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OPTIMAL CONTROL IN LIVER KINETICS
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Abstract

We solve a minimization problem in liver kinetics posed by Bass, el al., in this journal,
(1984), pages 538-562. The problem is to choose the density functions for the location of
two enzymes, in order to minimize the concentration of an intermediate form of a
substance at the outlet of the liver. This form may be toxic to the rest of the body, but the
second enzyme renders it harmless. It seems natural that the second enzyme should be
downstream from the first. However, we can show that the minimum problem is
sometimes solved by an overlap of the supports of the two density functions. Even more
surprising is that, for certain forms of the kinetic functions and high levels of transforma-
tion of the first enzymatic reaction, some of the first enzyme should be located down-
stream from all the second enzyme. This suggests that the first reaction should be
relatively slow.

1. Introduction

Bass et al. [1] have considered an optimal process consisting of a two-step
enzymatic transformation in the liver. This process is defined in terms of two liver
kinetic functions. The exact form of the first kinetic function is irrelevant to the
problem. However, the form of the second function is critical to the process. Bass
et al. in [1] were able to solve the optimal control problem when this kinetic
function is monotone, and showed that a different strategy is required in the
non-monotone case. It is the purpose of this paper to completely solve the
problem for all kinetic functions. For a complete and excellent description of the
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physical model see [1]. We shall briefly discuss the import of our results in the last
section of this paper.

2. The problem

The specific mathematical problem to be solved is to minimize x(L) when

x(t)=V(t)-['g(s)fi(x(s))ds (1)
•'0

where the standard assumptions are that
(i) /?(0) = 0, @(x) > 0 for x > 0 and P is Lipschitz;

(ii) <p(0) = 0, <p(L) = X and <p is absolutely continuous and non-decreasing on
[0, L\, and

(iii) g > 0, integrable and fag(s)ds = 1.
The functions <p and g are to be considered as the controls.
Bass, Bracken and Vyborny [1] considered the case when (i is strictly increas-

ing. Their result is reproduced here as Theorem 0.

THEOREM 0. Assume that ft is non-decreasing on [0, X]. An extremal for the
minimization problem is obtained by taking any point t0 e (0, L); defining g = 0 on
[0,t0] with g selected on [to,L] to have f^g(s)ds = 1; and letting q> be an
arbitrary function satisfying (ii) such that <p(t) = X on [t0, L\. If /? is strictly
increasing, these are the only extremals. In either case

minx(L) = G(X) where fX du/0(u) = 1. (2)
JC(\)

3. The unimodal case

In order to see what the results should look like, we give a geometric
description for the case when /? is unimodal. So we shall assume that

(iv) /i is increasing on [0, x0] and /? is decreasing on (x0, oo). The extremals
will depend on the relative size of X and x0 + fi(x0).

To motivate the results, we note that

x(L)=\-jLg(s)li(x(s))ds (3)
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so that minimizing x(L) is the same as maximizing the integral in (3). The
strategy is to let g = 0 until x(t0) = x0 where /? is at its maximum. If g(t) =
<p'(0//8(x0) on an interval (/0, tj, then x(t) = x0 on this interval and P(x(t))
will be at its maximum value. Thus the control cp is used to raise x(t) to the value
x0 and then g is used to try to stay at xQ.

Let G(X) be the minimum value. The results for the extremal controls are as
follows. If 0 < X < x0, then /? is increasing (this is the result of [1]),

g = 0 g satisfies f£g(s) ds = 1
1 1 1
0 <p(t)<X cp(b) = X

t <b

and

duL fi(u)
= I- (4)

If X0 < X < X0

8 = ° *<*> - i r \ «sat i s f ies ̂

t <

and

= _
P(u) P(x0) '

If X = x0 + P(x0),

-\ 1 1
0 <p(a) = x0 cp(b) = X

cp(t) < X <p(') =

t < b t > b

and G(X) = x0.
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If X > x0 + fi(x0),

0 <p(a) = x0 cp(b) = x0 + p(x0)
<p(t)<\ <p(0 = x

t < c t > c

and

G(X) = A- /8 (* 0 ) . (6)
The interpretation of the above diagram is that when <p(t) = y is written, one

means the leftmost / which solves this equation. Note that in each case, the
solution x satisfies x(a) = x0, and so by the definition of g on [a, b], x(t) = x0

on this interval. Note also that G(X) is a continuously differentiable function.

4. Analytic results

Our method of solving the optimal problem is to show that for each set of
controls <p, g and corresponding solution x of (1), we can find one of a class of
controls called special for which the corresponding solution y satisfies y(L) <
x(L). Therefore the problem is reduced to minimizing over the special controls.

DEFINITION. A set of controls (<p, g) is called special if ep and g satisfy (ii) and
(iii) and for some x0 e (0, X] and some numbers a and b, 0 < a < b < L;
<p(a) = x0; g s 0 on [0, a]; g(s) = <p'(s)/P(x0) on (a, b); and on [b, L], either
g = 0or<p(/)s=A. The solution corresponding to special controls will be called a
special solution.

Note that the controls of the previous section as well as those of Theorem 0 are
special.

In order to simplify the notation of the propositions, suppose x is a solution of
(1), then define x, by /?(*) = max,/?(;c(0); and there is a t such that x(t) = x.
There may be several / that satisfy this for a given 3c, and several x for a given
solution x(t). Any choice will do.

PROPOSITION 1. If x(t) is a solution such that X Ss 3c + /?(3c), then there is a
special solution y such that y(L) < x(L).

https://doi.org/10.1017/S0334270000004987 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004987


[ s I Optimal control in liver kinetics 365

P R O O F . S i n c e x ( L ) = X - J0
L g ( s ) P ( x ( s ) ) ds > X - J0

L g ( s ) p ( x ) ds = X -
fl(x), we need only show that there is a special y such that y{L) = X — /?(3c). To
do this, fix 0 < a < b < L and let (p satisfy (ii), <p(a) = x, and <p(b) = x + /J(Jc).
Define g by g = 0 on [0, a) U {b, L] and g(s) = <p'(s)//3(x) on [a, b]. Then
J0

Lg(s)ds = fa
b<p'(s)/P(x) = (cp(b)- <p(a))//3(x) = 1 and the corresponding

solution y+of (1) satisfies y(a) = x, y'(t) = 0on [a, b], and ^ ' (0 = <p'(0 o n

[b, L]. It follows that y(L) =x + fb
L<p' = x + X - (x + P(x)) = X- 0(x) as

was to be shown.
The next two lemmas are in preparation for discussing the case when X < x +

/?(x). The first says that is more efficient from the standpoint of the integral of g,
to make a solution be 3c on an interval and then q> a constant. The second says
that without loss of generality, <p rises to X before t is L.

LEMMA 1. Suppose x is a solution of (1) corresponding to controls (q>, g).
Suppose that for some r < s, x(r) = c > d = x(s) > 0 and x(t) < c on [r, s].
Assume further that /J(c) > f$(x(t)) on [0, c]. Define the controls (<p0, g0) by
<Po = <P. 8o = 8 on t°> r]> «Po(O = "PC5) on [\(r + s)> s\ and To is an increasing
differentiable function on [r, §(/• + s)] which satisfies the end conditions; g0 =
V'o/Pic) on [r, (r + s)/2] and go(t) = -2/(s - r)fc

ddu/p(u) on [±(r + s),s].
Then jr

sgo(t)dt < J?g(t)dt and the solution y on [0,s] of (1) with controls
(<Po> So) satisfiesy{s) = x(s).

PROOF. Let x be a solution satisfying the hypothesis of the lemma, and (<p0, g0)
the controls defined in the statement of the lemma. On [r, s] we have

g = q>'/P(x) ~ x'/fi(x)
and so

/ g(t) dt = f <p'(t) dt/p(x(t)) - fd du/fi(u). (7)

Similarly

f go(t) dt = f «po(O dt/fi(c) - fd du/0(u). (8)

Note that fr'qMt)dt/P(c) = [<po(s) - «po(r)]//8(c) = [<p(s) - <p(r)]/P(c) =
f,'q/(t)dt/P(c) < f;qf(t)dt/p(x{t)) since P(c) > P(x(t)). Combining (7) and
(8) with this estimate gives

( go(t)dt< f g(t)dt.

Now the solution y(t) satisfies y(r) = x(r) = c, y(t) = c on [r, \(r + s)] and
y' = -gP(y) on [(/• + s)/2, s]. Solving the differential equation one gets

j y ( s ) du/P(u) = f y'(t) dt/P(y(t)) = - f go(t) dt = (" du/p(u)

so that y(s) = d = x(s).
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LEMMA 2. If x is any solution of (1) with controls (<p, g) then there are controls
(<p0, g0) such that <po('i)

 = ^ for some tl < L and the corresponding solution y
satisfies y(L) = x(L).

PROOF. In equation (1) replace / by It and restrict / to [0, L/2]. We have

x(2t) = <p(2t) - f g(s)fi(x(s)) ds = <p(2t) - V 2g(2u)/3(x(2u)) du.

Now define y(t) = x(2t), <po(t) = <p(2t), go(t) = 2g(2t) on (0, L/2], and y(t)
= x(L), g0 = 0, and <po(O = X on [L/2, L]. Then y(t) = <po(t) -
iogo(s)P(y(s))ds on [0, L/2] and / ( / ) = 0 = <p'0(0 on [L/2, L]. Thus y is a
solution to (1) and f^ go(t) = 1 as is required.

PROPOSITION 2. Suppose x is a solution of (1) such that X < x + P(x) and
x(L) > x. Then there is a special solution y with y(L) < x(L\ and y(t) < x on
[0, L].

PROOF. Let <p and g be the special controls defined by 0 < a < b < L,
q>(a) = x, <p(b) = X, g = 0 on [0,a], g(s) = (p'(s)/P(x) on (a, b) and g > 0 on
[b, L] such that /0

Lg = 1. This last condition is possible since

/ * g(t) dt = fb < p ' ( 0 dt/0(x) = (X- x)/P(x) < 1
•'0 Ja

by hypothesis. The corresponding solution y satisfies y{t) = x on [a,b] and
y' = -gfi(y) on [b, L]. Therefore

T du//3(u)=fLg(t)dt = l-(X-x)//3(x)>0, (9)
Jy(L) Jb

so that

For the next propositions, the reader is advised to draw some pictures. We will
assume that <p(f) = X for some t < L.

PROPOSITION 3. Suppose x is a solution of (1) such that X < x + fi(x) and
x(L) < x < X. Suppose further that x(t) ^ x for all t. Then there is a special
solutiony such thaty(L) < x(L). Moreovery(t) ^ x on [0, L].

PROOF. Let x satisfy the hypothesis of the proposition and correspond to the
controls (<p, g). There is an a e (0, L) such that <p(a) = x and b e [a, L] such
that x(b) = x. (Note x(t) < <p(0 on [0, a]). Finally, there is a c e (a, L) such
that <p(c) = X. Two cases arise depending on whether c < b or not. Let us first
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consider the case when b < c. Define the controls (<ply gx) and <px = y on [0, L\;
gx(t) = 0 on [0, a], gt = <p\/P(x) on (a, b), and g1 = g + h on [b, L] where h is
a non-negative constant to be determined. It is clear that gx > 0, y(t) = <p(t) on
[0, a], and y(t) = 3c on [a, &]. Therefore,

0 = y(b) - x(b) = / " g(s)P(x(s)) ds- j " gx{s)P{y(s)) ds

^ ^ (10)

so that Jo
bg(s)ds > fogi(s)ds. Since

= fL
 gl(s) ds = f gl(s) ds + fL g(s) ds + h(L-b)

J0 J0 Jb

= f gl(s)ds + l - fb g(s)ds + h(L-b),

we have

On [b, L] x' = (p' - gfi(x) and y' = <p' - gP(y) - hfi(y) with x(b) = y(b). If
h = 0, x = y, else by standard differential inequalities y(t) < x(t) with y(L) <
x(L). Unfortunately, the controls (y^gi) are not special. We apply Lemma 1,
with r = a and s = L and <p = <pl to get g0 = 0 on [0, a], <p'0/P(x) on [a, (a +
L)/2], <p0 s \ on [(a + L)/2, L], and a solution z of (1) with controls (<p0, g0)
such that z(L) < ̂ (L). The controls (<p0, g0) are special except that /0

Lgo(0 ^
< /0

L gl(t)dt = 1. But again we can modify g0 on [(a + L)/2, L] by adding a
constant to make f£go(t)dt - 1 and the resulting solution will lie below z, thus
proving this case of the proposition.

The second case corresponds to c < b. Define the controls (<p0, g0) by <pQ = <p
on [0, L]; g0 = 0 on [0, a], g0 = <p'0/P(x) on [a, b\. Again y{b) = x = x(b) so
that (10) gives Jo

hgo(s) ds < j£g(s) ds. Then we may define g0 = g + h, with /i a
positive constant on [b, L\. As above, the resulting solution y has y(L) «j x(L).
This time y is special.

PROPOSITION 4. Suppose x is a solution such that X < x + P(x) and x(t) < x
on [0, L], There exists a special solution y such that y(L) s£ x(L). Furthermore,
y(t) < x for all t.
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PROOF. Let x satisfy the hypothesis of the proposition. Let <p(a) = 3c and
x(b) = x. Since x(t) < <p(0> w e n a v e a <s b. Two cases arise. If a = b, then
x(t) = cp(t) on [0,a] and g = 0 there. We therefore may apply Lemma 1 with
r = a and s = L. We get controls ((pv gx) such that gx = 0 on [0, a], gx =
<Pi(/)//8(3c) on [a, (a + L)/2], and y^t) = X on [(a + L)/2, L\ The corre-
sponding solution ^ satisfies y(L) = x(L), but /0

Lgo(t)dt < 1. If j£ go(t) dt < 1,
modify g0 on [(a + L)/2, L] by adding an appropriate positive constant, finish-
ing the proof as in the proof of the previous proposition.

If a < b, then define <pl = q> on [0, L] and gx = 0 on [0, a], with gj(O =
<p\(t)/fi(x) on [a, 6]. It follows that the solution y with controls ((j^, gj) satisfies
j»(Z>) = 3c = x(b). We then apply the computation (10) to get JogiU)dt^
Jo SiOdt- Again we define g1 = g + h on [b, L] to make /0

L g1(t)dt = 1. Then
^(Z-) < x(L). We now apply Lemma 1 with r = b, s = L and (<p, g) replaced by
(*Po> So)- These controls are special except possibly JQ go{t)dt < 1. Again we add
a constant to g0 on [(fe + L)/2, L] to make j£ go(t) dt = I. The resulting
solution z will satisfy z(L) sg x(L). This completes the proof.

THEOREM 1. Let z(x) be defined by

z{x) = \-${x) ifx + P(x) ^Xand (ll)

) ifx + /l(x)>\. (12)f
Jz(x)

Then G(X) = inf{x(L)\x is admissible} = min0<x<xz(x). Furthermore, a spe-
cial solution is an extremal.

PROOF. According to Propositions 1-4, G(X) = inf{x(L)\x is special}. Con-
sider first the case of a fixed x e [0, A] (we have dropped the bar over the x). If
x + fi(x) > X, and the special controls are of the form, g = 0 on [0, a] U [b, L]
and g(t) = <p'(t)//i(x) on (a, b), then the associated solution y satisfies y(b) = x,
and y' = <p' on [b, L\. Hence y(L) > x. On the other hand, if g = 0 on [0, a],
g(t) = (p'(t)//3(x) on [a, b], and <p(t) = Aon [b, L] then y(L) < x. Thus for a
fixed x and X < x + fl(x), the best special satisfies y' = —gfi(y) on [b, L] and
therefore,

du/P{u) = - Jb
L g(t) dt = - [l - jf* g(0

so j;iL)du/P(u) = 1 - [/8(x)]-VaV(0* = 1 - (* - <p(a))//8(*). But since g
= 0 on [0, a], <p(a) = x, so fy

x
(L)du/fl(u) = I - (X - x)/fi(x).

On the other hand, if for a fixed x, x + /J(x) < A then Proposition 1 gives the
minimum y(L) as X — fi(x). If z(x) is defined as in the Theorem, then
G(X) = info^x^xz(x). But note that if X = x + (l(x) in (12) then z(x) = x, as
it is in (11). Thus z is continuous and the infimum is a minimum.
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It is also useful to note that z is differentiable whenever fi is, for implicit
differentiation of (12) leads to

The critical points of z are those of /?. Noting that when X = x + fi(x), z(x) = x
this formula agrees with differentiation of (11). Thus if j8 is differentiable, so is z
and

z'(x)fi'(x) < 0. (13)

THEOREM 2. If ft is unimodal then the results of Section 3 are correct.

PROOF. In this case the only critical point of z is x0 and z has a minimum
there according to (13), and z(x0) = G(X).

5. The physical interpretations

In order to give some ideas on the physical meaning of the above results, we
note that in the two-step enzymatic reaction, points of increase of <p are the
points of positive density of the first enzyme. The function g is the density
function of the second enzyme. The number X is the amount of the precursor
absorbed in the liver. If /? is monotone increasing on [0, X] then Theorem 0
applies. The optimal control therefore obtains when all of the density of the first
enzyme precedes that of the second. However, if X exceeds the maximum of /?, for
example when /$ is unimodal, then the support of the densities overlap. In the
case when X is sufficiently large, i.e. X > x0 + /J(x0) (see (6)), some of the first
enzyme is located downstream of all the second enzyme. This suggests that the
liver should operate with the goal of keeping X small. This would mean that the
first enzymatic reaction should be slow.
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