. It is usually considered a

phenotypic characteristic of the female. Our data

show that it is critically dependent on the contribution

of both breeding partners. Therefore it seems more

appropriate to perform the segregation analysis of the

pedigree data considering litter size as the combined

phenotype of the breeding couple rather than the

individual phenotype of the female. Within the

framework of the mixed model we suggested a general

hypothesis of collaborative control of the litter size,

with it dependent on the genotypes of both breeding

partners (including major gene and polygenes). Here-

after we shall refer to the combination of the genotypes

of a couple as a combined genotype. To describe the

probability of litter size we replaced all individual

phenotypes and genotypes in (1) by the combined

phenotypes and genotypes. Now x is considered as the

litter size of the mating pair, z¯ 0±5(z
m
z

f
) and

h¯ 0±5(h
m
h

f
). Here z

m
and z

f
are the blood-shares

of KAT for the mating individuals and h
m

and h
f
are

their heterosis fractions.

Assuming diallel major-gene control, we expected

nine combined genotypes. Then the major-gene
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Table 2. Results of segregation analysis for litter size: �ariants of the general mode

Parameter
General

1

Non-major-gene
2

No polygene
3

No heterosis
4

Maternal-only
5

Paternal-only
6

p(KAT) 0±41³0±04 — 0±63 0±39 0±73 0±81

p(SRI) 0±00 — 0±00 0±00 0±00 0±00
µ(A

"
A

"
A

"
A

"
) 4±67³0±54 2±00 4±94 4±77 2±79 2±67

µ(A
"
A

"
A

"
A

#
) 2±34³0±43 µ(A

"
A

"
A

"
A

"
) 3±89 2±39 µ(A

"
A

"
A

"
A

"
) 1±07

µ(A
"
A

"
A

#
A

#
) 0±18³0±30 µ(A

"
A

"
A

"
A

"
) 2±00 0±23 µ(A

"
A

"
A

"
A

"
) 2±18

µ(A
"
A

#
A

"
A

"
) 2±32³0±37 µ(A

"
A

"
A

"
A

"
) 3±91 2±39 1±34 µ(A

"
A

"
A

"
A

"
)

µ(A
"
A

#
A

"
A

#
) 2±79³0±23 µ(A

"
A

"
A

"
A

"
) 4±26 2±85 µ(A

"
A

#
A

"
A

"
) µ(A

"
A

"
A

"
A

#
)

µ(A
"
A

#
A

#
A

#
) 1±92³0±27 µ(A

"
A

"
A

"
A

"
) 2±47 2±00 µ(A

"
A

#
A

"
A

"
) µ(A

"
A

"
A

#
A

#
)

µ(A
#
A

#
A

"
A

"
) 0±09³0±33 µ(A

"
A

"
A

"
A

"
) 1±77 0±15 2±19 µ(A

"
A

"
A

"
A

"
)

µ(A
#
A

#
A

"
A

#
) 0±66³0±26 µ(A

"
A

"
A

"
A

"
) 2±28 0±66 µ(A

#
A

#
A

"
A

"
) µ(A

"
A

"
A

"
A

#
)

µ(A
#
A

#
A

#
A

#
) 2±22³0±08 µ(A

"
A

"
A

"
A

"
) 2±33 2±25 µ(A

#
A

#
A

"
A

"
) µ(A

"
A

"
A

#
A

#
)

α 1±93³0±08 1±74 [0] 2±05 1±62 1±63
β 0±69³0±18 0±63 0±84 [0] 0±71 0±71

σ# 0±78³0±08 1±60 0±96 0±80 1±22 1±16

®log
e
LH 961±55 994±32 974±33 968±91 975±23 983±88

AIC 1951±10 1996±64 1974±66 1963±82 1966±46 1983±76

χ# (d.f.)
Compared with 1 65±54(10)* 25±56(1)* 14±72(1)* 27±36(6)* 44±66(6)*

Parameters in square brackets were fixed at the values indicated.
*P! 0±001.

component can be described by 12 parameters :

frequencies of A
"
allele in SRI and KAT: p(SRI) and

p(KAT); means of the litter size for all nine combined

genotypes µ(g
m
, g

f
) : µ(A

"
A

"
A

"
A

"
), µ(A

"
A

"
A

"
A

#
),

µ(A
"
A

"
A

#
A

#
), µ(A

"
A

#
A

"
A

"
), µ(A

"
A

#
A

"
A

#
), µ(A

"
A

#

A
#
A

#
), µ(A

#
A

#
A

"
A

"
), µ(A

#
A

#
A

"
A

#
), and µ(A

#
A

#
A

#

A
#
) ; and σ#, which was assumed to be the same for all

genotypes. The non-major-gene component was ex-

pressed through two parameters : α1 0 and β1 0 (see

equation 1).

First we checked the necessity of a major-gene com-

ponent. We specified the non-major-gene hypothesis

by condition µ(A
"
A

"
A

"
A

"
)¯µ(A

"
A

"
A

"
A

#
)¯I¯

µ(A
#
A

#
A

#
A

#
). Table 2 shows that the non-major-

gene hypothesis is significantly worse than the general

hypothesis (χ#

"!
¯ 65±54,P! 0±001). This indicates the

necessity of a major-gene component in the description

of the inheritance of litter size in S. murinus. The test

for validity of Mendelism was performed: the hypo-

thesis of arbitrary transmission probabilities was

insignificantly better than that of mendelian trans-

mission (χ#

$
¯ 0±72) and the hypothesis of equal trans-

mission probabilities was definitely rejected (χ#

#
¯

13±86, P! 0±001) (Table 3).

To check the difference between the parental

populations in polygenic effects we excluded the

polygenic-additive component from the model and set

α¯ 0. Table 2 shows that this procedure leads to a

significant drop of likelihood in comparison with the

general hypothesis. This means that the polygenic-

additive component is essential for a correct

description of inheritance of litter size in the

pedigree under the study.

To check the significance of the heterotic effect we

tested the hypothesis assuming β¯ 0. Table 2 shows

this hypothesis to be significantly weaker than the

general hypothesis. Thus, the heterotic effect cannot

be neglected in the description of the inheritance of

litter size.

We estimated the relative contribution of these

three components, comparing AIC values obtained

when we excluded one of them from the model (Table

2, hypotheses 2, 3 and 4). The most damaging was

exclusion of the major-gene component.

To test the significance of collaborative genetic

control of litter size two particular cases were

considered: maternal-only inheritance, when litter

size is assumed to be determined by the maternal

genotype irrespective of the genotype of the male

partner, and paternal-only inheritance.

The maternal-only model was formalized as:

µ(A
"
A

"
A

"
A

"
)¯µ(A

"
A

"
A

"
A

#
)¯µ(A

"
A

"
A

#
A

#
),

µ(A
"
A

#
A

"
A

"
)¯µ(A

"
A

#
A

"
A

#
)¯µ(A

"
A

#
A

#
A

#
),

µ(A
#
A

#
A

"
A

"
)¯µ(A

#
A

#
A

"
A

#
)¯µ(A

#
A

#
A

#
A

#
),

z¯ z
m
, and h¯ h

m
.

The paternal-only model was formalized as:

µ(A
"
A

"
A

"
A

"
)¯µ(A

"
A

#
A

"
A

"
)¯µ(A

#
A

#
A

"
A

"
),

µ(A
"
A

"
A

"
A

#
)¯µ(A

"
A

#
A

"
A

#
)¯µ(A

#
A

#
A

"
A

#
),

µ(A
"
A

"
A

#
A

#
)¯µ(A

"
A

#
A

#
A

#
)¯µ(A

#
A

#
A

#
A

#
),

z¯ z
f
, and h¯ h

f
.

A comparison of likelihoods emerged from the

maternal-only and the paternal-only models, with the
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Table 3. Results of segregation analysis for litter size: the

Elston–Stewart test

Parameter
Mendelian τa

7
Arbitrary τ

8
Equal τ

9

p(KAT) 0±41³0±04 0±44 0±92
p(SRI) 0±00 0±00 0±00
µ(A

"
A

"
A

"
A

"
) 4±67³0±54 4±64 2±78

µ(A
"
A

"
A

"
A

#
) 2±34³0±43 2±33 0±96

µ(A
"
A

"
A

#
A

#
) 0±18³0±30 0±08 2±12

µ(A
"
A

#
A

"
A

"
) 2±32³0±37 2±46 0±76

µ(A
"
A

#
A

"
A

#
) 2±79³0±23 2±76 1±67

µ(A
"
A

#
A

#
A

#
) 1±92³0±27 1±91 1±36

µ(A
#
A

#
A

"
A

"
) 0±09³0±33 0±13 2±37

µ(A
#
A

#
A

"
A

#
) 0±66³0±26 0±72 2±02

µ(A
#
A

#
A

#
A

#
) 2±22³0±08 2±22 2±80

α 1±93³0±08 1±93 1±73
β 0±69³0±18 0±68 0±72
σ# 0±78³0±08 0±78 0±93
τ(A

"
A

"
) [1±0] 1±00 0±82

τ(A
"
A

#
) [0±5] 0±42 τ(A

"
A

"
)

τ(A
#
A

#
) [0±0] 0±00 τ(A

"
A

"
)

®log
e
LH 961±55 961±19 968±12

AIC 1951±10 1956±38 1966±24

χ# (d.f.)
Compared with 8 0±72(3) 13±86(2)*

Parameters in square brackets were fixed at the values indicated.
*P! 0±001.
a Most parsimonious by AIC.

likelihood obtained from the general collaborative

model indicating that the latter provides a significantly

better description of inheritance (χ#

'
¯ 27±36, P!

0±001 ; χ#

'
¯ 44±66, P! 0±001) (Table 2).

The accuracy of LH approximation was accessed

in the following way. We tested the dependence of the

results of segregation analysis on the way of breaking

pedigree loops. To do this testing, we made a replicated

analysis of the pedigree data obtained after several

different breaks. The variation in the estimates of the

genetic parameters between replicates was found to be

close to those within replicates. For example, the

standard deviations of the genetic parameters of

model 1 within replicates were 0±04 for p(KAT), 0±54

for µ(A
"
A

"
A

"
A

"
), 0±43 for µ(A

"
A

"
A

"
A

#
), 0±30 for

µ(A
"
A

"
A

#
A

#
), 0±37 for µ(A

"
A

#
A

"
A

"
), 0±23 for µ(A

"

A
#
A

"
A

#
), 0±27 for µ(A

"
A

#
A

#
A

#
), 0±33 for µ(A

#
A

#
A

"

A
"
), 0±26 for µ(A

#
A

#
A

"
A

#
) 0±08 for µ(A

#
,A

#
,A

#
A

#
),

0±08 for σ#, 0±08 for α and 0±18 for β (Table 3). Those

between replicates were 0±02, 0±21, 0±16, 0±06, 0±26,

0±16, 0±09, 0±30, 0±27, 0±02, 0±02, 0±08 and 0±46,

respectively.

Thus the inheritance of litter size in the hybrid S.

murinus could be described within the framework of a

mixed model of major-gene and polygenic inheritance.

One of the parental strains (SRI) is homogeneous for

the A
#
allele ; the other (KAT) contains this allele at a

frequency of about 0±6. The difference between the

parental strains in the polygenic contribution in the

litter size is about 2 offspring, while the maximal

heterotic effect is about 0±7 offspring.

4. Discussion

The results of segregation analysis indicate that the

inheritance of litter size in interracial hybrids of S.

murinus can be described within the framework of

mixed polygene and major-gene model. The major

gene follows the rules of Mendelian segregation.

We showed that a major-gene component is

necessary. First, when we excluded it from the mixed

model, we found a significant decrease in the

likelihood. Second, the significance of the major-gene

component was proved by the Elston–Stewart test.

Third, the hypothesis that gave the minimal AIC

contained a major-gene component. We found that

the relative contribution of the major-gene component

was much more substantial than that of the polygene

component. Exclusion of the polygene component

from the mixed model led to a smaller decrease in the

likelihood than the same operation with a major-gene

component.

This means that there is a major gene that makes a

main contribution to the variation of litter size in the

sample we analysed, whereas the effects of other genes

are less substantial. Together with environmental
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effects, they cannot overshadow the effect of the major

gene. This is in agreement with recent findings on

genetics of fertility in sheep, where several major genes

responsible for litter size have been found (Henderson

et al., 1985; Bradford et al., 1986; Davis et al., 1991 ;

Montgomery et al., 1993, 1995; Lanneluc et al., 1994).

The most intriguing aspect of our model is the

collaborative effect. How can the combination of

alleles of the same locus in male and female partners

affect the size of the litter produced by the female?

One may suggest that the major gene controls the

viability of zygotes or embryos. Then the number of

subvital alleles of whatever (paternal or}and maternal)

origin affects survival of zygotes or embryos. In this

case the litter size at birth would depend on the

genotypes of both parents. However, due to selective

mortality of the embryos within the litter, the

transmission probabilities would differ from

Mendelian expectation. We did not find, however, a

significant deviation of the transmission probabilities

from the Mendelian ones. Therefore this suggestion

seems to be questionable.

There is evidence of a male influence on litter size.

Dilts et al. (1991) detected a strong effect of the male

partner on ovulation rate in the female and pre- and

post-implantation survival of embryos in mice. When

males from different lines selected for large litter size

were mated to females from different stocks, there

were more than two additional eggs, implants and

pups compared with the results of mating to males

from the same line as the female.

There is some evidence of the similarity of genetic

systems controlling fertility in males and females. It

has been shown that testis weight in mice selected for

increased or decreased ovulation rate diverged in the

same direction as the ovulation rate (Land, 1973).

Selection for testis weight in mice resulted in a positive

correlated response in ovulation rate (Islam et al.,

1975). Eisen & Johnson (1981) demonstrated corre-

lated responses in male reproductive traits in mice

selected for litter size. A correlation between testis

growth and ovulation rate was found in different

breeds of sheep (Land, 1972, 1973). It was concluded

that selection for testis size had affected the feedback

control of gonadotrophin release in the ewe, as in the

ram, and hence the expression of the genes controlling

this is not sex limited. The quantitative physiological

study of genetic variation in reproductive performance

has shown that differences in litter size and incidence

of lambing in sheep are associated with variation in

the release of luteinizing hormone. This variation is

detectable in young animals of both sexes. In the male

it is associated with variation in mating behaviour and

testis growth (Land et al., 1979). These data indicate

that reproductive performance of males and females

may be controlled by a similar or the same genetic

system acting via the hypothalamic–pituitary axis.

Models of fertility with contributions from the

genotypes of both partners have been suggested in

theoretical evolutionary genetics and discussed long

ago. Penrose (1949) considered fertility as a sum of

components from the male and female parents, with

the contribution depending only on the genotype and

not on the sex of the participants in the mating.

Bodmer (1965) introduced multiplicative contri-

butions from the participants to the fertility of the

mating. The third model, introduced by Hadeler &

Liberman (1975) and developed by Feldman &

Liberman (1985) and Clark & Feldman (1986), had

symmetric fertilities depending only on the number of

heterozygous loci participating in the mating. None of

these models has ever been tested on empirical data.

The analytical tractability was the sole proof of their

validity.

Our collaborative model is in essence another

version of the fertility model where fertility is

determined by the genotypes of both parents. The

peculiarity of our model is that it was not constructed

a priori, but resulted from a segregation analysis of

empirical data.
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