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1. Introduction. Let M =(M,J,g) be an almost Hermitian manifold and U(M) the
unit tangent bundle of M. Then the holomorphic sectional curvature H = H(x) can be
regarded as a differentiable function on U(M). If the function H is constant along each
fibre, then M is called a space of pointwise constant holomorphic sectional curvature.
Especially, if H is constant on the whole U(M), then M is called a space of constant
holomorphic sectional curvature. An almost Hermitian manifold with an integrable
almost complex structure is called a Hermitian manifold. A real 4-dimensional Hermitian
manifold is called a Hermitian surface. Hermitian surfaces of pointwise constant
holomorphic sectional curvature have been studied by several authors (cf. {2], [3], [5], [6]
and so on).

In this paper, we shall prove the following.

THEOREM A. Let M = (M,J, g) be a compact Hermitian surface of pointwise constant
holomorphic sectional curvature. If the scalar curvature of M is nonpositive constant, then
M is an Einstein Kdhler surface.

THEOREM B. Let M = (M, ], g) be a Hermitian surface of pointwise constant holomor-
phic sectional curvature satisfying the condition

R(X,Y)- R =0 for any differentiable vector fields X and Y. 1.1

If the curvature operator is non-singular at each point of M, then M is a weakly *-Einstein
manifold.

Taking account of the solution of Yamabe’s problem, the classification problem of
compact self-dual (resp. anti-self-dual) Hermitian surfaces can be reduced to the one of
compact self-dual (resp. anti-self-dual) Hermitian surfaces with constant scalar curvature.
We may easily show that a 4-dimensional almost Hermitian manifold of pointwise
constant holomorphic sectional curvature is self-dual (cf. [2]). Therefore Theorem A gives
a partial solution to the classification problem of compact self-dual Hermitian surfaces
and also a partial improvement to the previous result of the present authors ([3], Theorem
A). In the course of the proof, we have used the following fact ([3], Proposition 2.1).

ProrosiTiON. [3] Let M =(M,J,g) be a compact Einstein Hermitian surface of

pointwise constant holomorphic sectional curvature. Then M is a locally conformal Kihler
surface and the tensor field S defined by

S(X,Y)=(Vxw)Y = (Vixo)Y + 3o(X)o(Y) - o(JX)o(Y))
vanishes on M.

However the proof of the proposition is not right (more precisely, the equality (2.19)
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in [3] is false in sign), which has been pointed out by T. Sato. We give a correct proof of
the proposition after proving Theorem A and B.
The authors wish to express their gratitude to Professor T. Sato for his useful advice.

2. Preliminaries. Let M = (M, J, g) be a 2n-dimensional almost Hermitian manifold
with the almost Hermitian structure (J,g), and Q the Kihler form of M defined by
QX,Y)=g(X,JY), X, Y e Z(M). We assume that M is oriented by the volume form

1’!
dM = G ) . We denote by V,R,p, 1,p* and 7* the Riemannian connection, the
n!

Riemannian curvature tensor, the Ricci tensor, the scalar curvature, the *-Ricci tensor
and the *-scalar curvature of M respectively:

R(X,Y)=[Vx, Vy] - Vix.r,
p(x,y) =trace of (z— R(z,x)y),
T=trace of p,
p*(x,y) = 3 trace of (z = R(x,Jy)z),
T* = trace of p*,

where X, Y € (M), x,y,z € T,(M), p e M.

An almost Hermitian manifold M = (M, J, g) is called a weakly *-Einstein manifold if
it satisfies p* = A*g for some function A* on M.

Now we assume that M is a Hermitian surface. Then we have

dQ=wAQ,
where w = 8Q-°J. The 1-form w is called the Lee form of M. The Lee form w satisfies the
following (see [7], [8]):
JijViwj =0,
zvijjk = Wl ik — waJ K 8ij + wilii — widji, (2.1)
T— 1% =280+ o>

Let M be a Hermitian surface of pointwise constant holomorphic sectional curvature
¢ =c(p)(p € M). Then we have (see [5])

1
Ruu= 101 Cpa+ (5= 2 10y

+ 9_6 {guAn — 8uAn + 8ulix — 8ixAu
+JuBy — JuBy + 1By — Ju By
+2J;Byy +20,4B},
where
Cijt = 8uBjx — 8ik8jts
Hyi = gugix — 8u&jt + Il — Jucdjy — 20,
A =21(Vw; + Vo, + w,0;) = 31T (Ve0p + Vyw, + w,wp),
By =1 "Vw, — I V,0,) = V0, = JV,0)) + 3(/ ww, — Jf ww,).
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We put
T;=V,w; + V0, + w;0; — J,-“./jb(V,,w,, + Vo, + w,w,), 22)
T}=Vw— Vo, — Jiajjb(vawb = Vyw,).
Then we have
T 1
=-g—=-T
P 48 2l
(2.3)
T* 1
*m g = T*
PP=3 87y
We may easily get (see [5])
T+ 37*
= . 4
‘T @24
We have the following integral formula (see [5]).
f 1% dM =j @ |dw]|* +2(t — )* — 41* |0 ||?) dM. (2.5)
M M

ProrosiTioN 2.1. [S] Let M be a compact Hermitian surface of pointwise constant
holomorphic sectional curvature c. Then the Euler class of M is given by

1
x(M) = Ty f {12¢2 = f(1 - ) + 3% || %} dM. (2.6)
M

ProrosiTiON 2.2. [S] Let M be a compact Hermitian surface of pointwise constant
holomorphic sectional curvature. Then the square of the first Chern class of M is given by

(MY =5 | (e + e ol + Jdo ) d, @)

THEOREM 2.3. [4] Let M = (M,J) be a compact connected complex surface. Then we
have

¢;(M)* = max{2c,(M), 3c,(M)}. (2.8)

3. Proof of Theorem A. In this section, we shall prove Theorem A. Before

proceeding to the proof, we recall the following fact.

THEOREM 3.1. [5]) Let M =(M,J,g) be a compact Hermitian surface of constant
nonpositive holomorphic sectional curvature. Then M is a Kahler surface.

We assume that M = (M,J, g) is a compact Hermitian surface of pointwise constant
holomorphic sectional curvature ¢ =c(p), p e M.
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First we assume that c,(M)(=x(M))<0. Then Miyaoka’s inequality (2.8) implies
c1(M)? = 2c,(M). Then by (2.4), (2.6) and (2.7), we have

1
05 [ {4307 =L (1= 1P + ol = (4 = 2 ol Ido |} dM
m (24 8

= fM {2% (=272 + 1277* — 18(1*)?) — ||dw ||2} dM

1
= fM {— = (1= 30~ |du ||2} dM =0.

Thus we have
7=37* and dw=0. G.1)

In this case, by the assumption that M has nonpositive constant scalar curvature 7,c is

nonpositive constant on M. By Theorem 3.1, M is a Kahler surface. And then we have
7= t* = ¢ =0. This contradicts y(M) <O0.

Hence it follows that c,(M)(=x(M)) = 0. Then Miyaoka’s inequality implies
c1(M)? = 3c,(M).
Then from (2.4), (2.6) and (2.7), we have

3
STl = (1) = * | o|?

1 3
0= {— +30*)Y ——(1- %)+
jM TR AT

1 1
-2 ||T||2+§(T— )2 — 7* ||a)||2} aM. (32)
From (3.2) and (2.5) we have
1 1
= [ Fetor - pegirifam [ grpam
T2 4 8 8 Jm
1 1
=-f |!dw||2dM+—j IT)?dM = 0. (3.3)
2m 8 Jm
The left hand side of the above inequality reduces to
1 )G k)
- + *) — 2%k || — + Y+ ¥ |+ — e
IM((4(1 3t¥) -1 4(1 It +1 16(1 ™*)° | dM
1
=—f (=) +7t%) + (r— t*))) dM
16 Ju
3 ) T
=—=| (t=1™)dM+-| (1—1%)dM
8 M 2 M

=_§f (r—r*)sz+IJ lw|2dM =0. (3.4)
8 M 2 M
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Thus by (3.3) and (3.4), we have finally dw =0, T =0 and hence S =0, where § is the
tensor field defined by

S(X,Y) = (Vx0)Y = (V,x VY + Ho(X)o(Y) - o(X)o(Y)). (3.5)

Thus, from (2.3), we see that M is an Einstein locally conformal Kahler surface and the
tensor field S vanishes on M. In particular, Proposition 1.2 of [3] is valid in the case
where the Einstein constant is nonpositive. Thus by the argument after Proposition 2.1 of
[3], we may conclude that M is Kahler surface.

This completes the proof of Theorem A.

4. Proof of Theorem B. In this section, we shall prove Theorem B. The condition
(1.1) implies

Rija'Rtbcd + Rijb’Rarcd + RijC'Rabld + Rijd'Rabct =0. (41)

Now by (2.3) we have

- 1.
JmJICRijatRlbcd = Ejm‘,]c (Rijal - Rajil)Rtbcd

|

== EJ’aJICij’Rtbcd
= =p*Ripca

T* 1
= 'Z Pbd — Z T*Ripea

T* 1
= 'Z Pba — g T*(Ripca — Repea)

T* 1
= Z Pva — g T*“Ricpas 4.2)

o 1 .
JmJ]CRijc'Rabtd = EJMJJC(Rijcl - Ricj’)Rabtd

1
== E J }chcitRabrd
= p *mRabld
T* 1
=- 'Z Pbd — é T*mRtabth (43)
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J ia]chijeralcd = lij “af chijbl(Ratcd - Rcmd)
= ~ JPRy Ry
= —3J"VR;jp'Racar, (4.9)
Je chijd' abet = %J “JR ijd'(Rabcr - Rcbal)
= =3 chijd'Rcabx
= %J “J9R ijdtRacbt
= VTR i Rijor- (4.5)
Thus, transvecting (4.1) with J*J’ and taking account of (4.2)-(4.5), we have
Ropea T* = 0. (4.6)

Since the curvature operator is non-singular at each point of M, (4.6) implies T*=0 on
M. Hence by (2.3) we see that M is a weakly *-Einstein manifold.
This completes the proof of Theorem B.

Finally we shall prove Proposition 2.1 of [3]. We assume that M is a compact Einstein
Hermitian surface of pointwise constant holomorphic sectional curvature ¢ =c(p)(p €
M). Taking account of the proof of Theorem A in Section 3, it suffices to consider the
case where 7> 0. N. Hitchin proved the following.

THEOREM 4.1. [1] Let M =(M,g) be a 4-dimensional half-conformally flat Einstein
manifold of positive scalar curvature. Then M is isometric to a 4-dimensional sphere or a
complex projective space with the respective standard metric.

Since a 4-dimensional almost Hermitian manifold of pointwise constant holomorphic
sectional curvature is self-dual, then by Theorem 4.1, the manifold M =(M,J, g) under

consideration satisfies the conditions of Theorem B. Then from Theorem B we get
T*=0. On the other hand, we have (see (3.13) of [5])

f JijbVawaiwj dM = fM Jiajjbvawbvj-(l),‘ dM (4.7)
M
By (2.2) and (4.7) we obtain
f ||T*||2dM=4j |dw]|? dM. (4.8)
M M

Hence we have dw =0, that is M is a locally conformal K#hler surface. Furthermore by
(2.2) and (2.3) we have § =0, since M is assumed to be Einstein.
This completes the proof of Proposition 2.1 of {3].
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