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Microorganisms, such as spermatozoa, exhibit rich behaviours when in close proximity to
each other. However, their locomotion is not fully understood when coupled mechanically
and hydrodynamically. In this study, we develop hydrodynamic models to investigate
the locomotion of paired spermatozoa, predicting the fine structure of their swimming.
Experimentally, sperm pairs are observed to transition between different modes of flagellar
synchronisation: in-phase, anti-phase and lagged synchronisation. Using our models, we
assess their swimming performances in these synchronisation modes in terms of average
swimming speed, average power consumption, and swimming efficiency. The swimming
performances of paired spermatozoa are shown to depend on their flagellar phase lag,
flagellar waveforms, and the mechanical coupling between their heads.
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1. Introduction
Flagella or cilia are ubiquitous organelles in eukaryotic cells. They play a crucial role in
physiological processes in animals, such as cerebrospinal fluid flow (Olstad et al. 2019),
maintenance of the circadian clock (Tu et al. 2023), and mucociliary clearance in the
respiratory system (Nawroth et al. 2019). In the microscopic world, unicellular organisms
use their flagella/cilia to efficiently forage and travel, employing diverse locomotion
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strategies (Tam & Hosoi 2011; Omori et al. 2020). For instance, Paramecium is known to
regulate its ciliary beating to swim forwards, swim backwards and reorient (Machemer &
Eckert 1973; Okamoto & Nakaoka 1994; Ishikawa & Hota 2006). Escherichia coli exhibits
a run-and-tumble locomotion by bundling and unbundling its flagella (Berg & Brown
1972). The biflagellate alga Chlamydomonas transitions between two swimming gaits
by modulating the synchronisation of its two flagella (Polin et al. 2009). Spermatozoa,
however, adopt a distinct locomotion strategy by assembling into bundles with their heads
attached. This cooperative behaviour has been found to increase their swimming speed
(Woolley et al. 2009; Fisher & Hoekstra 2010), providing potential advantages in sperm
competition (Moore et al. 2002; Immler 2008).

The increased velocity along the average path of sperm bundles during one beat
cycle has been attributed to either their straighter swimming trajectory (Fisher et al.
2014; Pearce et al. 2018) or their synchronised flagellar beating when the difference
between the flagellar beating phase �φ is a constant for beat cycles (Woolley et al.
2009; Zhang et al. 2023). While it has been observed experimentally that in-phase
flagellar synchronisation (�φ = 0) can increase the swimming speed of paired sperm
cells (Woolley et al. 2009; Zhang et al. 2023), the computational investigation indicates
that increased speed results only from anti-phase flagellar synchronisation (�φ = π) or
large flagellar phase lags (�φ >π/4) (Cripe et al. 2016). This discrepancy highlights
the complexity of the collective dynamics of sperm bundles. Rich behaviours are also
discovered in a simple system comprising two adjacent but separate microswimmers,
e.g. hydrodynamic attraction/repulsion (Yang et al. 2008; Carichino et al. 2021), alignment
(Olson & Fauci 2015; Taketoshi et al. 2020), oscillation (Pooley et al. 2007; Carichino
et al. 2021) and synchronisation (Di Leonardo et al. 2012; Tătulea-Codrean & Lauga
2022; Samatas & Lintuvuori 2023). These behaviours depend on their waveforms and
relative displacement, phase and orientation (Pooley et al. 2007; Elfring & Lauga 2011a).
Furthermore, current models infer that the hydrodynamic synchronisation of co-swimming
cells requires geometrically asymmetric waveforms or the presence of a viscoelastic fluid
environment (Elfring & Lauga 2009, 2011b; Elfring et al. 2010). Their swimming speed
and efficiency would increase drastically if co-swimming cells mechanically adhere into
pairs (Simons & Rosenberger 2021). These factors also contribute to the rich dynamics
observed in other microbial and artificial swimming systems (Drescher et al. 2011; Elgeti
et al. 2015; Pramanik et al. 2024).

Despite many studies on the system of multiple separate microorganisms, the influence
of flagellar beating on the locomotion of paired spermatozoa remains largely unexplored
experimentally. A few challenges may account for the insufficiency of investigation.
First, only a tiny proportion of sperm cells form pairs, restricting the sample size
for experimental observation. Second, sperm locomotion is influenced by complex
mechanical and hydrodynamic cell–cell and cell–environment interactions, which depend
on their flagellar beat patterns and external factors, e.g. the geometry of surrounding
environments (Raveshi et al. 2021), fluid viscoelasticity (Tung et al. 2017; Zaferani
et al. 2021) and chemoattractants (Friedrich & Jülicher 2007; Li et al. 2023; Zaferani
& Abbaspourrad 2023). As a result, it is difficult to control the flagellar beat pattern and
experimentally investigate its influence on the locomotion of sperm pairs. Experimental
studies of paired spermatozoa have been limited to comparing out-of-phase and in-phase
flagellar beat patterns due to these challenges (Woolley et al. 2009; Zhang et al. 2023).

In our experiments, bovine sperm pairs of two cells with their heads attached were
observed in a chamber with a half-depth h = 10 µm (figure 1a). They swam in a plane
parallel to the boundary surface of the chamber with primarily planar flagellar beats,
similar to the previous experimental observations (Winet et al. 1984; Woolley 2003;
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Figure 1. (a) Schematic of a pair of bovine spermatozoa swimming in a 20 µm deep chamber with their heads
attached. The paired sperm cells at two instants are overlaid at the same frame of reference. Any point on the
ith cell can be described by the position vector r i with respect to the laboratory frame. The ith cell experiences
a hydrodynamic force f i at an arbitrary point r i . The heads of the sperm pair are attached, with no relative
translational motion allowed. But they can oscillate relatively about the pivot point (head tip) with instantaneous
angular velocities Ω i , i = 1, 2. The instantaneous translational velocity of the sperm pair U is represented by
that of the pivot point. Inset: the comoving frame is spanned by the orthonormal unit vectors e1 and e2, and its
origin overlaps with the pivot point. The flagellar shape in the comoving frame can be described by the local
tangent angle ψ . Forces Fi j exist between the ith head and the jth head, and are specified differently based on
the simplification of the head–head attachment. Three models are developed to investigate the locomotion of
paired spermatozoa. (b) In model 1, the head orientation difference �α is unconstrained, such that �α can be
positive, zero or negative. (c) In model 2, �α is constrained such that �α > 0. (d) Time-varying head angular
velocities Ω i , i = 1, 2, are extracted from experiments and prescribed in model 3. Scale bar: 10 µm.

Woolley et al. 2009). The paired sperm cells were experimentally observed to transition
between different modes of flagellar synchronisation: in-phase (�φ = 0), anti-phase
(�φ = π ) and lagged synchronisation (�φ is a constant not equal to 0 or π). To investigate
the influence of flagellar phase lag �φ on the swimming of sperm pairs, we develop a
three-dimensional hydrodynamic model, referred to as model 1. The attachment between
the heads involves adhesion proteins on the head surface and is influenced by factors
such as cyclic adenosine monophosphate (cAMP) and sperm antagglutin on the head
surface (Lindahl & Sjöblom 1981; Flaherty et al. 1993). Considering the as yet not fully
understood mechanical coupling due to the head–head attachment, in model 1, we simplify
the mechanical head–head coupling as an adhesive force Fa

i j between the ith head and
jth head. In model 1, the relative oscillation between the heads in a sperm pair is not
constrained, such that their orientation difference �α = α2 − α1 can be positive, zero or
negative (figure 1b). In addition, we experimentally observed that the relative oscillation
between the heads of paired sperm cells started and paused seemingly randomly, consistent
with previous experimental observations (Woolley et al. 2009; Zhang et al. Zhang et al.
2023). Their orientation difference �α was always a positive value during swimming.
Based on these experimental observations, we speculate that a steric force Fs

i j may exist
between the heads, besides the adhesive force. Therefore, based on model 1, we develop a
second model, referred to as model 2, to explore this potential case where both adhesive
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and steric forces exist between the sperm heads. In model 2, the relative oscillation
between the heads is constrained, such that their orientation difference is �α > 0 during
the whole course of swimming (figure 1c). Both models 1 and 2 are used to investigate the
phase-lag dependence of the swimming performances of paired spermatozoa regarding
three parameters: average swimming speed, average power consumption, and swimming
efficiency. For each specific flagellar phase lag �φ, its value is prescribed and fixed
during the simulation. In models 1 and 2, the head angular velocities Ω i (t) (i = 1, 2)
are determined based on force-balance and torque-balance conditions for sperm cells at
the low Reynolds number. To further explore the influence of head oscillation on the
swimming trajectory of sperm pairs, a third model (referred to as model 3) is developed by
providing model 1 with experimentally measured head angular velocitiesΩ i (t) (i = 1, 2)
(figure 1d). For more realistic representations, flagellar waveforms are reconstructed from
our experimental measurements and prescribed in all our models.

2. Tracking of paired spermatozoa in a chamber
Cryopreserved bovine spermatozoa were obtained from Semex Inc (Guelph) and stored
in liquid nitrogen. Semen straws were thawed in a 37 ◦C water bath for 2 min, before
suspending the cells in 2 ml high glucose Dulbecco’s Modified Eagle’s Medium (DMEM,
D6546 Sigma Aldrich). Sperm cells were washed twice by centrifugation at 300 g for
5 min, and resuspended in a 2 ml clean medium. Then 0.3 % Methyl cellulose (M0512,
Sigma Aldrich) was added to increase the viscosity of the medium. Five microlitres of
sperm suspension were pipetted into slides with chamber depth 20 µm for immediate
videomicroscopy.

Videomicroscopy was performed in an inverted Nikon microscope with a FastCam
SA1.1 high-speed camera and a 40× objective in phase contrast mode, obtaining video
sequences with 500 frames per second. In our experiments, paired spermatozoa with
their heads attached were observed (see supplementary movie 1). We track the flagella
using the customised script in Matlab. The algorithm detects first the head tip and then
the junction between the head and flagellum, from which the orientation of each cell is
derived. Subsequently, the flagellum of each cell is tracked using the method reported by
Geyer et al. (2013) and Riedel-Kruse et al. (2007). The tracked images need to be examined
manually, and modified when the detection sometimes fails, due to e.g. dirt particles and
overlapped flagella. Along each flagellum, 45 points are tracked. These flagellum points
are off to both sides of the flagellum’s centreline and are not equally spaced. A Savitzky–
Golay filter with degree 3 and a span of 5 sequential flagellum points is used to filter the
flagellum points. These filtered flagellum points are then interpolated with splines. The arc
length of the flagellum is determined by summing the lengths of the splines, and points
at equal distances of 0.25 µm along the flagellum are then determined. These equidistant
points along the ith flagellum of a sperm pair are time-varying and used to determine their
velocity vi relative to the ith head.

3. Characterisation of the locomotion of paired spermatozoa
Bovine spermatozoa are approximately 60 µm in length. Approximately 0.1−3 % of them,
depending on conditions, formed bundles, most of which were sperm pairs (Morcillo i
Soler et al. 2022). Considering their approximately planar kinematics, we can describe
their projected locomotion on the two-dimensional plane where they swim, and neglect
the out-of-plane component, as shown in figure 1. The ith sperm head of a sperm pair
can be described by its orientation αi (t) and the position of its head tip rp(t) with respect
to the laboratory frame. The flagellar shape can be described by the tangent angle ψ with

1007 A43-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

79
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.79
https://doi.org/10.1017/jfm.2025.79


Journal of Fluid Mechanics

respect to the comoving frame spanned by the orthonormal unit vectors e1 and e2. Here, e1
and e2 are oriented along the long and short axes of the projection of the ellipsoidal head
on the swimming plane, respectively, as illustrated in figure 1 (inset). The tangent angle
ψ(l, t), 0 ≤ l ≤ 2L , is enclosed between e1 and the local tangent vector to the flagellar
centreline, where L is the half-length of the flagellum. The flagellar shape with respect to
the laboratory frame at a time t can be characterised by

r f(l, t)= rp(t)− ae1 −
∫ l

0
dl ′

[
cosψ(l ′, t) e1 + sinψ(l ′, t) e2

]
, (3.1)

where a is the major axis of the projection of the head on the swimming plane (Friedrich
et al. 2010). Here, r f(0, t) corresponds to the head–flagellum junction, and r f(2L , t)
corresponds to the distal end of the flagellum. This description can be applied to the two
flagella of a sperm pair. Any point on the ith cell with respect to the laboratory frame is
represented by r i (s, t), where s is the coordinate of this point.

4. Mechanical and hydrodynamic cell–cell interactions
In our experiments, paired bovine sperm cells, one head on top of the other, oscillated
their heads during swimming. From the top view, a portion of the heads, e.g. the head
tips, remained overlapping during the whole course of swimming (figure 1). The head tips
were the pivot point about which the heads oscillated. The attachment between the heads
allowed their relative oscillation within the swimming plane, but constrained their relative
translational motion. Similar experimental observations have been reported previously
(Woolley et al. 2009; Zhang et al. 2023). The head of a bovine spermatozoon resembles an
approximately flattened ellipsoid, with detailed cellular morphologies (Pesch & Bergmann
2006; Carvalho et al. 2013). In our models, we ignore the detailed morphologies of the
bovine sperm head and only consider its three principal dimensions – length, width and
height. Thus the sperm head is simplified as an ellipsoid with dimensions 9 × 5 × 0.4 µm
(length × width × height) in our models, based on previous experimental measurements
(Pesch & Bergmann 2006; Carvalho et al. 2013). The flagellum is approximately a tube
with half-length L = 25 µm and radius ρ = 0.25 µm (Pesch & Bergmann 2006; Carvalho
et al. 2013). These dimensions for the flagellum are used in our models.

Previous computational studies have shown that the hydrodynamic interaction between
two adjacent but separate flagella may lead them to swim away from each other in
the three-dimensional space (Simons et al. 2015; Carichino et al. 2021). However,
compared with hydrodynamic forces, the mechanical head–head coupling is strong, so that
paired sperm cells continue to swim together (Woolley et al. 2009; Zhang et al. 2023).
Therefore, the mechanical head–head coupling and its influence on the swimming of
paired spermatozoa cannot be ignored. We simplify the as yet not fully understood head–
head coupling as a pair of adhesive forces on the pivot point Fa

i j , i = 1, 2, elaborated on
in § 4.1. Here, the force on the ith head Fa

i j results from the interaction with the jth head,
such that Fa

12 = −Fa
21. For the second potential case where both adhesive and steric forces

exist between the heads, we develop model 2 based on model 1, detailed in § 4.2.

4.1. Model of paired spermatozoa with adhesive forces between their heads
Let Ω i (t), i = 1, 2, denote the instantaneous angular velocity of the ith head about the
pivot point, and let U(t) denote the instantaneous translational velocity of the pivot point,
with respect to the laboratory frame. The velocity vi (s, t) at an arbitrary point on the
ith flagellum with respect to the comoving frame is obtained from our experimentally
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observed time-varying flagellar shapes. Given vi (s, t), the velocity ui (s, t) at this point in
the laboratory frame is

ui (s, t)= vi (s, t)+ U(t)+ Ω i (t)× r ′
i (s, t), (4.1)

where r ′
i (s, t) is the position vector of this point in the comoving frame (Bayly et al.

2011). For the velocity of any point on the head, (4.1) is also applicable, where the first
term on the right-hand side vanishes. The sperm cells are spatially discretised, as detailed
in Appendix A. For the planar locomotion, the velocity k ui (t) at the kth point on the ith
cell in the laboratory frame can be represented by

k ui (t)= kvi (t)+ kBi (t) U(t), (4.2)

where

U =

⎡
⎢⎢⎢⎢⎢⎣

Ux
Uy
Ω1
Ω2
Fa

21x
Fa

21y

⎤
⎥⎥⎥⎥⎥⎦
, kBi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣1 0 − kr ′

1y 0 0 0
0 1 kr ′

1x 0 0 0
0 0 0 0 0 0

⎤
⎦ , i = 1,

⎡
⎣1 0 0 − kr ′

2y 0 0
0 1 0 kr ′

2x 0 0
0 0 0 0 0 0

⎤
⎦ , i = 2.

(4.3)

Here, the subscripts x and y in the variables represent their components along the x- and
y-axes, respectively. The angular speeds Ω1 and Ω2 are defined such that Ω1 =Ω1e3 and
Ω2 =Ω2e3, where e3 = e1 × e2.

The microscale geometry and swimming speed of spermatozoa render them low-
Reynolds-number swimmers. They are generally deemed neutrally buoyant, as their
swimming speed dominates their sedimentation speed (Gong et al. 2020). Consequently,
the swimming paired sperm cells are force-free and torque-free (Lauga & Powers 2009).
The ith cell in a sperm pair satisfies∫

s
f i (s, t) ds + Fa

i j (t)= 0,
∫

s
r i (s, t)× f i (s, t) ds + T a

i j (t)= 0, (4.4)

where f i (s, t) is the hydrodynamic force at point r i (s, t), as illustrated in figure 1. The
adhesive torque on the ith head about the origin of the laboratory frame is T a

i j = rp × Fa
i j .

The total torque balances about any point.
The loss modulus of the fluid in our experiments dominates the storage modulus

(Morcillo i Soler et al. 2022; Zhang et al. 2023). Consequently, we can neglect the
elasticity of the fluid and calculate the hydrodynamic force f i (s, t) using Stokes equations.
To incorporate the wall effect due to the top and bottom slides of the chamber, we introduce
two walls in our models, which are at z = 0 µm and z = 20 µm, respectively, parallel with
the x–y plane. According to previous studies, most spermatozoa are within 0.2 times their
body length from the bottom surface (Winet et al. 1984; Elgeti et al. 2011). We therefore
assume that the sperm cells are in the middle between the walls in our models. In the
experiments, the sperm heads are physically attached. In the models, they need to be
prevented from concurrently occupying the same space. Therefore, a pair of sperm cells
is positioned on two parallel two-dimensional planes, with minimum distance 0.25 µm
between their heads. Given that the height of the head is 0.4 µm, the two swimming planes
are set at z = 9.675 µm and z = 10.325 µm, respectively. This arrangement ensures that
the two cells remain in close proximity without overlapping in space.

To determine the hydrodynamic force f i on the ith cell, we use the regularised
Stokeslets method, which is an effective approximation of the low-Reynolds-number flow.

1007 A43-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

79
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.79


Journal of Fluid Mechanics

We discretise the ith cell into ni points, and the walls into nw points, as detailed in
Appendix A. Thus a total of n = n1 + n2 + nw points are included in our models. The
relationship between the force f i and the velocity ui can be expressed in a vector form[

uT
1 uT

2 uT
w

]T = −A
[

f T
1 f T

2 f T
w
]T
, (4.5)

where f w is the hydrodynamic force on the stationary wall surfaces, and A is a
3n × 3n matrix (Appendix B). The velocity of the nw points on the wall surfaces uw can
be specified by a 3nw × 1 zero matrix, uw = 03nw×1. Combining (4.2)–(4.5), we derive a
linear system to describe the dynamics of paired sperm cells,⎡

⎢⎢⎢⎢⎢⎢⎢⎣

v
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A B
C D
E F
G H
I J
K L
M N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
f
U

]
, (4.6)

where B = [1BT
1

2BT
1 · · · n1BT

1
1BT

2
2BT

2 · · · n2BT
2 06×3nw]T, the veloc-

ity is v = [vT
1 vT

2 01×3nw]T, and the force is f = [ f T
1 f T

2 f T
w]T. The last six

equations in (4.6) represent the force balance along the x- and y-axes, and the torque
balance along the z-axis, respectively, for each pair of sperm cells. According to the force-
balance and torque-balance conditions, the blocks C,D, . . . ,N of this linear system can
be derived (Appendix C). In (4.6), velocity v at any time is known, which is provided from
experimental observations, but f and all the variables in U are unknown and need to be
determined from (4.6). The velocity ui at any point on the ith sperm pair with respect to
the laboratory frame can be further calculated from (4.2) after U is determined.

4.2. Model of paired spermatozoa with adhesive and steric forces between their heads
To prevent sperm cells from unrealistically passing through each other, a steric force has
been introduced and modelled as an elastic spring with a specific form (Cripe et al. 2016;
Simons & Rosenberger 2021). The steric force in their model acts only over a very short
range to avoid significantly influencing sperm swimming. Likewise, instead of focusing
on the specific value of steric force, we expect that the steric force in our model 2 can
effectively repel the heads when they approach a total overlap, while having a minimum
influence on their relative oscillation when their orientation difference is �α > 0. To this
end, we develop model 2 based on model 1. We first consider a scenario in which both
heads have the same angular velocity, i.e. Ω1 = Ω2 = Ω . The velocity k ui (t) at the kth
point on the ith cell in the laboratory frame can continue to be represented by (4.2), but
the matrices U and kBi need to be modified to

U ′ =
⎡
⎣Ux

Uy
Ω

⎤
⎦ , kB′

i =
⎡
⎣1 0 − kr ′

iy
0 1 kr ′

i x
0 0 0

⎤
⎦ , i = 1, 2, (4.7)

respectively. As Fa
12 = −Fa

21 and Fs
12 = −Fs

21, the force-balance and torque-balance
conditions on the whole sperm pair are

2∑
i=1

∫
s

f i (s, t) ds = 0,
2∑

i=1

∫
s

r i (s, t)× f i (s, t) ds = 0. (4.8)
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Algorithm 1. Model 2.

Combining (4.2), (4.5), (4.7) and (4.8), we derive a linear system to describe the dynamics
of paired sperm cells with the same head angular velocity Ω ,

⎡
⎢⎣

v
0
0
0

⎤
⎥⎦ = −

⎡
⎢⎢⎣

A B′
C′ D′
E′ F′
G′ H′

⎤
⎥⎥⎦

[
f
U ′

]
, (4.9)

where B′ = [1B′
1

T 2B′
1

T · · · n1B′
1

T 1B′
2

T 2B′
2

T · · · n2B′
2

T 03×3nw]T, the velocity is v =
[vT

1 vT
2 01×3nw]T, and the force is f = [ f T

1 f T
2 f T

w]T. The last three equations in (4.9)
represent the force balance along the x- and y-axes, and the torque balance along the
z-axis, for the sperm pair, respectively. According to the force-balance and torque-balance
conditions, the blocks C′,D′, . . . ,H′ of this linear system can be derived (Appendix D). In
(4.9), velocity v at any time is known, which is provided from experimental observations,
but f and all the variables in U ′ are unknown and need to be determined from (4.9). The
velocity ui at any point on the ith sperm pair with respect to the laboratory frame can be
further calculated from (4.2) after U ′ is determined.

Our simulation consists of nt discrete time steps. If at the beginning of the jth time
step, the position r(t j ) of any point on the surface of the sperm cells and the velocity
v(t j ) are known, then r(t j+1), �α(t j+1), f (t j+1), U(t j+1), Ω1(t j+1) and Ω2(t j+1) at
the beginning of the ( j + 1)th time step can be determined by solving (4.6) or (4.9). In
our simulations, the initial position r(t1) is given, and the velocity v at any time step is
provided from experimental observations. Assuming that the initial orientation difference
between the heads is �α(t1)≥ 0, now we can formulate model 2 by combining (4.6) and
(4.9) following the method described in Algorithm 1.

In model 2 (i.e. Algorithm 1), sperm heads are fused with zero relative angular velocity,
�Ω = Ω2 − Ω1 = 0, when �α is within a very small range close to zero. This range
depends on the variation of �α over one discrete time step. Note that both adhesive and
steric forces between the heads are intrinsically included in model 2, constraining the
relative oscillation of the heads such that�Ω = 0 when�α is within the range, despite the
specific values of the forces and where they are applied being unknown. Only an adhesive
force between the heads is included in model 2 when �α is out of the range. Thereby,
we finish developing model 2, in which sperm heads are effectively prevented from totally
overlapping, while having a minimum influence on their relative oscillation when�α > 0.
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4.3. Validation of the models
Model 3 can be developed based on model 1 (i.e. (4.6)) by reducing the vector U in
model 1 to U = [Ux Uy Fa

21x Fa
21y]T and removing the two equations associated with the

torque-balance condition from (4.6). Our models build on regularised Stokeslets method,
involving a choice of regularised parameter ε and spatial discretisation of the sperm cells
and walls. To validate our discretisation of the head and flagellum, following the approach
of Cortez et al. (2005) and Gillies et al. (2009), we compare our predicted resistive force
on an isolated head and an isolated flagellum translating in an unbounded fluid with
their exact solution. The non-dimensional force error is ef < 2.4 × 10−4 (Appendix E). In
addition, we compute the cumulative distribution of velocity error for a sphere translating
in an unbounded fluid with velocity Uz = 1 m s−1. All the points on the surface of the
sphere have a velocity error ev = |Uz − 1|< 0.018 m s−1 (Appendix E). To regularise the
walls in our models, the regularised parameter ε is chosen in the form ε = ξρm (Ainley
et al. 2008; Gillies et al. 2009). In our test cases, ξ = 0.5 and m = 0.9 are chosen, which
yields predictions that closely match the published results (Appendix F). Therefore, these
values of ξ and m are used in our models for all subsequent simulations. The walls in
our models are square. The simulations in the test cases are insensitive to the wall size
when the side length of the walls ranges from 60 to 160 µm, as shown in Appendix F.
Therefore, the side length of each wall is set to 80 µm in our models, which is fixed in all
our subsequent simulations.

4.3.1. Force and torque errors
We use our models to simulate the locomotion of a sperm pair. In the simulations, the
viscosity is chosen as μ= 1 Pa s, and the flagellar beat patterns are prescribed based on
the experimental measurements. For model 3, prescribed head angular velocities Ω i (t),
i = 1, 2, are further required.

Regarding models 1 and 2, force-balance conditions along the x- and y-axes and torque-
balance conditions along the z-axis are applied. As the mechanical coupling between
the heads is a pair of internal forces, the total hydrodynamic force on the whole sperm
pair along the x- and y-axes should satisfy Fx = ∑2

i=1 Fix = 0 and Fy = ∑2
i=1 Fiy = 0,

where Fix and Fiy are the x- and y-components of the total hydrodynamic force on the ith
cell, respectively. Likewise, the total hydrodynamic torque on the whole sperm pair along
the z-axis should satisfy Tz = ∑2

i=1 Tiz = 0, where Tiz is the z-component of the total
hydrodynamic torque on the ith cell. As shown in figure 2, the absolute values |Fx |, |Fy |
and |Tz| are minimal. The minimal values result from the numerical error. The absolute
value of the total hydrodynamic force on the sperm pair along the z-axis, |Fz|, is also very
small. We take the total hydrodynamic force on cell 1, |F1|, as the benchmark, and |Fz|
is three orders of magnitude lower than |F1|, despite no force-balance condition along the
z-axis applied to the sperm cells. Likewise, taking |T1| as the benchmark, the absolute
values of the total hydrodynamic torque on the sperm pair along the x- and y-axes, |Tx | and
|Ty|, are three orders of magnitude lower than |T1|, despite no torque-balance conditions
along the x- and y-axes applied to the sperm cells.

Regarding model 3, force-balance conditions along the x- and y-axes are applied to the
sperm cells. The absolute values |Fx | and |Fy | are minimal due to the numerical error, as
shown in figure 2(a,iii). In addition, |Fz| is three orders of magnitude lower than |F1|, and
|Tx |, |Ty | and |Tz| are three orders of magnitude lower than |T1|, despite no force-balance
condition along the z-axis and no torque-balance conditions along the x-, y- and z-axes
applied to the sperm pair.
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Figure 2. (a) The absolute values of the x-, y- and z-components of the total hydrodynamic force on a sperm
pair in models 1 (i), 2 (ii), and 3 (iii) are minimal compared to the absolute value of the total hydrodynamic
force on cell 1 of this sperm pair, |F1|. (b) The absolute values of the x-, y- and z-components of the total
hydrodynamic torque on the sperm pair in models 1 (i), 2 (ii), and 3 (iii) are minimal compared to the absolute
value of the total hydrodynamic torque on cell 1 of this sperm pair, |T1|. The force and torque components
during a shorter time range, 0–0.1 s, are shown in the insets.

4.3.2. Comparison of the predicted and experimentally observed trajectories of sperm
pairs

Following previous studies (Yundt et al. 1975; Gillies et al. 2009), we assess our models by
comparing the predicted and experimentally observed swimming trajectories. Three sperm
pairs are simulated using our models. The trajectory of each sperm pair is the time-varying
position of their pivot point, as shown in figure 3. We calculate the displacement d and
travelling distance S of the pivot point during one flagellar beat cycle T . The displacement
during the jth flagellar beat cycle d is defined as

d = 1
nt

nt∑
i=1

∣∣rp(ti + T )− rp(ti )
∣∣ , (4.10)

where nt is the number of the time steps during one flagellar beat cycle T . The
displacement |rp(ti + T )− rp(ti )| depends on the initial time ti during one beat cycle.
We thus define d by averaging |rp(ti + T )− rp(ti )| over one beat cycle using (4.10).
The travelling distance of the pivot point during the jth flagellar beat cycle S is defined
as S = ∑nt

i=1

∣∣rp(ti )− rp(ti−1)
∣∣. Taking sperm pair 3, for example (figure 3e), there are

40 flagellar beat cycles. Compared with the experimentally observed displacement
averaged over 40 flagellar beat cycles 〈dobse〉, the predicted one, 〈dtheo〉, in models 1, 2 and
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Figure 3. Three sperm pairs, referred to as (a) sperm pair 1, (b) sperm pair 2, and (c) sperm pair 3, were tracked
using high-speed videomicroscopy. In each sperm pair, the trajectory of the pivot point is predicted using
models 1, 2 and 3, respectively. (d) The head orientations of cell 1 (α1) and cell 2 (α2) in sperm pair 3 are time-
varying. Orientations in model 3 overlap with the experimentally measured ones. (e) Regarding the pivot point
in sperm pair 3, the predictions and experimental observation have similar tendencies in the displacement d.
The predictions and experimental observation have similar tendencies in the travelling distance S.

3, is 0.2 % shorter, 7.8 % longer, and 11.7 % longer, respectively. The predicted travelling
distances of the pivot point averaged over the 40 beat cycles, 〈Stheo〉, in models 1, 2 and 3
are 32.1 %, 29.4 % and 25.1 %, respectively, shorter than the experimentally observed one
〈Sobse〉.
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In our experiments, the trajectory of the pivot point wiggles around its average path,
resulting in the time-varying longitudinal and lateral displacement within one flagellar beat
cycle. Our models predict the fine structure of the locomotion of the sperm pairs such as
the wiggling. However, the agreement between the predicted and experimentally observed
swimming trajectories varies significantly between the models. We quantify the agreement
between the predicted and experimentally observed trajectories using Fréchet distance dFr,
a lower value of which indicates a higher similarity (Eiter & Mannila 1994). Taking sperm
pair 3, for example, compared with the experimentally observed swimming trajectory, dFr
is 45.6, 56.6 and 21.1 µm for the predicted trajectory in models 1, 2 and 3, respectively.
As shown in figure 3c, compared with models 1 and 2, model 3 predicts a trajectory with
higher similarity to the experimentally observed one, revealing the significant role of head
oscillation in the swimming trajectory of sperm pairs. The improved prediction accuracy
results from the available correct information, i.e. the head angular velocities.

5. Swimming performances of paired spermatozoa
In our experiments, paired sperm cells beat their two flagella with the same period,
exhibiting different modes of flagellar synchronisation, as shown in figure 4(a). To
formalise the locomotion of the paired spermatozoa, the high-dimensional description
of flagellar beating by (3.1) can be further mapped to a low-dimensional space spanned
by the first two shape scores β1 and β2 using principal component analysis (Geyer et al.
2013; Werner et al. 2014). The points in the (β1, β2) space represent a series of flagellar
shapes and form a closed loop (figure 4b). We define a limit cycle of the beating of the ith
flagellum by fitting the closed loop parametrised by a phase φi (Appendix G). The flagellar
phase φi is defined according to flagellar shape similarity such that it is independent of
its time derivative, whereby a unique phase is assigned for each tracked flagellar shape
(Geyer et al. 2013). Accordingly, a swimming sperm pair can be completely characterised
with the position of the pivot point rp, the orientation of the heads αi , and the phase of
flagellar beating φi . The flagellar synchronisation of paired cells is achieved when the
phase lag between their flagellar beating �φ = φ2 − φ1 remains unchanged over one beat
cycle. The sperm pairs were observed experimentally to maintain a constant flagellar phase
lag�φ for several beat cycles, followed by phase slips, and then establish another constant
flagellar phase lag, as shown in figure 4(c). This repeated process allowed the flagellar
synchronisation to transition between in-phase, anti-phase and lagged synchronisation.

Inspired by the experimental observations, we further investigate numerically the
influence of the flagellar phase lag �φ on the swimming of paired cells. Both models
1 and 2 are used in our simulations. In our simulations, the flagellar beat patterns are
reconstructed from their limit cycles (Appendix G). The phase-lag dependence of flagellar
waveforms is neglected. We assess the swimming performances of sperm pairs regarding
three parameters: average swimming speed 〈U 〉, average power consumption 〈P〉, and
swimming efficiency η. In our simulations, the three parameters are determined after the
sperm pair has established regular beating, when its displacement during one flagellar beat
cycle, d, stops varying between beat cycles. The average swimming speed over one beat
cycle is determined by 〈U 〉 = d/T , representing the swimming speed along the average
path. Here, d is calculated using (4.10). The average power consumption per cell 〈P〉 for
a sperm pair is determined by averaging the instantaneous power of cells 1 and 2 over
one beat cycle (Appendix H). Compared to speed, swimming efficiency η may be more
critical for spermatozoa due to their limited energy reserves. We define η= 〈U 〉2/〈P〉.
This means that a longer swimming displacement per unit of energy consumption leads to
higher efficiency. Given other conditions (e.g. the flagellar waveform due to the viscosity)
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Figure 4. A swimming sperm pair was observed experimentally to exhibit three different modes of flagellar
synchronisation: in-phase, anti-phase and lagged synchronisation. (a) Interrupted by phase slips, the sperm pair
transitioned between the modes of flagellar synchronisation. Scale bar: 10 µm. (b) To characterise the flagellar
beating, their shapes are mapped into a two-dimensional space spanned by the first two shape scores β1 and
β2. The phase of the flagellar beating is obtained through binning tracked flagellar shapes according to shape
similarity. (c) The phase lag between the flagella of the sperm pair �φ is unwrapped and clearly shows the
phase lags, slips and synchronisation. Inset: the flagellar phases φ1 and φ2 during a time interval when phase
slips occur.

unchanged, 〈U 〉 is independent of fluid viscosity μ, whereas the average power 〈P〉
depends linearly on it, and η has an inverse dependence on it. To compare 〈P〉 and η
at different fluid viscosities and various flagellar phase lags, we use μ= 1 Pa s in all
our simulations for swimming performances, and normalise η with its value at �φ = 0,
denoted by η0.

In all our simulations for swimming performances, the period of flagellar beating is
the same for the cells within a sperm pair, but distinct among the pairs. The flagellar
waveform varies between the pairs. Therefore, sperm pairs with the same flagellar phase
lag exhibit distinct swimming performances, as shown in figure 5. In addition, a small
variation in �φ may lead the swimming performances to change significantly, especially
for η/η0 when the value of 〈P〉 is small. For instance, the value of η/η0 for sperm pair 2 in
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Figure 5. Three distinct sperm pairs respond differently to the flagellar phase lag�φ in (a) average swimming
speed 〈U 〉, (b) swimming power 〈P〉, and (c) normalised swimming efficiency η/η0. Here, η0 is the efficiency
when �φ = 0. Models 1 and 2 are used to calculate 〈U 〉, 〈P〉 and η/η0 for each sperm pair. Each simulation
includes 14 different values of flagellar phase lag �φ: 0, π/6, π/3, π/2, 2π/3, 5π/6, π , 7π/6, 4π/3, 3π/2,
5π/3, 11π/6, 23π/12 and 95π/48.

model 1 significantly increases from 0.40 to 0.95 as�φ increases from 23π/12 to 95π/48
(figure 5c). In all our simulations for swimming performances, compared with the small
flagellar phase lags (approximately 0 radians), large flagellar phase lags (approximately π
radians) lead to a higher 〈P〉, which aligns with previous studies (Elfring & Lauga 2011a;
Cripe et al. 2016). However, a high swimming speed or efficiency does not necessarily
result from flagellar phase lags close to π radians. For instance, in model 2, sperm pair 2
achieves its highest 〈U 〉 and η/η0 when its flagellar phase lag �φ is close to π/2 radians.
In addition, the swimming performances are influenced significantly by the mechanical
head–head coupling. For the same sperm pair with the same �φ but different head–head
coupling, it may have a large difference in 〈U 〉, 〈P〉 or η/η0, as shown in figure 5. Taking
sperm pair 2, for example, when �φ = π/3, the value of 〈U 〉 in model 1 is equal to that
in model 2. But when �φ = π/2, the value of 〈U 〉 for sperm pair 2 in model 1 diverges
significantly from that in model 2. One reason is that the orientation difference between
the heads �α(t) is constrained in model 2 such that �α(t)≥ 0 for the whole course of
swimming, whereas no such constraint exists in model 1, as shown in figure 6(a). This
constraint in the relative head oscillation leads to different swimming trajectories, as
shown in figure 6(b). However, in our experiments, we did not observe the sperm pairs
with their head orientation difference at �α(t) < 0 during swimming. Therefore, steric
force probably exists between the heads of the sperm pairs in the experiments, repelling
each other.

Furthermore, the flagellar waveform also varies between the cells in the same sperm
pair, resulting in a difference in the power 〈P1〉 and 〈P2〉, as shown in figure 7. In our
simulations, 〈P〉 for each sperm pair is always a positive value. But for sperm pair 2 in
model 1, the average power for cell 1 is 〈P1〉 = −5.5 pW when�φ = 23π/12, as shown in
figure 7(b).

6. Discussion
The collective behaviours of mechanically and hydrodynamically coupled flagellated
cells are complex and not fully understood. Here, using paired bovine spermatozoa as
an example, we develop hydrodynamic models to unveil more nuanced aspects of their
locomotion. Compared to current theoretical models, our models offer some advantages
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Figure 6. For sperm pair 2, (a) its head orientation difference �α(t) and (b) its swimming trajectories during
five flagellar beat cycles are shown. When�φ = π/3, sperm pair 2 in models 1 and 2 has the same time-varying
�α(t). When �φ = π/2, the head orientation difference �α(t) for sperm pair 2 in model 1 can be a negative
value within a time interval, during which the relative oscillation of the heads of sperm pair 2 in model 2 are
fused such that their relative angular speed is �Ω = 0.
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Figure 7. Sperm pairs (a) 1, (b) 2 and (c) 3 are shown. Models 1 and 2 are used to calculate the average power
consumption for cell 1 (〈P1〉) and cell 2 (〈P2〉) in each sperm pair. Each simulation includes 14 different values
of flagellar phase lag �φ: 0, π/6, π/3, π/2, 2π/3, 5π/6, π , 7π/6, 4π/3, 3π/2, 5π/3, 11π/6, 23π/12 and
95π/48.

for accurate predictions. First, our models include sperm heads, which are often missing
in current models for attached or detached sperm cells (Cripe et al. 2016; Simons &
Rosenberger 2021; Carichino et al. 2021). In addition, we consider both the mechanical
and hydrodynamic cell–cell interactions, whereas only one type of interaction has typically
been incorporated in current theoretical models (Pearce et al. 2018; Carichino et al. 2021).

Our simulations show that the mechanical head–head coupling significantly affects the
swimming trajectory of sperm pairs (figures 3 and 6). The head orientations α1 and α2
are history-dependent, while the displacement d and travelling distance S are not. The
time-dependent trajectory of paired spermatozoa is sensitive to the initial values of their
head orientation, angular velocity and translational velocity. A small variation in the initial
values would lead to a significant cumulative error in the predicted trajectory. Comparing
the predictions in the displacement during one beat cycle d with the experimentally
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observed ones, we find that both underpredictions and overpredictions appear in our
simulations, depending on models and sperm pairs (figure 3). In a previous computational
study for single sperm cells, only underpredictions in d were found (Gillies et al. 2009).
In our simulations, the discrepancy in the displacement d between the predictions and
experimental observations likely results from the missing information in the environment
and flagella. For instance, we postulate that the sperm pairs swim in the middle plane
between the walls, which may not align with reality. Closer proximity of sperm cells to the
wall surface results in higher swimming speed (Smith et al. 2009). Additionally, although
our mathematical models treat flagellar beating as planar, it is not strictly planar in reality,
particularly at the distal end of the flagellum. A slight tilt of the planar motion out of the
swimming plane may contribute to the discrepancy. Another potential contributor is the
missing information on whether sperm pairs come into contact with the chamber walls
transiently.

Correct information, e.g. the time-varying angular velocities of heads, improves the
accuracy in predicting the trajectory of sperm pairs. However, the underlying mechanism
of the mechanical head–head coupling is not fully understood, limiting our prediction
accuracy. The trajectory of each sperm pair during one beat cycle differs from that
during another beat cycle. Such seemingly stochastic swimming has also been observed
experimentally in individual sperm cells and is attributed to the active phase and amplitude
fluctuations of flagellar beating (Ma et al. 2014). In the case of paired spermatozoa, cell–
cell interactions are another contributor. The combined effects of flagellar fluctuations and
cell–cell interactions are also reflected in the radial distribution of the points around the
closed loop (figure 4b).

Three different modes of flagellar synchronisation were observed in our experiments,
reminiscent of the similar flagellar beat patterns found in Chlamydomonas (Leptos
et al. 2013; Wan et al. 2014; Quaranta et al. 2015; Wan & Goldstein 2016) and model
microfilaments (Guo et al. 2018,2021). Current models focus primarily on flagellar
synchronisation at a rigid/elastic base, using either low-order representations of flagella
as oscillators (Uchida & Golestanian 2011; Golestanian et al. 2011; Klindt et al. 2017;
Hickey et al. 2023) or more realistic representations as elastic beams (Riedel-Kruse et al.
2007; Osterman & Vilfan 2011; Tam & Hosoi 2011; Goldstein et al. 2016; Guo et al. 2021).
In theoretical models for swimming flagella, their waveforms were typically prescribed as
sinusoidal waves (Elfring et al. 2010; Cripe et al. 2016). In our models, flagellar waveforms
are prescribed based on experimental observations, which is a more realistic representation
but brings in some drawbacks, such as the exclusion of the phase-lag dependence of
flagellar waveforms and the necessity for a priori information in flagellar beating.

The view prevails since Taylor (1951) that co-swimming sperm cells tend to form in-
phase synchronisation to minimise the energy dissipation in the fluid. However, our results
do not fully support this perspective. While in-phase synchronisation leads to relatively
low power consumption, the minimum power can occur at a small flagellar phase lag due to
the mechanical and hydrodynamic interactions (figure 5). Similarly, a recent computational
study on two-dimensional co-swimming sheets has demonstrated that minimum power
can occur at any flagellar phase lag, depending on the specific kinematics of the sheets
(Liao & Lauga 2021). Moreover, a recent study on swimming paired flagella has indicated
that the anti-phase synchronisation can induce the highest swimming speed and efficiency
(Cripe et al. 2016), which is also found in our calculations. However, our simulations
show that the highest swimming speed and efficiency of paired spermatozoa can result
from flagellar phase lags besides π radians. To further confirm the existence of a statistical
relationship between the swimming performances of paired spermatozoa and their flagellar
beat patterns, a larger sample size is required.
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Appendix A. Spatial discretisation of a sperm cell
In our models, the flagellum is discretised with cross-sections equally spaced along its
length with a distance equal to its radius ρ. The cross-section is a circle. Six regularised
Stokeslets are equally spaced along each circular cross-section, as illustrated in figure 8(a).
The unit vectors e1 and e2 respectively align with the two principal axes of the ellipsoidal
head, as illustrated in figure 1. Let e3 denote the unit vector aligned with the third principal
axis of the ellipsoidal head, where e3 = e1 × e2, as illustrated in figure 8(b). The sperm
head is discretised with nh cross-sections along its long axis (i.e. the axis aligned with
vector e1). These nh cross-sections are perpendicular to e1 and divide the elliptical cross-
section of the ellipsoid at the (e1, e3) plane into arcs. These arcs have the same arc length
of approximate ρ by adjusting the distance between the nh cross-sections. In each of the nh
cross-sections, regularised Stokeslets are equally spaced at distance approximately ρ. To
discretise the walls, regularised Stokeslets are distributed on each wall in a square pattern
with side length 10ρ, as illustrated in figure 8(c).

Appendix B. Calculation of hydrodynamic forces on paired sperm cells
For the total n = n1 + n2 + nw regularised Stokeslets, the fluid response u at m r to the
hydrodynamic forces k f is calculated by

u(m r)= − 1
8πμ

n∑
k=1

3∑
p=1

Sεpq(
k r, m r) k T k

p f , m = 1, 2, . . . , n, (B1)

where k T is the quadrature weight of the kth regularised Stokeslets, ε is the regularisation
parameter, and k

p f is the pth component of the force on the cells by the fluid (Cortez et al.
2005).

Appendix C. Force balance and torque balance on each of the paired sperm cells
As the adhesive force and hydrodynamic forces on cell 1 are balanced, we have

C = [
1C1

2C1 · · · n1C1 01×3(n2+nw)

]
,

E = [
1E1

2E1 · · · n1E1 01×3(n2+nw)

]
,

D = [
0 0 0 0 −1 0

]
,

F = [
0 0 0 0 0 −1

]
,

(C1)
where kC1 = [1 0 0] and kE1 = [0 1 0], k = 1, 2, . . . , n1. The torques due to these forces
on cell 1 are balanced about the origin of the laboratory frame, so we have

G = [
1G1

2G1 · · · n1G1 01×3(n2+nw)

]
, H = [

0 0 0 0 rpy −rpx
]
,

(C2)
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(a) (b) (c)
e2

e3

e1

Figure 8. Spatial discretisation of the sperm (a) flagellum, (b) head and (c) wall. A portion of the flagellum
and wall is shown.

where kG1 = [−kr1y
kr1x 0], k = 1, 2, . . . , n1. Here, kr1x and kr1y are the components of

the position vector of the kth point on cell 1 along the x- and y-axes of the laboratory
frame, respectively. Likewise, rpx and rpy are the x- and y-components of rp. Based on the
force balance on cell 2, we have

I = [
01×3n1

1I2 2I2 · · · n2 I2 01×3nw

]
,

K = [
01×3n1

1K2
2K2 · · · n2K2 01×3nw

]
,

J = [
0 0 0 0 1 0

]
,

L = [
0 0 0 0 0 1

]
,

(C3)

where k I2 = [1 0 0] and kK2 = [0 1 0], k = 1, 2, . . . , n2. Based on the torque balance on
cell 2 about the origin of the laboratory frame, we have

M = [
01×3n1

1M2
2M2 · · · n2M2 01×3nw

]
, N = [

0 0 0 0 −rpy rpx
]
,

(C4)
where kM2 = [−kr2y

kr2x 0], k = 1, 2, . . . , n2. Here, kr2x and kr2y are the x- and
y-components of the position vector of the kth point on cell 2, respectively.

Appendix D. Force balance and torque balance on a sperm pair
As the forces on a sperm pair are balanced, we have

C′ = [
1C′

1
2C′

1 · · · n1C′
1

1C′
2

2C′
2 · · · n2C′

2 01×3nw

]
,

E′ = [
1E′

1
2E′

1 · · · n1E′
1

1E′
2

2E′
2 · · · n2E′

2 01×3nw

]
,

D′ = 01×3,

F′ = 01×3,

(D1)
where kC′

1 = [1 0 0] and kE′
1 = [0 1 0], k = 1, 2, . . . , n1, with blocks kC′

2 = [1 0 0] and
kE′

2 = [0 1 0], k = 1, 2, . . . , n2. The torques due to these forces on the sperm pair are
balanced about the origin of the laboratory frame, so we have

G′ = [
1G′

1
2G′

1 · · · n1G′
1

1G′
2

2G′
2 · · · n2G′

2 01×3nw

]
, H′ = 01×3,

(D2)
where kG′

1 = [−kr1y
kr1x 0], k = 1, 2, . . . , n1. Here, kr1x and kr1y are the components of

the position vector of the kth point on cell 1 along the x- and y-axes of the laboratory
frame, respectively, with blocks kG′

2 = [−kr2y
kr2x 0], k = 1, 2, . . . , n2, where kr2x and

kr2y are the components of the position vector of the kth point on cell 2 along the x- and
y-axes of the laboratory frame, respectively.

Appendix E. Verification of the spatial discretisation of spermatozoa
Following the approach of Cortez et al. (2005) and Gillies et al. (2009), we choose
an optimal regularised parameter ε by comparing our predictions of the resistive force
on two isolated ellipsoids translating in the x- and y-directions in an unbounded fluid
with their exact solution. The first ellipsoid has the same dimensions as the sperm head
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Figure 9. (a) Resistive force error ef for two isolated ellipsoids is dependent on the regularised paratmeter ε.
(b) Cumulative distribution of the velocity error ev for the points on the sphere.

(9 × 5 × 0.4 µm), and is discretised using the same method as for the sperm head. The
resistive force on a tube is often approximated using the slender body theory (Johnson
1980; Rodenborn et al. 2013). We represent the sperm flagellum with the second ellipsoid
with an elongated needle-like geometry of 50 × 0.25 × 0.25 µm. is discretised using the
same method as for the sperm flagellum. The non-dimensional resistive force error ef is
defined as

ef =
√√√√ 1

nc ζ 2
max

nc∑
i=1

ζ 2
i , (E1)

with ζi = ζexact − ζpred, where ζexact is the exact resistive force on the ellipsoids (Kim
1986), and ζpred is our predicted resistive force on the ellipsoids. The number of the
separate simulations is nc = 4, i.e. the two ellipsoids translating in the x- and y-directions.
Here, ζmax is the maximum value of ζi , i = 1, 2, 3, 4. The force error is minimised when
ε = 0.36ρ, as illustrated in figure 9(a). Using ε = 0.36ρ, we further calculate the velocity
Uz of the points on an isolated sphere moving with a unit velocity along the z-axis in an
unbounded fluid. This sphere has a volume equivalent to that of the sperm head, and
is discretised into 682 points in the same manner as for the sperm head. Cumulative
distribution of velocity error for the points ev = |Uz − 1| shows that all the points have
a velocity error less than 0.018 m s−1 (figure 9b). Note that the regularised parameter
ε = 0.36ρ used here is to minimise the numerical error for the sperm head and flagellum
moving in an unbounded fluid. Its value needs to be changed if walls are included.

Appendix F. Verification of the regularised parameter
In our test cases, ξ = 0.5 and m = 0.9 are chosen, which work well. Due to the lack
of established convergence analysis for the regularised Stokeslets method (Ainley et al.
2008), we follow the approach of Ainley et al. (2008) and Gillies et al. (2009), and compare
the predicted results in our test cases with published ones, as shown in figure 10. In our test
cases, we calculate the resistive force Fs on a sphere translating in the x- and y-directions
between the walls with velocity U s. This sphere has a volume equivalent to that of the
sperm head. The walls are perpendicular to the z-axis. The resistive force F on the sphere
translating in an unbounded fluid with the same velocity U s is Fs∞ = 6πμrsU s, where
μ is the viscosity of the fluid. The ratio Fs/Fs∞ depends on the ratio h/rs. As shown in
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Figure 10. (a) Compared to the resistive force Fs∞ on the sphere translating in an unbounded fluid, it
experiences a larger resistive force Fs when translating between the walls with the same velocity. (b) For
the isolated tube parallel to the walls, its normal resistance coefficient Cn is larger than its tangential resistance
coefficient Ct. The tube translating in an unbounded fluid has a smaller tangential resistance coefficient Ct∞
than that when translating between the walls. Our predictions for (c) Fs/Fs∞ for the sphere, and (d) Cn/Ct and
Ct/Ct∞ for the tube are insensitive to the wall size.

figure 10(a), our theoretical results agree with those of Ramia et al. (1993) and Gillies
et al. (2009).

In addition, we calculate the normal resistance coefficient Cn and tangential resistance
coefficient Ct of an isolated tube translating in the radial and longitudinal directions
between the walls. The tube is parallel to the walls. The tube has dimensions identical
to those of the sperm flagellum, and is discretised in the same manner as for the flagellum.
The ratios Cn/Ct and Ct/Ct∞ depend on the ratio h/L , where Ct∞ is the tangential
resistance coefficient of an isolated tube translating in an unbounded fluid, as shown in
figure 10(b). Our theoretical results agree with those of Ramia et al. (1993) and Gillies
et al. (2009). Furthermore, as illustrated in figures 10(c,d), the wall size has only a slight
impact on these ratios as long as the sphere and tube are covered by the walls. When the
side length of the walls ranges from 60 to 160 µm, the maximum variation in Fs/Fs∞ of
the sphere is 0.6 %, and the maximum variations in Cn/Ct and Ct/Ct∞ of the tube are
0.9 % and 2.5 %, respectively. Note that several different values of the wall half-depth h
are included in our test cases, but h = 10 µm is kept fixed for all our further simulations,
as the depth of the chamber that we used is 20 µm.

Appendix G. Reconstruction of flagellar shapes and their limit cycles
Using principal component analysis, we can approximate the tangent angle along each
flagellum ψ(l, t) as

ψ(l, t)≈ 0ψ(l)+ β1(t) V 1(l)+ β2(t) V 2(l), (G1)

1007 A43-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

79
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.79


Journal of Fluid Mechanics

where 0ψ(l) is the mean tangent angle (Geyer et al. 2013; Werner et al. 2014). Here, V 1
and V 2 are the first two flagellar shape modes, and β1 and β2 are their respective scores.
This approximation accounts for 95 % of the variance of the tangent angles. To reduce the
noise of the tangent angles, we approximated the flagellar shapes using smoothing splines
before calculating the shape modes.

The flagellar shapes at different times were thereby mapped to the (β1, β2) space,
represented by the points in the space (figure 4b). By fitting the points, we obtained the
limit cycle. Flagellar phases were defined by binning flagellar shapes according to shape
similarity. We then reconstructed flagellar tangent angles from the limit cycle. Finally,
flagellar beat patterns with various phase lags were reconstructed from the tangent angles
using (3.1).

Appendix H. Calculation of power consumption
After a sperm pair has established regular beating in our simulations, the instantaneous
power dissipated in the fluid by the ith sperm cell at a time t j is determined by

Pi
(
t j

) =
ni∑

k=1

(
k f i

(
t j

) · k ui
(
t j

))
, (H1)

where ni is the number of the regularised Stokeslets points on the ith sperm cell. The force
k f i and the velocity k ui are determined from (4.6) or (4.9), depending on which model
is used. The average power over one beat cycle for the ith cell is 〈Pi 〉 = ∑nt

j=1 Pi (t j )/nt,
where nt is the number of time steps in this beat cycle. The average power per cell for the
sperm pair is 〈P〉 = ∑2

i=1〈Pi 〉/2.
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