
Publications of the Astronomical Society of Australia (2025), 42, e105, 20 pages

doi:10.1017/pasa.2025.10067

Research Article

Quantifying radio source morphology
Lachlan J. Barnes1 , Andrew M. Hopkins1 , Lawrence Rudnick2, Heinz Andernach3, Michael Cowley4,5,
Nikhel Gupta6 , Ray P. Norris7,8 , Stanislav S. Shabala9 and Tayyaba Zafar1
1School of Mathematical and Physical Sciences, 12 Wally’s Walk, Macquarie University, Sydney, NSW, Australia, 2Minnesota Institute for Astrophysics, Minneapolis,
MN, USA, 3Depto. de Astronomía, DCNE, Univ. de Guanajuato, Guanajuato, GTO, Mexico, 4School of Chemistry & Physics, Faculty of Science, Queensland University of
Technology, Brisbane, QLD, Australia, 5University of Southern Queensland, Centre for Astrophysics, Toowoomba, QLD, Australia, 6CSIRO Space & Astronomy,
Bentley, WA, Australia, 7ATNF, CSIRO Space & Astronomy, Epping, NSW, Australia, 8Western Sydney University, Penrith, NSW, Australia and 9School of Natural
Sciences, University of Tasmania, Hobart, TAS, Australia

Abstract
The advent of next-generation telescope facilities brings with it an unprecedented amount of data, and the demand for effective tools to
process and classify this information has become increasingly important. This work proposes a novel approach to quantify the radio galaxy
morphology, through the development of a series of algorithmic metrics that can quantitatively describe the structure of radio source, and
can be applied to radio images in an automatic way. These metrics are intuitive in nature and are inspired by the intrinsic structural differ-
ences observed between the existing Fanaroff-Riley (FR) morphology types. The metrics are defined in categories of asymmetry, blurriness,
concentration, disorder, and elongation (ABCDE/single-lobe metrics), as well as the asymmetry and angle between lobes (source metrics).
We apply these metrics to a sample of 480 sources from the Evolutionary Map of the Universe Pilot Survey (EMU-PS) and 72 well resolved
extensively studied sources from An Atlas of DRAGNs, a subset of the revised Third Cambridge Catalogue of Radio Sources (3CRR). We
find that these metrics are relatively robust to resolution changes, independent of each other, andmeasure fundamentally different structural
components of radio galaxy lobes. These metrics work particularly well for sources with reasonable signal-to-noise and well separated lobes.
We also find that we can recover the original FR classification using probabilistic combinations of our metrics, highlighting the usefulness
of our approach for future large data sets from radio sky surveys.
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1. Introduction

1.1. Radio galaxies andmorphology

Supermassive black holes (SMBH) at the core of galaxies, sur-
rounded by an accretion disk of hot gas (e.g. Wilson & Colbert
1995; Best & Heckman 2012; Kormendy & Ho 2013; Morganti
2019) are referred to as active galactic nuclei (AGN). AGN sources
with radio emission in the form of symmetric jets and lobes
are known as DRAGNs (double radio sources associated with
a galactic nucleus), a term coined by Leahy (1993). DRAGNs
(also referred to as ‘radio galaxies’ in this work) exhibit a wide
range of structural features and have been classified into distinct
morphological types (e.g. Miley 1980).

Fanaroff & Riley (1974) first classified DRAGNs into two cat-
egories, based on the ratio of a/b (sometimes referred to as
the FR ratio, e.g. Brand et al. 2023). Here a represents the dis-
tance between brightest spots in opposite lobes, and b is the total
extent of the radio emission. Objects with a/b< 0.5 were classi-
fied as class 1 (FRI) and those with a/b> 0.5 classified as class 2
(FRII). FRI and FRII type sources appear structurally different.
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FRI sources tend to have initially collimated jets that decelerate
and flare into turbulent, edge-dimmed lobes (e.g. Laing & Bridle
2014; Hardcastle & Croston 2020; Saikia 2022). FRII sources are
believed to have highly collimated, relativistic jets that remain nar-
row over large distances and terminate in bright hotspots at the
edges of the lobes, making them edge-brightened (e.g. Shabala &
Alexander 2009; Proctor 2011; Saripalli et al. 2012; Rossi et al.
2020; Ndung’u et al. 2024).

The difference between structural features of the two FR types
is likely due to both jet power and the radio source environment
density (e.g. Best 2009; Krause et al. 2012; Saripalli et al. 2012;
Kapińska et al. 2017; Yates-Jones et al. 2023). FRI sources tend
to be hosted by massive ellipticals in galaxy clusters (i.e. a high
density environment), whereas FRII sources tend to be hosted by
lower mass galaxies, and are often found in less dense environ-
ments (Morganti 2019; Shabala et al. 2020). Due to the higher
environmental density and lower power, the jets of FRI sources
decelerate and dissipate on tens of kpc scales (e.g. Laing & Bridle
2002; Laing & Bridle 2014), whereas those of FRII sources can
remain relativistic for hundreds of kpc (e.g. Mingo et al. 2019;
Rossi et al. 2020; Gordon et al. 2023). While the original classifica-
tion indicated that FRII sources tend to have higher luminosities
than FRI sources, later work at higher frequencies found there was
significant overlap in luminosity for the two morphologies (e.g.
Best 2009; Gupta et al. 2024b). In addition to luminosity overlap,
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FRI and FRII sources can also share structural features, making it
difficult to precisely determine the morphology of DRAGNs. Low
flux density (faint) or sources at different redshifts and environ-
ments, can influence the observed morphology leading to hybrid
sources (HyMoRS; Kapińska et al. 2017), with one lobe showing
FRI-like morphology and the other FRII-like (Best 2009; Bastien
et al. 2021). Further, Fanaroff & Riley (1974) exclude the central
source (core) in their classification. Some authors do not, and this
can lead to a core-dominant FRII source being misclassified as an
FRI (Norris et al. in preparation).

The development of next-generation radio telescope facilities,
driven by the vision of the Square Kilometre Array (SKA) since
the early 1990s (Carilli & Rawlings 2004), has led to further
advancements in radio telescope technology (such as improved
sensitivity, resolution, and survey efficiency). The development of
the SKA Pathfinders and their large-scale surveys has resulted in
an unprecedented influx of radio data. This has created a grow-
ing demand for efficient and effective tools to process and classify
radio sources. However, the wide range of morphologies present
in radio galaxies makes this a significant challenge for automatic
classification.

1.2. Machine Learning

Machine learning (ML) techniques for a wide variety of classifica-
tion problems have been gradually incorporated into astronomical
applications (Fayyad et al. 1995). For example, ML has been used
for learning and classifying the morphology of different radio
objects (e.g.Ma et al. 2019;Wu et al. 2019; Galvin et al. 2020; Gupta
et al. 2022, 2023; Alam et al. 2025), simulating radio sources (e.g.
Bastien et al. 2021; Andrianomena & Tang 2024) and the develop-
ment of radio source finding tools (e.g. Riggi et al. 2023). While
ML is extremely capable at handling vast amounts of data, the
process of training and testing in many ML approaches is compu-
tationally intensive (see Ball & Brunner 2010), and the results can
be subject to overfitting and generalisation issues (Tolley 2024).
Further, many of the existing ML models are trained on radio
images from a selection of surveys with varying resolution and
signal-to-noise which may not be well-matched to the datasets
they are later applied to (see Ndung’u et al. 2023; Riggi et al. 2023).
The lack of large annotated training datasets remains one of the
greatest challenges in assessing and improving the overall perfor-
mance of ML image classification algorithms (Becker et al. 2021).
Automating the detection and annotation of radio sources is a sep-
arate challenge, although recent work (Gupta et al. 2023, 2024a)
introduces a novel ML tool which appears to reliably address this
aspect of the problem.

1.3. Feature extraction

Algorithmic feature extraction from images can be faster and
more computationally efficient, when compared to many ML
approaches, and has been used for image classification across
many disciplines for several decades (e.g. Xu et al. 2023). Within
astronomy, it has been shown to be a robust approach for classify-
ing the morphology of optical galaxies (e.g. Kent 1985; Abraham
et al. 1994; Bershady, Jangren, & Conselice 2000). For example, the
development of the CAS parameters (Concentration, Asymmetry,
and Smoothness, Conselice et al. 2000; Conselice 2003) and the
Gini and M20 parameters (Lotz, Primack, & Madau 2004) have
been used extensively to distinguish between early- and late-type
galaxies, and have been modified in recent years to be more
effective (see Ferrari et al. 2015). A number of different tools have

also been developed to apply algorithmic feature extraction for the
purpose of classifying classes of objects from images. Some exam-
ples are WND-CHARM (Weighted Neighbour Distances using a
Compound Hierarchy of Algorithms Representing Morphology,
Orlov et al. 2008; Shamir 2009) and COSFIRE filters (Combination
Of Shifted FIlter REsponses, Azzopardi & Petkov 2013; Ndung’u
et al. 2024).

While it is evident that feature extraction methods are power-
ful tools in the classification and analysis of galaxy morphology
at optical wavelengths, their application to radio astronomy has
only begun in recent years. Feature extraction techniques have
been used to measure the coarse-grained complexity of complex
and analogous radio sources (e.g. Segal et al. 2019, 2023), and
directly analyse radio galaxy features such as FR classification,
hotspot brightness (e.g. Becker & Grobler 2019), size, eccentric-
ity, orientation, and symmetry of a radio galaxy (e.g. Javaherian,
Miraghaei, & Moradpour 2023). Other works have applied exist-
ing feature based metrics to radio galaxies. For example, Sadeghi
et al. (2021) incorporated rotation, translation, and scale invari-
ant image moments, based on Zernike polynomials (Teague 1980)
and Ntwaetsile & Geach (2021) used Haralick features (Haralick,
Shanmugam, & Dinstein 1973) to characterise the morphology
of FRI and FRII type sources. Brand et al. (2023) extracted the
FR ratio, if a galaxy is bent or not, the number of bright spots
present in the galaxy, and the ratio of the size of bright spots to
the total size of the galaxy to aid the training of a CNN in the
classification of radio galaxy morphology. Although still incor-
porating aspects of ML approaches for radio source morphology
classification, these studies highlight the potential of algorithmic
feature extraction techniques to classify and quantify radio source
morphology.

The motivation for this work stems from the need for effi-
cient and scalable methods to classify complex extended radio
sources. Algorithmic feature extraction approaches have demon-
strated strong potential, and are likely to serve as a valuable
method for automating radio galaxy classification. We propose a
novel approach to the classification of such sources through the
development of a series of algorithmic metrics that can be applied
to any radio image. These metrics are designed to quantify key
structural features of radio galaxy lobes, such as the concentration
of flux or the asymmetry. We seek to establish a foundation for
a robust classification framework that can accommodate future
radio surveys and higher-resolution observational datasets. Our
approach is adaptable to evolving interpretations of radio galaxy
morphology. Unlike ML models, which require retraining when
new types of sources emerge, our metrics remain agnostic to spe-
cific classification schemes and can be applied to any radio galaxy
image in an automatic way.

2. Data and pre-processing

2.1. EMU and RadioGalaxyNET

The Evolutionary Map of the Universe (EMU; Norris et al. 2011;
Hopkins et al. 2025) is a wide-field radio continuum survey, using
the ASKAP telescope. The primary goal of EMU is to make a deep
(∼900MHz) radio continuum survey of the entire Southern sky at
a resolution of ∼15′′ and sensitivity of ∼25µJy/beam. It is antici-
pated that EMU will detect and catalogue tens of millions sources,
many of which will be extended and complex. A key motivation
for this work is the analysis of large numbers of radio sources, for
which we start by drawing from EMU data. In preparation for the
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full EMU survey (Norris et al. 2011), the EMUPilot Survey (EMU-
PS; Norris et al. 2021) was conducted to test the survey strategy
and data processing pipeline. Phase 1 of the EMU-PS was limited
to a contiguous region of 270 deg2 within the Dark Energy Survey
region (DES; Abbott et al. 2018), lying at a declination< −30◦ and
Galactic latitude of > +20◦, with a sensitivity of 25–35µJy/beam
at 944 MHz.

RadioGalaxyNET (Gupta et al. 2024a) is developed from
a curated dataset of DRAGNs classified by professional
astronomers, designed for training machine learning models
in radio morphology recognition. Because of the manual nature
of identifying the original dataset, the DRAGNs used will tend
to favour higher signal-to-noise systems, although this is not a
fixed or quantitative threshold. It simply arises since very low
surface brightness objects are harder to visually identify. The
full RadioGalaxyNET dataset contains 2 800 EMU-PS 15′ × 15′
cutouts in three channels (unprocessed radio, processed radio,
and infrared), resulting in a total of 4 155 annotated sources,
since some cutouts contain multiple sources. The annotations
consist of radio morphological class information, bounding box
details for associated components of each radio galaxy, radio
galaxy segmentation masks, and the host galaxy positions from
the infrared images. This work primarily analyses a subset of the
sources from the RadioGalaxyNET data.

In order to ensure a source is sufficiently resolved and contains
enough observable structure for our analysis, we define a mini-
mum area threshold of the radio cutouts of 20 times the ASKAP
synthesised beam size (1 beam ≈ 13′′ × 11′′; Norris et al. 2021).
The minimum area for each cutout is therefore 2 860 arcsec2 or
∼715 pixels (1 pixel ≈ 2 arcsec in the EMU-PS mosaic). Below
this value the analysis of the radio lobes can become compro-
mised by the limited number of beams (resolution elements). To
produce the cutout images from the EMU-PS, we first extracted
the coordinates of the bounding boxes from the RadioGalaxyNET
data. These coordinates were transformed to match the orienta-
tion of the EMU-PS mosaic, from which we directly produce the
cutouts of the individual radio galaxies. There are 595 sources
from RadioGalaxyNET that met the minimum size requirements,
with an average cutout size of ∼3 600 pixels. The cutouts were
made on the ‘unsmooth’ EMU-PS mosaic, in order to maximise
the resolution in different regions.

2.2. 3CRR and an atlas of DRAGNs

The Third Cambridge Catalogue of Radio Sources (3C; Edge et al.
1959; Archer et al. 1959) is a radio catalogue originally observed at
159 MHz, then revised at 178 MHz (3CR; Bennett & Simth 1962;
Bennett 1962). The 3CR catalogue contained 328 sources and was
one of the first comprehensive lists of extragalactic radio sources.
However, the original survey had relatively limited angular resolu-
tion, leading to source blending and other biases (Véron 1977). To
improve upon this, a further revision of 173 bright radio sources
at 178 MHz was conducted (3CRR; Laing, Riley, & Longair 1983).
While the initial 3CR selection suffered from resolution limita-
tions, 3CRR sources have since been observed in much greater
detail and resolution. The 3CRR catalogue contains all extragalac-
tic radio sources in the Northern Hemisphere with a 178MHz flux
density greater than 10.9 Jy.

An Atlas of DRAGNs (Leahy, Bridle, & Strom 2013) is a sub-
set of the 3CRR catalogue, consisting of the nearest 85 DRAGNs.

The Atlas of DRAGNs websitea contains high-quality images of
the DRAGNs compiled from different studies. The images in the
atlas have high resolution, and sufficient sensitivity and spatial
frequency coverage to clearly and accurately image the faintest
regions of a radio source. Most images are at frequencies near
1.5 GHz, although the frequencies range from 0.3 to 8.4 GHz
in the atlas. The difference in resolution between EMU-PS and
3CRR sources from this atlas is highlighted in Figure 1. There is
also a dedicated page providing supplementary information about
each radio source, containing FR classification, redshift, radio
power, and linear size. Given the well-documented nature of these
sources, we use this atlas as a reference dataset in this work.

Figure 1. Comparison of two double lobed radio sources to highlight the resolution
between datasets. As observed in J202644.4−552227 (left) and 3C285 (right), both
sources show similar structural features. Angular size of each image shown in the
bottom right.

The cutouts of the 3CRR sources, as well as the corresponding
supplementary information, were directly downloaded from the
Atlas of DRAGNs site. We do not use the full sample of 85 sources
in this work. Through manual inspection, it was found that two
sources had corrupt FITS files, two sources were not centred in the
image, two were extremely bent (see Appendix A), and seven con-
tained excessive structural complexity too intricate to be processed
reliably in an automatic way (see Table 1). Our reference dataset
therefore consists of 72 3CRR sources (17 FRI and 55 FRII).

Table 1. List of sources and reasons for omission from analysis.

Reason for omission Sources

Corrupt FITS 3C236, NGC6251

Not centred 3C35, 3C465

Extremely bent 3C83.1B, 3C264

Complicated structure 3C16, 3C48, 3C84, 3C274, 3C293, 3C314.1, 3C274

3. Development of quantitative metrics

As discussed above in Section 1, the morphology of a radio source
does not always fit into well defined, rigid categories (such as FRI
or FRII for example). Further, an object’s classification can become
ambiguous if it contains characteristics of different categories (e.g.
HyMoRS) or when its observed structure varies with resolution.
Recently, Rudnick (2021) proposed the concept of assigning radio
sources descriptive criteria-based #tags instead of putting sources

ahttps://www.jb.man.ac.uk/atlas/.
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into such categories. Such #tags must have well defined criteria,
and are ideally quantitative.

Of particular relevance to this work are structural #tags, which
contain information about the number of jets, the peak flux sep-
aration, FR-morphology, shape, or symmetry, among other prop-
erties for a given radio source. In this work, we define a series of
metrics that can be used to characterise and quantify the struc-
ture of a radio source and be incorporated into the #tag system.
These metrics include asymmetry, blurriness, concentration, dis-
order, and elongation (referred to as the ABCDE metrics), which
are applied to a single lobe of a DRAGN system. We also present
metrics that are applied to the whole DRAGN system, the asym-
metry and angle between lobes (ABL). A brief summary of each
of the metrics is provided in Table 2. As the shape of a radio
lobe is directly related to the astrophysics of the host AGN, we
selected metrics designed to quantitatively capture both morpho-
logical structure and flux distribution of a lobe. It is important to
note that while many of the following metrics are not new, the
innovation in this work lies in their application to quantifying the
structure of extended, complex radio sources.

Table 2. Summary of the metrics presented in this work. All metrics are unitless
except for the angle between lobes, which is measured in degrees.

Metric Summary

Asymmetry Multiple metrics. Shape asymmetry, flux distribution
asymmetry, shape and flux distribution asymmetry
between both lobes of a given source

Blurriness Measure of how blurred the edge of a radio lobe is

Concentration Concentration of flux within a lobe

Disorder Measure of how complicated the shape of the lobe is

Elongation Measure of how stretched or compact a radio lobe is

Angle between lobes Measure of how bent a radio source is

To calculate each of the above metrics, all radio galaxy source
images (from both the EMU-PS and 3CRR catalogue) are divided
into two halves, with the expectation that each half will contain
one lobe of the galaxy. For rectangular images, we cut the image
perpendicular to and half-way along the major axis. For square
images, we simply cut the x-axis in half. This is assuming the
source is both centred and symmetrically distributed in the image.
From a visual inspection of both EMU and 3CRR datasets, the
vast majority of galaxies were centred in the radio image. Through
manual inspection, we found 3 sources that were extremely bent
with both lobes in one half of the cutout (See Appendix A). These
sources were dropped from our analysis. We then identify the
brightest pixel in each lobe, ensuring a minimum distance of
three pixels from the border of each half. Further, for all metrics
except the angle between lobes and asymmetry, we use aminimum
threshold of 10% of the peak flux value to ensure lobe isolation and
minimise biases from high noise pixels, setting pixel values below
this threshold to NaN (Not a Number). For metrics that involve
the summation of pixels, the NaNs are excluded.

3.1. Pre-processing

Many of the EMU-PS sources contain a very bright core. As
the metric calculations are based on the brightest pixel, this
can influence the results. We therefore implement a core-
removal process. We first apply a minimum flux threshold of
150µJy, corresponding to roughly 5σ of the EMU-PS imaging
(σ = 25–30µJy/beam, Norris et al. 2021). Pixels with intensities

less than this threshold are are set to zero to remove noise for
the purposes of core identification only. Following the work out-
lined in Hancock et al. (2012), to highlight potential edges and
features in an image we generate a curvature map by convolving
the thresholded image with the following Laplacian kernel:

L2xy =

⎡
⎢⎢⎣
1 1 1

1 −8 1

1 1 1

⎤
⎥⎥⎦ . (1)

The resulting curvature map emphasises regions with sharp
intensity transitions, aiding in the accurate localisation of a core.
We then generate a binary map with labelled features, calculate
their sizes, and retain the largest components. If an image contains
two lobes and a core (i.e. number of components > 2), a circular
mask is applied around the local maximum nearest to the infrared
coordinates of the host galaxy, which is expected to be coincident
with the core. This process is fully automatic and demonstrated
in Figure 2. Through an initial visual inspection of the 592 EMU
sources, we estimate that 186 (30%) sources contain a dominant
core, i.e. the central component was brighter than the two lobes.
We then applied the above core-removal process to the 592 images
and, after another visual inspection, the core of 102 sources was
successfully removed. However, this process is not perfect (see
Appendix A). We found that the number of components detected
was sometimes incorrect, leading sources that did not have a dom-
inant core to accidentally have a lobe masked. Sources with a
dominant core remaining after the attempted masking (84) or an
inadvertently masked lobe (28) were subsequently dropped from
our analysis, leading to a final EMU-PS dataset consisting of 480
sources.

Figure 2. Visualisation of the core masking process. From left to right is the original
EMU-PS radio image, the curvaturemap, the labelled components, and the final image
with the core removed.

3.2. Asymmetry

The asymmetry of a galaxy has been defined in a number of ways
in optical astronomy (e.g. Schade et al. 1995; Abraham et al. 1996a,
1996b; Conselice 1997; Brinchmann et al. 1998). These meth-
ods provide a framework for morphological classification that
can also be applied to radio sources. We adopt the approach to
asymmetry as described in Conselice et al. (2000) and Conselice
(2003), which compares a source image (I), with itself rotated
by an angle of 180◦ (IRot). We define the centre of rotation as
the brightest pixel in a given lobe. We produce the difference
image between the original and rotated image, and take the abso-
lute value of the sum over all pixels, η, and normalising by the
total flux of the original lobe, ITot , to produce a shape asymmetry
metric (AS). The absolute value of the difference of two images will
produce twice the flux for a perfectly asymmetric source (i.e. each
bright pixel has no corresponding bright pixel after the image is
rotated), and we therefore include the factor of 1/2 to ensure AS
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is always between 0 and 1:

AS = 1
2

η∑
i,j

|I − IRot|
ITot

. (2)

We also include a metric to describe the flux distribution across
a lobe, defining a ratio asymmetry (AR), which is the absolute value
of the ratio of the original and rotated lobe, summed over all pixels,
η (Equation 3). For a completely uniform (or symmetric) source,
each pixel ratio would be 1, and the sum of the ratio image will be
number of pixels. We therefore normalise by the number of pixels,
meaning a perfectly uniform source will produce a minimum AR
value of 1:

AR = 1
η

η∑
i,j

∣∣ I
IRot

∣∣. (3)

Examples of the images of AS and AR (before summing the pixels)
are shown in Figure 3.

Figure 3. Visualisation of both asymmetry calculations. From left to right: original lobe
image, its rotated counterpart, the residual image after taking the absolute value of the
difference between the original and rotated image, and the residual image after taking
the ratio of the original and rotated images.

We can define analogous calculations to AS and AR to com-
pare how asymmetric the two lobes (I1 and I2) of a radio galaxy
are to each other. We denote these new parameters with the sub-
script p to represent the comparison of the pair of lobes in the
DRAGN system. We can define two shape asymmetry metrics,
the first being the total asymmetry (AS,p, Equation 4) which is
weighted by the relative flux in each lobe. This takes a similar
form to the AS calculation, however we instead normalise by the
sum of the total flux in both lobes. To compare only how sym-
metric shapes of the lobes are, without the relative flux weighting,
we must normalise each lobe by the total flux, ITot before comput-
ing the difference (A′

S,p, Equation 5). The ratio asymmetry between
lobes, AR,p (Equation 6), is determined in the same way as AR,
using the absolute value of the ratio of one lobe with the rotated
other, normalised by the number of pixels, η. As before, we can
also normalise by the total flux before computing the ratio (A′

R,p,
Equation 7). As with the single-lobe calculations, AS,p and A′

S,p
both have values between 0 and 1, and AR,p and A′

R,p are always
greater than 1.

AS,p = 1
2

η∑
i,j

|I1 − I2,Rot|
I1,Tot + I2,Tot

, (4)

A′
S,p = 1

2

η∑
i,j

∣∣∣∣ I1
I1,Tot

− I2
I2,Tot

∣∣∣∣ , (5)

AR,p = 1
η

η∑
i,j

∣∣∣∣ I1
I2,rot

∣∣∣∣ , (6)

A′
R,p = 1

η

η∑
i,j

∣∣∣∣ I1/I1,Tot
I2,rot/I2,Tot

∣∣∣∣ . (7)

3.3. Blurriness

We calculate how blurry (or diffuse) radio lobes are by measur-
ing the rate at which the flux of a lobe decreases from the hotspot
radially outwards. We first define eight cardinal directions, taking
slices of the pixel intensities radially outwards from the bright-
est pixel (i.e. the hotspot). To calculate the rate at which the flux
decreases, we use the scipy.optimize curve_fit function to
fit a straight line to each of the eight slices and extract the gra-
dient (Figure 4). While we acknowledge that the pixel intensity
is not linear, this approach provides a robust first-order estimate
of blurriness, as more complex models (e.g. exponential or power
law fits) introduce additional parameters that may not be neces-
sary for comparative classification. The gradient of pixel intensities
(normalised by the peak brightness) in the whole slice alone is not
enough to determine how blurred or sharp a lobe is. We therefore
also measure the gradient of the three outermost pixels in each
slice. We chose to use 3 pixels as this is the minimum number of
points we can have to fit a gradient, and limit the number of pixels
from within the lobe. We average over all eight directions for both
the full slice and outermost pixels (ḡfull and ḡouter, respectively). To
estimate the how blurred a lobe is, we then take the ratio of ḡfull
and ḡouter:

B= ḡfull
ḡouter

. (8)

Small B values (low blurriness) are produced when the aver-
age edge gradient of flux is steeper than the average gradient of
the whole lobe. This could be indicative of a relatively constant
brightness distribution across the lobe with a sharp drop to the
background, possibly produced by a lobe expanding into a dense
environment, such as within a galaxy cluster. Conversely, higher B
values (high blurriness) may indicate more diffuse lobe structure
and potentially a less dense environment.

Figure 4. Visualisation of the blurriness calculation, highlighting the 8 cardinal direc-
tions and corresponding normalised intensity slicesmeasured away from the brightest
pixel of a lobe.

3.4. Concentration

The concentration metric describes how the flux is distributed
within a lobe. Our approach to concentration is analogous to the
approach described in Abraham et al. (1994), with concentration
defined as the ratio of flux between inner and outer isophotes
of normalised radii. We define concentration, C, as the ratio of
radii containing 80% and 20% of the flux in a lobe, centred on the
brightest pixel:

C = r80
r20

. (9)
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To calculate the radius of each isophote, we sum the number
of pixels until 20% and 80% of the total lobe flux is achieved. This
sum is treated as an area, α, and converted into a circular radius,
r, using the relationship r = √

α/π . Here, C has a minimum value
of 2 for a completely uniform source. Larger values of C mean the
flux is more concentrated within the lobe, and can be indicative
of a hotspot. A comparison showing high and low concentration
lobes is presented in Figure 5.

Figure 5. Visualisation of the concentrationmetric comparing lobes with high and low
concentration (left and right, respectively). Radii corresponding to 20% and 80%of the
lobe flux shown in red and orange, respectively.

3.5. Disorder

We include a metric to quantify how perturbed a radio galaxy lobe
is. Perturbations in the lobe structure can be caused by differing
jet power, or from dynamic forces within the host galaxy environ-
ment. We refer to this metric as ‘disorder’, D, and following the
definition of complexity by Watson (2012), define it as the ratio of
the perimeter of a lobe squared and its area multiplied by 4π :

D= Perimeter2

4πArea
. (10)

To determine the perimeter, we measure the length of a fitted
contour around pixels above the minimum threshold (10% of the
peak brightness). To calculate the area of the lobe, we simply sum
the number of non-NaN pixels above theminimum threshold. The
Dmetric therefore has a minimum value of 1 for a perfectly circu-
lar source. Figure 6 highlights the difference between lobes with
high and low disorder.

Figure 6. Visualisation of the disorder metric comparing lobes with high and low
disorder (left and right, respectively). Perimeter calculated by the length of the red
contour.

3.6. Elongation

We also measure the elongation of a lobe for a radio source, which
can be related to the power of a radio jet as more powerful radio
jets can produce more extended structures. We define it as the
ratio of the major axis and the minor axis of a bounding box fitted
to a radio lobe:

E= Major axis
Minor axis

. (11)

This metric will have a minimum value of 1 for a square or cir-
cularly shaped object. We perform a principle component analysis
(PCA) on the pixels above the minimum threshold to orient and
fit the bounding box, where we can then extract the lengths of the
major and minor axes of the box. This is shown in Figure 7.

Figure 7. Visualisation of the elongation metric comparing lobes with high and low
elongation (left and right, respectively). The bounding box of each lobe is shown in
black.

3.7. Angle between lobes

We include a metric that estimates how bent a radio source is, the
angle between lobes (ABL). The ABL can serve as a proxy for envi-
ronmental effects, as bent radio galaxies are predominantly found
in dense and dynamic environments such as galaxy clusters. To
calculate the ABL, we treat the brightest pixels in each lobe as
points in space, L1 and L2, where we can then determine vectors
to the core of the radio galaxy, C (Equations 11a and 11b). For the
location of the core, we prioritise using the infrared coordinates
of the host galaxy when available, otherwise we simply use the
geometric centre of original radio galaxy cutout. Once the vectors
have been determined, we compute the dot product (Equation 12)
and magnitude of the vectors (Equations 12a and 12b) to extract
the angle between lobes (Equation 13), which is then converted
into degrees. This calculation is illustrated in Figure 8. We will
refer to ABL, AS,p, A′

S,p, AR,p, and A′
R,p as source metrics hereafter.

v1 = L1 −C= (x1 − xc, y1 − yc), (11a)

v2 = L2 −C= (x2 − xc, y2 − yc), (11b)

v1 · v2 = (x1 − xc)(x2 − xc)+ (y1 − yc)(y2 − yc), (12)

|v1| =
√
(x1 − xc)2 + (y1 − yc)2, (12a)

|v2| =
√
(x2 − xc)2 + (y2 − yc)2, (12b)

cos (θ)= v1 · v2
|v1||v2| ⇒ θ = arccos

(
v1 · v2
|v1||v2|

)
. (13)
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Figure 8. Example calculation of the ABL for a radio source from the EMU-PS. Positions
of the brightest pixels in each lobe and the location of the host galaxy shown by the
white dots and labelled L1, L2 and C, respectively. Vectors v1 and v2 shown by the
dashed lines. Angle θ indicated by the arc between both vectors.

3.8. Resolution dependence of metrics

It is well known that metrics used in quantifying shapes, such as
those presented in this work, are likely to be sensitive to the resolu-
tion of the images analysed. The shape of unresolved or marginally
resolved sources (i.e. components only one or two beams wide)
will be determined by the shape of the telescope synthesised beam,
which is usually an elliptical Gaussian (Boyce et al. 2023). To
understand the effect resolution has on each of our metrics, we
convolve high resolution images with 3 different 2D Gaussian ker-
nels, each with increasing standard deviation (σ = 3, 6, and 9) to
produce images with progressively worse resolution. The convo-
lution is performed in real space using direct kernel application.
As the σ increases, we begin to lose more and more structure until
the lobes become unresolved (Figure 9). We chose to convolve the
3CRR images for convenience, but the following analysis should
be independent of the input images.

Figure 9. Effect of convolving radio image of 4C73.08 (top left) with 2D Gaussian
kernels of increasing σ in units of pixels.

We apply each metric to the convolved images and compare
them with the original values in Figure 10. We can see that the
ABL calculation (Figure 10k) is the most robust against resolu-
tion differences. The scattered points in this metric result from
location of the brightest pixel changing, often moving closer
to the centre of a lobe after convolving. We see that convolv-
ing tends to produce smaller values for shape asymmetry mea-
sures (AS, AS,p and A′

S,p). This is an expected result, as the flux
in the lobes becomes more evenly distributed and circular in
shape, resulting in lower asymmetry. This appears in Figure 10c,
g, and h, where we can see smaller asymmetry values with
increasing σ .

The other metrics show less intuitive trends. The process of
convolving reduces the brightness of the peak pixel, spreading that
flux over the surrounding pixels. For themetrics that use threshold
masking (all apart from the ABL and asymmetry metrics), using
10% of a lower peak brightness means more pixels lie above the
threshold.With B for example, more dim pixels around the edge of
the lobe are retained. These pixels would produce a smaller average
outer gradient making the overall ratio a larger number, moving
the points above the 1:1 line (Figure 10a). This effect would be
increased as sigma gets larger, which is why the σ = 9 points sit
higher than the σ = 6 and σ = 3 points. For concentration, this
may increase r80 at a faster rate than the r20, making the overall
concentration measurement higher.

We see for disorder and elongation that the convolved images
produce fairly stable values, that then decrease gradually with
increasing σ . This again is an expected result as the shape of
the lobe becomes more circular with convolving, therefore mak-
ing both disorder and elongation calculations approach unity.
For disorder, the increase in the number of pixels will increase
both the perimeter and area, however the perimeter2 dependence
will cause the disorder calculation to become much larger. For
elongation, we expect the value to become closer to unity after
convolving. It is possible that the increase in the number of dim
pixels included some of the jet structure that was previously too
dim, therefore increasing the overall elongation value. We have
similar expectations with AR, in that as we convolve the distribu-
tion of flux is smoothed, so AR should approach unity. As before
with elongation, the inclusion of jet structure that was previ-
ously too dim, before convolving, can again increase the values
of AR.

The above analysis shows that the metrics can be highly reso-
lution dependent, as evidenced in Figure 10, with many metrics
showing high scatter when comparing original and convolved
values. Higher resolution will enable the metrics to be more
robust, as there is more structural information available to be
extracted.

4. Results and analysis

In this section, we present the results of applying the ABCDE,
and source metrics to both the EMU-PS and 3CRR datasets to
characterise and quantify the structure of the radio lobes. In
Tables 3 and 4, we include a summary of the computed metric val-
ues for EMU and 3CRR sources, respectively. This data is available
upon request. The name, host position, flux, and angular size for
the EMU sources were obtained directly from RadioGalaxyNET
(Gupta et al. 2024a). The name, flux, angular size, redshift and FR
classification for the 3CRR sources were obtained from the Atlas
of DRAGNs site (Leahy et al. 2013), with the host coordinates
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Figure 10. Comparison of the metric outputs of original 3CRR images and convolved versions. Blue, orange and green points correspond to images convolved with Gaussian
kernels with σ = 3, 6, and 9 respectively. Black 1:1 line indicates no deviation in the metrics after convolving. Panels (a)–(e) have two points per source, one for each lobe.

cross-matched from the Vizier catalogue of 3CRR sources (Laing,
Riley, & Longair 2003). Note, all metric values are expressed
in log10, except for ABL. These results form the basis for the

subsequent analyses, where we explore correlations between met-
rics and if ourmetrics can effectively characterise the structure and
morphology of radio galaxies.
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Table 3. Top 10 rows of ABCDE, and source metric calculations for the EMU-PS sources.

Name RA Dec Flux Ang size ABL AS1 AR1 AS2 AR2 ASp A′
Sp ARp A′

Rp B1 B2 C1 C2 D1 D2 E1 E2

(◦) (◦) (Jy) (") (◦)
J200753.8−502330 301.98 −50.39 0.00 109.58 168.14 −0.35 1.40 −0.50 0.78 −0.50 −0.41 1.22 0.70 0.04 0.03 0.45 0.43 0.71 0.32 0.22 0.45

J200825.1−525526 302.11 −52.92 0.00 153.56 176.56 −0.56 0.63 −0.50 0.76 −0.69 −0.87 0.77 0.18 −0.02 0.03 0.41 0.41 0.21 0.24 0.39 0.28

J200828.6−530013 302.12 −53.00 0.08 104.78 162.74 −0.60 1.00 −0.69 0.59 −1.27 −0.97 0.41 0.17 0.04 0.03 0.39 0.37 0.11 0.08 0.34 0.28

J200920.8−494020 302.33 −49.67 0.10 107.25 159.24 −0.59 0.58 −0.65 0.72 −0.82 −0.72 0.32 0.08 −0.03 0.00 0.40 0.40 0.04 −0.00 0.25 0.14

J200947.6−592758 302.45 −59.47 0.00 90.75 117.14 −0.97 0.02 −0.68 0.58 −1.05 −1.07 0.16 0.02 NaN NaN 0.39 0.36 0.31 0.30 0.25 0.19

J201017.6−522855 302.57 −52.49 0.00 115.48 173.50 −0.18 1.13 −0.45 0.87 −0.50 −0.24 1.09 0.94 0.11 −0.05 0.44 0.45 0.41 0.01 0.22 0.13

J201051.4−525836 302.72 −52.98 0.03 137.84 165.68 −0.51 0.85 −0.58 0.59 −0.80 −0.52 0.41 0.32 −0.00 0.04 0.44 0.39 0.31 0.01 0.47 0.09

J201052.7−582128 302.72 −58.36 0.01 105.75 164.57 −0.36 0.82 −0.22 0.57 −0.59 −0.47 0.79 0.80 0.04 0.06 0.46 0.45 0.13 0.55 0.20 0.02

J201055.3−492051 302.73 −49.34 0.02 158.69 162.90 −0.57 0.68 −0.54 0.32 −1.15 −0.94 0.03 −0.04 0.03 0.01 0.41 0.43 0.01 0.03 0.14 0.17

J201107.5−525706 302.78 −52.95 0.03 82.40 178.51 −0.63 1.22 −1.01 0.01 −0.93 −1.01 0.20 −0.01 0.22 −0.06 0.41 0.43 0.16 0.06 0.19 0.12

Table 4. Top 10 rows of ABCDE, and source metric calculations for the 3CRR sources.

Name RA Dec Flux Ang size ABL AS1 AR1 AS2 AR2 ASp A′
Sp ARp A′

Rp B1 B2 C1 C2 D1 D2 E1 E2 z FR

(◦) (◦) (Jy) (") (◦) Class

C12.03 2.47 12.73 10.90 232.00 179.36 −0.04 1.69 −0.71 0.11 −0.55 −0.38 0.58 1.98 −0.12 0.68 0.43 0.44 0.29 0.57 0.41 0.23 0.16 II

C19 10.23 33.17 13.20 6.80 173.08 −0.07 1.40 −0.08 1.30 −0.58 −0.31 1.13 0.91 0.02 0.08 0.42 0.49 0.03 0.22 0.10 0.15 0.48 II

C20 10.79 52.06 46.80 53.10 174.63 −0.07 1.88 −0.14 1.95 −0.70 −0.43 0.97 0.80 0.06 0.07 0.47 0.42 0.34 0.01 0.08 0.13 0.17 II

C28 13.96 26.41 17.80 45.60 157.69 −0.44 1.47 −0.12 2.18 −0.62 −0.31 2.33 0.67 −0.11 −0.14 0.41 0.40 0.30 0.21 0.02 0.21 0.20 II

C31 16.85 32.41 18.30 2700.00 87.27 −0.17 2.02 −0.80 0.07 −0.46 −0.64 0.72 0.25 0.04 NaN 0.47 0.42 0.49 0.21 0.58 0.10 0.02 I

C33 17.22 13.34 59.30 257.00 177.31 −0.44 1.67 −0.20 2.08 −0.54 −0.43 0.78 0.34 −0.04 −0.01 0.41 0.42 0.02 0.04 0.07 0.28 0.06 II

C33.1 17.43 73.20 14.20 238.70 172.26 −0.13 2.39 −0.09 2.54 −0.59 −0.45 1.09 1.93 0.02 0.09 0.46 0.48 0.28 0.66 0.26 0.37 0.18 II

C42 22.13 29.05 13.10 31.00 165.69 −0.15 2.24 −0.31 1.65 −0.74 −0.43 0.75 0.62 0.03 −0.02 0.43 0.41 0.02 −0.01 0.14 0.05 0.40 II

C46 23.87 37.90 11.10 164.00 173.00 −0.13 1.74 −0.15 1.35 −0.51 −0.19 1.69 1.60 −0.01 0.09 0.48 0.49 0.18 0.20 0.41 0.32 0.44 II

C47 24.10 20.96 28.80 77.50 178.38 −0.13 2.32 −0.29 2.03 −0.70 −0.44 0.63 0.42 NaN 0.02 0.42 0.46 0.19 0.13 0.39 0.28 0.42 II
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Figure 11. Pairwise comparisons of the single-lobe (ABCDE) metrics calculated on radio galaxies from the EMU-PS and 3CRR surveys. The scatter plots show the relationships
between these metrics, with normalised kernel density estimates (KDEs) along the diagonal displaying the distribution of each. EMU sources are represented by grey dots, and
3CRR sources colour-coded by their FR classification: FRI sources are shown with blue triangles and FRII sources with green crosses. All panels here have two points per source,
one for each lobe.

4.1. Single-lobemetrics

Figure 11 shows pairwise combinations of the single-lobe cal-
culations (ABCDE), with the normalised kernel density estimate
(KDE) for each metric in the diagonals. For most of the metrics,
the EMU and 3CRR sources occupy similar areas of parameter
space, indicating the minimum image area of 20 ASKAP beams
for the EMU sources allows them to be sufficiently resolved for
the metric results to be comparable with the 3CRR data. While
some metric combinations show slight correlations (e.g. B and
C) or more complicated relationships (e.g. AS and AR) we do see
high scatter in each subplot, indicating that these metrics my be
independent. We calculated the Spearman rank correlation coef-
ficient (ρ, Siegel & Castellan 1988; Conover 1999) on each of the
unique metric combinations from Figure 11. Values of ρ ≈ 0 cor-
respond to little to no correlation, with ρ ≈ ±1 correspond to a
strong positive or negative correlation, respectively.We found that
most of the metric combinations had −0.054< ρ < 0.27, with the
exception of AS-AR (ρ = 0.72) and D-E (ρ = 0.57). This indicates
that the metrics are, in fact, largely independent of each other and
therefore measure fundamentally different structural features of a
radio galaxy lobe.

Since the FRI/II dichotomy has been a very productive scheme
for uncovering the physics of radio galaxies, we will explore to
what extent these metrics can reproduce this dichotomy. Both

FR-types occupy similar regions in metric space for the majority
of our metrics, with the exception AS, AR where we see stronger
separation between FRI and FRII sources. FRI sources also tend
to have a broad range of values, when compared to the FRII
sources, particularly in the B, C, and Emetrics. This reinforces the
need for additional metrics to completely characterise the shape
of radio lobes. We explore correlations between metrics and FR
distributions in more detail in subsequent sections.

4.1.1. Asymmetry

Evident in both the scatter and KDE panels in Figure 11, the
FRI and FRII sources are found in different areas of the asym-
metry parameter space. We see that for both AS and AR that the
FRI sources tend be less asymmetric than FRII sources. While the
EMU sources share the same region of parameter space as the
FRIs there is evidence of a bimodal distribution, highlighted in
the KDE of the AR metric. There is a highly concentrated popu-
lation at very low AR, and another more scattered population at
moderate to high AR. The initial comparison of EMU and 3CRR
sources indicates that the lowAR values coincide with the FRIs and
the moderate to high AR values with FRIIs. We explore the AS-AR
parameter space further in Figure 12.

The concentrated tail at low AR values (e.g. the blue and green
regions) may be produced when the brightest pixel is near the edge
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Figure 12. Enlarged version of the AS-AR sub-panel from Figure 11 showing only EMU
data. In this figure different regions of this parameter space are highlighted by different
colours. Panels below are lobe cutouts for each highlighted region.

of the lobe cutout, therefore limiting the size of the cutout and
causing the overall flux distribution to appear more uniform. This
will result in lower values for the AR metric, forming the tail with
log10 (AR) values close to 0. We can relate this to the abundance
of FRI sources present in the tail. FRI sources are often referred
to as core-brightened, with the peak brightness occurring in the
jets near the core. The code splits an image of a radio galaxy in
half under the assumption that there will be a radio lobe in each
half. As the FRI hotspots tend to be closer to the core, the brightest
pixel for an FRI source would therefore be near the border of the
lobe cutout, limiting the number of pixels in the asymmetry cal-
culations. The tail is therefore likely an artefact of both the flux
distribution of the sources and of how we isolate a lobe in our
algorithm. For objects found in the more scattered section of this
parameter space (e.g. the red and orange regions), the asymmetry
metric appears to be working as expected, with the scatter resulting
from actual variance in lobe structure in different sources.

In the purple region, there are two measurements with
log10 (AS)> 0, which should not occur for a normally distributed
source. We can see in the lobe cutouts for this region of parame-
ter space that both contain two separate circular sources, with one
near the centre and the other offset. From visual inspection, the
central sources appear to have low rotational asymmetry, and will
not contribute much to the asymmetry value. For the off-centre
sources however, the rotation by 180◦ will produce two bright
spots after taking the absolute value, corresponding to a high AS
value. We should also note that both of these sources have rela-
tively low overall brightness, and, we can see some of the noise
fluctuations in surrounding pixels.

We conducted simulations to investigate the features observed
in Figure 12, particularly what produces the concentrated tail and
what causes sources to have log10 (AS)> 0. To simulate a perfectly
symmetric lobe (red points), with the only asymmetry coming
from noise fluctuations we first populate a 1D array with values
ranging between 1× 10−5 and 1, referred to as array x. We then
generate a second 1D array, y, which is identical to array x except
for the addition of random noise, normally distributed around
zero with an amplitude of 0.1:

y= x+ noise,

where we then calculate AS and AR by substituting x for lobe 1 and
y for lobe 2 into Equations (2) and (3), respectively.

To simulate an asymmetric lobe (blue points), we generated
15 different 25× 25 Gaussian profiles, with ranging intensities,
σ , skew, and rotation (Figure 13). We loop over each of the pro-
files, systematically adding noise until we have the same number
of data points as our EMU-PS data (480), repeating the asymmetry
calculations. The noise added in this loop is normally distributed
around zero, with amplitude ranging from 0.015 to 0.9.

Figure 13. Collection of the 15 different 2D Gaussian profiles used in the simulations.

Finally for the noise-only simulation (green points), we ran-
domly populate a 15× 15 array with Gaussian noise matching
the noise distribution of the EMU-PS, i.e. centred on zero with
σ = 23µJy/beam (Norris et al. 2021).

The asymmetry calculations on the simulated data (Figure 14)
revealed that the noise-only points explicitly exist at log10 (AS)> 0.
This is likely due to normalising by the total flux. The sum of
an array populated by Gaussian noise distributed around zero
approaches 0 as we increase the number of points in the array.
This means that for the noise-only points (i.e. sources with poor
signal-to-noise), we normalise by a very small number, leading to
log10 (AS) values greater than 0. In this work we wanted to investi-
gate how the metrics perform on a variety of different sources, and
we do not include any minimum signal to noise cutoff.

While the initial asymmetry results (both AS and AR) taken at
face value suggest that FRII sources tend to be more asymmetric
than FRIs, they need to be interpreted with caution. The way AS
and AR are defined, using the brightest pixel as a centre of rota-
tion, the tendency is for FRI sources to have fewer pixels, and a
more symmetrical structure within the cutout for each lobe. As
discussed earlier, a limited number of pixels (i.e. if the bright spots
of a lobe are near the edge of a lobe cutout) can produce a low
asymmetry value. Conversely, FRII lobes tend to have hotspots,
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Figure 14. Enlarged version of the AS-AR sub-panel from Figure 11 with only EMU
data, comparing how the asymmetry parameters characterise different simulated
data. Grey, blue, red, and green correspond to data points from the EMU-PS, simu-
lated asymmetric lobes, simulated symmetric lobes, and Gaussian distributed noise,
respectively.

and hence a brightest pixel, positioned such that more of the actual
lobe structure is included in the measurement, leading to higher
values of asymmetry. This is not to say that these measures are
wrong, but it is important to interpret them given how they are
defined, reflecting the degree of asymmetry only within the region
sampled.

4.1.2. Blurriness and concentration

Figure 15 reveals a weak positive correlation between the B and C
metrics (ρ = 0.27) for the EMU and for the 3CRR data (ρ = 0.24).
Small B values can be indicative of an edge-brightened source, pos-
sibly identifying lobes that are compressed by the environment.
Conversely larger B values indicate a rapid flux drop from the
brightest pixel to the outer parts of the lobe (i.e. higher concentra-
tion of flux), corresponding to an edge-dimmed source, that could
exist in a lower density environment. These implications can be
tested by investigating the number density of surrounding galaxies
(e.g. Brough et al. 2013) for sources with different B and C values.
We can also see the FRI and FRII sources span very similar ranges
for both B and C, (although FRIIs may have slightly higher con-
centration values than FRIs). When developing B and C, it was
anticipated that the hotspots would result in higher concentra-
tion (and blurriness) values for FRII sources, potentially showing
higher separation between FRI and FRII types in this metric space.

Figure 15. Enlarged version of the B-C sub-panel from Figure 11. EMU sources are rep-
resented by grey dots, and 3CRR sources colour-coded by their FR classification: FRI
sources are shown with blue triangles and FRII sources with green crosses.

These findings further highlight the limitations of the binary FR
classification. Quantitative metrics, such as B and C, provide more
nuanced descriptions of radio galaxy morphology. This reinforces
the need to move away from the binary FR classification system
and instead use quantitative descriptive metrics for a given source.

4.1.3. Disorder and elongation

We explore connections between AS-D and C-D in Figures 16 and
17, respectively. We find that AS and D are very weakly correlated
(ρ = 0.16 and 0.077 for EMU and 3CRR, respectively), and that
there are no sources with both high disorder and low asymmetry.
Similarly, we find that C and D are weakly correlated (ρ = 0.27
for both EMU and 3CRR), and there are no sources with both
high disorder and low concentration. Highly disordered structures
tend to coincide with more asymmetric or diffuse features, mak-
ing it less likely for a source to simultaneously have low asymmetry
or high concentration. From the KDE distributions in Figure 11,
while the FRI sources appear to have slightly larger values of D
than FRII sources, this distinction is not clear. This could be due
to the lower jet power and brightness of the FRI sources than those
FRII sources. The lobe structure may therefore be more sensitive
to noise fluctuations, increasing the overall disorder of a lobe. The
lack of FR separation in C and D suggest that either these met-
rics may not be sufficiently sensitive to hotspots and jet power, or
that other factors, such as variations in lobe brightness distribution
and environmental effects, play a dominant role in determining
concentration and disorder.

Figure 16. Enlarged version of the AS-D sub-panel from Figure 11. EMU sources are rep-
resented by grey dots, and 3CRR sources colour-coded by their FR classification: FRI
sources are shown with blue triangles and FRII sources with green crosses.

Figure 17. Enlarged version of the C-D sub-panel from Figure 11. EMU sources are rep-
resented by grey dots, and 3CRR sources colour-coded by their FR classification: FRI
sources are shown with blue triangles and FRII sources with green crosses.
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We find D and E are moderately correlated (ρ = 0.57 and
0.51 for EMU and 3CRR sources, respectively). The comparison
between theD and Emetrics in Figure 18 highlights a general loga-
rithmic envelope, with no sources exhibiting both high elongation
and low disorder. Highly elongated jets or lobes will be more
susceptible to environmental interactions, turbulence, and insta-
bilities, all of which can contribute to increased disorder. There is
also no clear separation between FR types in this parameter space.

Figure 18. Enlarged version of the D-E sub-panel from Figure 11. EMU sources are rep-
resented by grey dots, and 3CRR sources colour-coded by their FR classification: FRI
sources are shown with blue triangles and FRII sources with green crosses.

This suggests that disorder and elongation alone are not primary
distinguishing factors in the classical FR classification. Instead,
these metrics may be more reflective of environmental influences
and source dynamics rather than intrinsic differences between FR
types.

4.2. Source metrics

As before with the single-lobe calculations, Figure 19 shows the
pairwise combinations of the source metrics (ABL, AS,p, A′

S,p, AR,p,
and A′

R,p), again with the normalised KDE along the diagonal. We
can again see that the EMU and 3CRR sources occupy the same
areas of parameter space, with differentiation between FRI and
FRII sources in each of the asymmetry metrics. FRIIs tend to be
more asymmetric than the FRIs. This is likely due to the different
structure around the hotspots in each of the radio lobes produced
from the higher power jets than in FRI sources. Further, the bright-
est parts of a FRI source tend to be near the core, where the
jets are still highly collimated. This, in conjunction with the lim-
ited number of resolution elements for some sources (see Section
4.1.1), results in lower asymmetry for the FRI sources. The fea-
tures observed when comparing the shape and ratio asymmetries
for the source asymmetry calculations are notably similar to those
seen in the single-lobe asymmetry results. We expect both lobes of
a radio source to have similar shape and structure when produced

Figure 19. Pairwise comparisons of the source metrics (ABL, AS,p, A′
S,p, AR,p, A′

R,p) calculated on radio galaxies from the EMU-PS and 3CRR surveys. The scatter plots show the
relationships between these metrics, with normalised KDEs along the diagonal displaying the distribution of each. EMU sources are represented by grey dots, and 3CRR sources
colour-coded by their FR classification: FRI sources are shown with blue triangles and FRII sources with green crosses.
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from jets of the same power and in the same environment. For
the small number of cases where the environment is not consis-
tent for both lobes (e.g. if the galaxy is on the edge of a cluster),
than we expect to see higher asymmetry between lobes. We do
however see some variation when comparing the flux-weighted
(AS and AR) and normalised versions (A′

S and A′
R) of the asym-

metry metrics. Looking at the KDEs for each, we can see that the
flux-weighted calculations show a wider spread of values than the
normalised ones. This is likely a direct result of the difference in
brightness between the two lobes. This difference could be from
jets with differing power or a projection effect with the emission
of the closer lobe being brighter. This analysis supports the find-
ings of Rodman et al. (2019), who studied the relationship between
length asymmetries of radio lobe and the environment properties
of the host AGN. They found that the FRI type sources tended to
have smaller asymmetries than FRII sources, and that there was a
stronger anti-correlation between length ratio and ambient galaxy
density than with lobe luminosity and environment. However, we
acknowledge that this study had a limited sample size (6 FRI, 16
FRII, 1 hybrid), with limited positive results for FRIs. Our findings
are also consistent with Yates-Jones, Shabala, & Krause (2021).

4.2.1. Angle between lobes

Figure 20 shows that the majority of EMU and FRII sources show
little to no bending. There is a distinct separation between FR
types at an ABL of roughly 160◦, with FRIs tending to be more
bent than FRIIs. Specifically, we find that 53.21% of EMU sources
and 76.36% of 3CRR FRII sources have an ABL > 150◦, with only
29.41% of FRI sources with an ABL > 150◦. This is to be expected
as FRIs have lower power and are often found in higher den-
sity environments (like galaxy clusters) than FRIIs. In addition to
the lower jet power, FRIs also tend to have slower jet speed. The
jets are then more likely to be slowed down through entrainment
(e.g. Laing & Bridle 2014), therefore making them easier to bend
(Banfield et al. 2015) than FRII sources.

Figure 20. Enlarged version of the ABL KDE sub-panel from Figure 11. EMU sources
are represented in grey, and 3CRR sources colour-coded by their FR classification: FRI
sources are shown in blue and FRII sources in green.

4.3. Data clustering in parameter space

To confirm that the metrics presented in this work are connected
with physically meaningful aspects of radio galaxy morphology,

we used Gaussian Mixture Modelling (GMM; VanderPlas 2016),
via the sklearn.mixture GaussianMixture package. GMM
models the data as a probabilistic mixture of Gaussian distribu-
tions, where each cluster is characterised by amean and covariance
structure rather than a strict threshold in any single metric (see
e.g. Bishop 2006). This allows the clustering process to account
for both individual contributions and correlations between met-
rics, meaning that the separation of clusters emerges from their
joint distribution rather than from any one dominant parameter.
In this way, GMM can identify if there are multiple populations
within a dataset. Before applying GMM, we normalised all metrics
to a standard scale spanning a range of −1 to 1 with a mean of
0, to ensure that each feature contributes equally to the clustering
process.

In order to compare against FRI and FRII populations, we
specified the GMM to produce two clusters, treating the ABCDE
and source metrics as features. We did GMM clustering with the
single-lobe metrics (ABCDE) and source metrics separately. This
was because the source measurements contain half as many data
points as the single-lobe measurements (i.e. one measurement per
source rather than one per lobe). Doubling the source metrics to
match the number of single-lobe measurements would artificially
inflate their influence in the clustering process, making subsequent
interpretation more ambiguous.

Apart from a mean vector and a covariance matrix, GMM
also returns a mixture coefficient (weight) that reflects the prior
probability of a data point belonging to that component. These
mixture weights are not associated with individual features but
instead represent the relative prevalence of each Gaussian com-
ponent in the data. To explore how each feature (or metric in this
case) contributes to the separation between clusters, we examined
the differences between means of each feature across the two clus-
ters. This provides a simple estimate of which features vary most
between clusters, offering insight into their relative contribution
to the clustering structure. Although this is not a formal measure
of feature importance, it allows us to visualise which metrics show
the strongest differences between clusters. This is explored for the
single-lobe metrics in Figure 21. We can see that the metrics AS,
AR, B, and D have the highest influence in creating the clusters,
with C and E showing little to no contribution. For the source
metrics (Figure 22), metrics AS,p, A′

S,p and ABL, have the highest
influence in creating the clusters.

Figure 21. Comparison of the relative contributions of single-lobe metrics in distin-
guishing between GMM clusters.

https://doi.org/10.1017/pasa.2025.10067 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10067


Publications of the Astronomical Society of Australia 15

Figure 22. Comparison of the relative contributions of sourcemetrics in distinguishing
between GMM clusters.

Figure 23 compares the distributions of the GMM clusters with
the FR distributions of the single-lobe metrics from Figure 11. The
GMM clusters match closely with the FR distributions (cluster 1
with FRI, cluster 2 with FRII) in our metric space. The cluster and
FR distributions are particularly close in the AR, and D metrics,
reflecting the relative importance of these metrics in the cluster-
ing process. The clusters made with the source metrics also align

closely with FR distributions (Figure 24), particularly in AR,p and
A′
R,p. This suggests that while the GMM relies more heavily on AS,p

and A′
S,p to separate the data probabilistically, the actual FR clas-

sification differences manifest more strongly in the AR,p and A′
R,p

distributions. The results highlighted in Figures 23 and 24 confirm
that both the ABCDE and source metrics are physically motivated
and are not arbitrary shape analysis calculations.

To assess the performance of the clustering in distinguishing
between FRmorphologies, we compute completeness and reliabil-
ity for each class.We define completeness as the fraction of sources
of a given FR type that are correctly assigned to the corresponding
cluster. Specifically for FRI sources, completeness is defined as the
number of FRI sources in the FRI-predominant cluster divided by
the total number of FRI sources. Reliability quantifies how pure
a given cluster is with respect to an FR type. We define it as the
fraction of sources in the FRI-predominant cluster that are actu-
ally classified as FRI. The same definitions apply to FRII sources. A
high completeness value indicates that most FRI (or FRII) sources
are correctly assigned, while a high reliability value suggests that
the cluster is largely free from contamination by the other FR type.
These values, for both single-lobe and source metrics, are com-
piled in Table 5. On average, the clustering is more successful at
grouping the FRII sources together, likely due to larger number of
FRIIs in our sample.

Figure 23. Comparison of the distributions of the GMM clusters with the FR distributions of the single-lobemetrics from Figure 11. Blue and green lines correspond to the distribu-
tions of FRI and II sources respectively. Red and purple dashed lines correspond to GMM clusters 1 and 2 respectively. Note how for AR and D, the distributions are quite different
for FRIs and FRIIs, and are well-matched to the Cluster 1 and 2 distributions, respectively.
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Figure 24. Comparison of the distributions of the GMM clusters with the FR distributions of the sourcemetrics from Figure 11. Blue and green lines correspond to the distributions
of FRI and II sources respectively. Red and purple dashed lines correspond to GMMclusters 1 and 2 respectively. Again, note how for A′

S,p, A′
R,p and ABL, the difference in distributions

between FRIs and FRIIs, that are well approximated by the distributions of Clusters 1 and 2, respectively.

Table 5. Completeness and reliability of GMM clusters mapped to FR classifi-
cations, using the single-lobe (ABCDE) and source metrics (ABL, AS,p, A′

S,p, AR,p,
A′
R,p).

Metric Type Completeness (%) Reliability (%)

Cluster 1 Cluster 2 Cluster 1 Cluster 2

Single-Lobe 70.6 78.2 50.0 89.6

Source 58.8 89.1 62.5 87.5

To further quantify the similarity between distributions of
the FR types with their respective clusters, we perform the
Kolmogorov–Smirnov (KS, Kolmogorov 1933; Smirnov 1948)
test. Specifically we use the two-sample KS test, which takes the
null hypothesis that two distributions come from the same pop-
ulation. If the p-value of the KS test is small (p< 0.05), we can
conclude that the two distributions were sampled from different
underlying populations. We used the KS test to compare FRI with
cluster 1 and FRII with cluster 2, compiling the resulting p-values
in Table 6. We can see that for all metrics p>> 0.05, consistent
with the null hypothesis, that both are drawn from the same pop-
ulation. This further reinforces that the sources in cluster 1 are
consistent with the properties of FRIs, and those in cluster 2 with
FRIIs.

Table 6. Kolmogorov–Smirnov test results comparing FRI sources with Cluster
1 and FRII sources with Cluster 2 for both the single-lobe metrics (ABCDE), and
source metrics.

Metric FRI vs Cluster 1 FRII vs Cluster 2

AS p= 3.840× 10−1 p= 1.000

AR p= 1.160× 10−1 p= 1.000

B p= 8.280× 10−1 p= 7.020× 10−1

C p= 9.130× 10−1 p= 1.000

D p= 5.410× 10−1 p= 4.240× 10−1

E p= 9.190× 10−1 p= 1.000

AS,p p= 9.420× 10−1 p= 1.000

A′
S,p p= 9.070× 10−1 p= 1.000

AR,p p= 6.640× 10−1 p= 9.990× 10−1

A′
R,p p= 3.650× 10−1 p= 9.920× 10−1

ABL p= 2.790× 10−1 p= 9.520× 10−1

While we do not expect a perfect 1:1 correlation between the
GMM clusters and the FR classifications, the observed correspon-
dence between them in this simple comparison strongly reinforces
the value of quantifying radio galaxy structure through theABCDE
and source metrics. The fact that these metrics can probabilis-
tically separate sources into distinct clusters that correspond to
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known FR types (to some degree) demonstrates the utility of these
metrics as a flexible tool for classifying and quantifying radio
galaxy morphology.

4.4. Computational efficiency

To estimate how computationally efficient our algorithm is, we
timed how long it took to compute both the ABCDE and source
metrics for all images in the EMU and 3CRR datasets. These com-
putations were performed on an Apple MacBook Pro with an M4
chip and 16 GB of RAM, running in a Python notebook. We
repeated this process 10 times for both datasets, then took the
average. We obtained an average computation time of 10.56 s for
the 480 EMU images, averaging 0.022 s per image. For the 72
3CRR images, we found an average computation time of 5.02 s,
averaging 0.070 s per image. The average number of pixels in
the EMU images was 3 596.88, whereas for the higher-resolution
3CRR images, the average number of pixels was 115 729.85. The
difference in computation time between EMU and 3CRR is there-
fore likely dependent on the number of pixels in the image.
This demonstrates that the algorithm performs better than lin-
ear, as a roughly 30× increase in the number of pixels resulted
in only a ∼3× increase in computation time on average. This
efficiency highlights the algorithm’s scalability, making it feasible
for large-scale surveys like EMU. Further optimisations, such as
parallelising computations or leveraging GPU acceleration, may
improve performance even further.

5. Conclusions

We have introduced a series of quantitative metrics to describe
the structure of a single radio galaxy lobe, and of the whole
DRAGN. These include two asymmetry calculations, blurriness,
concentration, disorder, and elongation (ABCDE), asymmetry and
angle between lobes (source metrics). We developed this series
of metrics metrics to be applied to large radio datasets, such as
those that will be produced by EMU, and surveys from MeerKAT,
LOFAR, SKA (in future), in an automatic and more efficient
way than current machine learning approaches. We applied our
metrics to two datasets: 480 sources from the EMU-PS and 72
sources from the 3CRR catalogue. We propose that these met-
rics offer the prospect of deeper insights into both the structure
and astrophysical processes shaping the radio galaxy lobes than
the earlier Fanaroff-Riley morphology classification system (illus-
trative examples are shown in Figure 25). These metrics can also
be incorporated into the #tag system proposed by Rudnick (2021).
While the current set of metrics presented in this work provides
an intuitive and effective starting point for quantifying complex
radio structures, it is by no means exhaustive.

We found that the our metrics are largely independent of each
other with Spearman rank correlation coefficient of −0.01< ρ <

0.3 for all metric combinations except AS-AP and D-E, which had
a ρ of 0.72 and 0.57, respectively. While the quantitative values for
some of these metrics will change with the resolution (see Section
3.8), their qualitative performance remains consistent. The min-
imum image area of 20 beams for the EMU sources resulted in
them being sufficiently resolved for themetric results to be compa-
rable with the 3CRR data, evidenced by the metric results of both
datasets occupying the same areas of parameter space. Further, a
source with higher surface brightness will be less susceptible to
noise biases and therefore should producemore robust results.We
therefore acknowledge that this series of metrics will tend to have

Figure 25. Multi-panel comparison of single lobes from different sources in the EMU-
PS. Visual differences in each lobe structure are highlighted by different values of the
ABCDEmetrics in the legend.

better performance on well resolved sources with high signal-to-
noise, on average. In both single-lobe and source calculations, we
find that the FRII types tend to have higher asymmetry than the
FRIs, likely due to the differences in radio power and the structural
features around hotspots. This could also be due to a potential
selection effect. For FRI sources, a lack of sensitivity will mean
that only the jets will be seen, which is expected to be symmet-
ric before the jets becomes disrupted, whereas the edge-brightened
nature of FRII sources allow us to see more complex structure of
the lobe. Additionally, the flux-weighted asymmetry metrics in the
source calculations show more scatter when compared to the nor-
malised versions, indicating some brightness differences between
the lobes.

We performed clustering analysis on the 3CRR data using
Gaussian mixture modelling (GMM) with the single-lobe ABCDE
metrics and source metrics separately. We find the distributions of
the GMM clusters align with the distributions of the FR classifica-
tions in our parameter space, reinforcing the physical relevance of
these metrics. While we do not expect a perfect one-to-one corre-
spondence between the clusters and FR types, the observed overlap
highlights the effectiveness of this quantitative approach. Notably,
the clustering was more successful in grouping FRII sources, likely
due to the larger sample size in our data.

We find that ABL is a relatively important source metric for
radio galaxy morphology. The ABL measurements show a clear
distinction between FR types, with FRI sources being significantly
more bent than FRII sources. This is consistent with the expecta-
tion that FRI sources, which are typically found in higher-density
environments and often have lower jet power, experience greater
interactions with the surrounding medium. While ABL does not
directly fit into the single-lobeABCDE framework, it plays a signif-
icant role in characterising source morphology. Additionally, our
clustering analysis shows that ABL, along with AS,p and A′

S,p, has
a strong influence on how clusters are assigned through GMM.
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ABL is therefore a key parameter in defining the source structure,
highlighting the need to consider both single-lobe and source
metrics when analysing radio galaxy morphology.

This series of metrics can be particularly valuable in the era
of large-scale surveys, where millions of sources will need to be
analysed in an automated and efficient manner. By capturing key
aspects of radio lobe structure, our metrics can reveal critical
information about AGN and the astrophysical processes driving
jet formation, particle acceleration, and interactions between the
radio source and the surrounding environment. Further, the met-
rics presented in this work are agnostic to the changing emphases
in radio galaxy interpretation. They do not depend on specific
morphological labels, such as FRI or FRII. As a result, they can
be used to efficiently characterise large surveys without being
constrained by predefined classifications. Once characterised, dif-
ferent combinations of metrics can then be applied to identify new
and interesting types of sources.

6. Future work

Future work will focus on refining the implementation of the
metrics, to reduce the effect of sources with limited sampling.
This could be done by implementing a region-based criteria for
lobe detection, instead of using the brightest pixel, by detecting
extended regions of high flux and using contour-based methods
to locate the true lobes. This could enable, for example, the mod-
ification of the definitions of asymmetry metrics to span the full
extent of a lobe plus jet, providing a more astrophysically intuitive
measurement. This work does not explicitly exclude low surface
brightness sources in order to investigate how the metrics per-
form on a range of source types. Further investigation, perhaps
through binning sources by brightness, can provide a more robust
understanding of how the metrics perform with varying source
brightness. The inclusion of new metrics into our current frame-
work may also improve the ability to quantify complex radio
structures, offering the prospect of deeper insights about radio
galaxy morphology. Applying these metrics to a dataset with a
larger sample size, such as MiraBestb (Porter & Scaife 2023) is also
a crucial step in the testing of the metrics.

A key direction will be further exploring the relationship
between the metrics presented in this work and the underlying
astrophysical processes. Linking these metrics to characteristics
such as AGN properties, galaxy number density, and host galaxy
properties (such as mass, colour, optical morphology, among oth-
ers), will enable amore comprehensive understanding of the forces
shaping radio galaxies.

Multi-frequency analysis of radio sources will be crucial
in future studies. By examining how the metric values vary
across different radio frequencies, we can gain a clearer pic-
ture of how various physical processes, such as different emis-
sion mechanisms, environmental impacts, and jet composition
and its dynamics, manifest at different frequencies. This will not
only enhance our understanding of radio galaxies and their clas-
sifications but also provide valuable insights into the broader
mechanisms driving galaxy evolution.
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Appendix A. Troublesome Images

The metric algorithm described above works on a series of
assumptions. First, we require that an image is centred in the

cutout, so that there is a lobe in each half (cutting the image per-
pendicular to and half-way along the major axis). This is not true
for all sources, for example, those that are extremely bent. For
these objects both lobes are in the same half of the cutout (e.g.
Figure A1). For such sources, rather than our metrics quantifying
some properties of a lobe, we would instead have some measure-
ment of the core and perhaps jets, and either missing both lobes or
possibly incorporating one of them. While the metric calculation
would return some measurement, it would not be the measure-
ment intended. Accordingly, through visual inspection, extremely
bent sources were omitted from our analysis.

Figure A1. Example of an extremely bent source where both lobes are in one side of
the cutout. Red dashed line indicates the midpoint of the major axis of the source
image.

Second, we ideally want sources that are not core-dominated,
so that the core is less luminous than the lobes. This is because our
algorithm uses the brightest pixel as the base for many of the met-
ric operations (AS,AR, B,C, for example). As mentioned in Section
3.1, the core removal process we implemented did not always work
perfectly. For example, there were cases where an erroneous num-
ber of components were detected. If the number of components
was under-estimated the core would not be masked out, and if
it was over-estimated a lobe could be masked out (see Figure A2
for examples of each case). Both scenarios again would lead to the
metric measurements not reflecting the actual lobe structure. Such
sources were excluded from our analysis.

Figure A2. Illustrative examples ofwhen the core-removal process fails. Top row: num-
ber of source components was underestimated, and no mask was applied. Bottom
row: number of source components was overestimated, and a lobe was masked.
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Appendix B. Metric differences between lobes

To quantify how the metrics differ between lobes, we simply take
the absolute difference of the log10 values the metric values for
each lobe:

�x= | log10 (x1)− log10 (x2)|, (14)

where x1 and x2 are the metric values of lobe 1 and 2 respectively.
In Figure B1 we show the range of differences between each lobe,
across each of the ABCDE metrics. We calculate the percentage
of sources with �x< 0.3 (Table B1). We can see for both EMU
and 3CRR sources, the majority of lobe measurements are within
a factor of two of each other for each of the ABCDE metrics. The
AR metric appears to show the greatest degree of difference sug-
gesting that it could be the most sensitive to variations between
lobes.

Table B1. Percentage of sources with�x< 0.3 for both EMU and 3CRR datasets.

�x EMU (%) 3CRR (%)

�AS 59.9 76.4

�AR 58.2 40.3

�B 97.6 91.2

�C 100.0 100.0

�D 90.2 75.0

�E 93.5 83.3
Figure B1. Normalised histograms of absolute differences (�x) between single lobe
metrics for EMU (blue) and 3CRR (orange) sources.
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