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Abstract

We consider a multi asset financial market with stochastic volatility modeled by a
Wishart process. This is an extension of the one-dimensional Heston model. Within this
framework we study the problem of maximizing the expected utility of terminal wealth
for power and logarithmic utility. We apply the usual stochastic control approach and
obtain, explicitly, the optimal portfolio strategy and the value function in some parameter
settings. In particular, we do this when the drift of the assets is a linear function of the
volatility matrix. In this case the affine structure of the model can be exploited. In some
cases we obtain a Feynman–Kac representation of the candidate value function. Though
the approach we use is quite standard, the hard part is to identify when the solution of the
Hamilton–Jacobi–Bellman equation is finite. This involves a couple of matrix analytic
arguments. In a numerical study we discuss the influence of the investors’ risk aversion
on the hedging demand.
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1. Introduction

Asset price models need stochastic volatility in order to produce the ‘smile effect’ between
the implied volatility and the strike price of a call option, or to reproduce the ‘leverage effect’,
i.e. that past returns are negatively correlated with future volatilities. To cover these aspects,
many one-factor stochastic volatility models have already been introduced, among them the
popular Heston model (see Heston (1993)). However, recent empirical studies show that even
in a single asset model it might be reasonable to model the volatility by at least two factors
(see, e.g. Cont and Da Fonseca (2002)). Moreover, it is often necessary to model a complete
portfolio of assets. Hence, in recent times multivariate extensions of the Heston model have
been proposed. They all build on the matrix Wishart process for the volatility which was
introduced in Bru (1991). It is a direct multivariate extension of the Cox–Ingersoll–Ross model
and has been extended and used for financial applications; see, e.g. Gourieroux and Sufana
(2003), (2004), Da Fonseca et al. (2007), (2008), Buraschi et al. (2010), and Muhle-Karbe et
al. (2012). While these papers consider option pricing, hedging, credit risk, and term structure
models, we will investigate portfolio optimization problems. More precisely we consider the
classical problem of maximizing the expected utility of terminal wealth in a multi asset Wishart
volatility market for power and logarithmic utility. During the work on this project we became
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aware that Hata and Sekine (2011) also considered portfolio optimization problems in a similar
setup with the risk-sensitive criterion. However, their methods were different and they also
focused on different aspects as we will explain below. Another recent article is Richter (2012),
where solutions of BSDEs in such a setting are considered and applied to indifference pricing.
There the exponential utility is also dealt with. In Buraschi et al. (2010) a model with two
assets and a two-dimensional Wishart process is considered and the hedging demand for a
power utility problem is treated. Besides these articles, to the best of our knowledge, there are
no others yet which deal with optimization problems in this financial market. Moreover, all
these papers consider only financial markets where the process of volatility and the stochastic
logarithm of the asset has an affine differential with respect to the volatility. We call this the
affine case. In Kallsen and Muhle-Karbe (2010) the authors consider a general semimartingale
market which is again affine. They consider portfolio problems with power utility but only in
the single asset framework.

In this paper we use the classical stochastic control approach and solve the portfolio opti-
mization problem with the help of the Hamilton–Jacobi–Bellman (HJB) equation. However, it
turns out that this is a nontrivial task due to rather complicated computations. Moreover, some
interesting aspects occur in the sense that in some parameter settings the problem is rather
easy and in others it is not. We already know from Kraft (2005) (also see Kallsen and Muhle-
Karbe (2010) and Liu (2007)) that in the one-dimensional Heston model, which is included
as a special case, there are parameter settings where the value function is not finite and thus
the stochastic control approach breaks down. See also Korn and Kraft (2004) for a word of
warning in this direction. It will turn out that in the affine case (i.e. when the drift of the
stocks is a linear function of the Wishart process, which is assumed in most models and also
in the Heston model), there are parameter settings where the value function is finite and can
be computed explicitly. In this case fortunately we can show that the optimal value function
is a Laplace transform of the Wishart volatility process and we can use results in Gnoatto
and Grasselli (2014), where such expressions have been computed. The affine structure of the
process is exploited here. Still the impression remains that this is a very special case because the
corresponding optimal portfolio strategy is completely deterministic and, hence, measurable
with respect to the initial information. We also identify another situation with specialQmatrix
and special correlation between the Brownian motions which drive the asset dynamics and those
which drive the volatility dynamics. However, there is also the situation of general drift, where
the HJB equation boils down to a linear partial differential equation and where we have at least
a candidate for the value function via a Feynman–Kac representation formula. In particular,
the case of uncorrelated Brownian motions belongs to this category.

In Hata and Sekine (2011) the authors solve a risk-sensitive portfolio problem in an affine
Wishart-volatility model. While doing this, they also solve the power utility problem. However,
they use the risk sensitive approach and use a change of measure first, before they set up the
HJB equation. Moreover, they do not get a closed form solution like we do and they do not
discuss the cases where the value function is infinite. On the other hand they do tackle infinite
horizon problems.

The outline of our paper is as follows: In Section 2 we introduce the multi asset financial
market, where volatility is modeled by a Wishart process, and state the optimization problem.
In Section 3 we derive the associated HJB equation. The next section is then dedicated to
finding solutions of this HJB equation. We divide this section into two parts. In the first part we
consider a general asset drift, but with specific correlations, and in the second part we treat the
affine model where we derive an explicit solution. In Section 5 we verify that this solution in
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the affine model is indeed the value function of our portfolio problem. In Section 6 we briefly
discuss the case of the logarithmic utility function, and in Section 7 we consider some numerical
examples and discuss the hedging demand in a two-dimensional setting. The appendix contains
some of the proofs and auxiliary results.

2. The Wishart volatility market

It is well known that the classical standard Black–Scholes model is not flexible enough to
create the smile effect, nor does it satisfy the leverage effect either.

To cover these shortcomings of the standard Black–Scholes model, Gourieroux and Sufana
(2004) have presented a multivariate Wishart stochastic volatility. The model introduced below
possesses a generalized drift compared with Gourieroux and Sufana (2004). It is an extension
of the one-dimensional Heston model.

In our model the market consists of one riskfree asset with price process (S0
t )t≥0 and d risky

assets. The constant riskfree rate is r ≥ 0 and the dynamic of the riskfree asset is

dS0
t = S0

t rdt, S0
t = 1.

We denote by (St,i )t≥0, 1 ≤ i ≤ d , the price processes of the d risky assets and by (St )t≥0 =
(St,1, . . . , St,d )t≥0 the vector process. The return of (St )t≥0 has a Wishart stochastic volatility
(�t )t≥0. The joint dynamics of (St )t≥0 and (�t )t≥0 are given by the (vector-matrix-) stochastic
differential system,

dSt = diag(St )(B(�t ) dt +�
1/2
t dWS

t ), (2.1)

d�t = (NNT +M�t +�tM
T ) dt +�

1/2
t dWσ

t Q+QT (dWσ
t )
T �

1/2
t , (2.2)

where (WS
t )t≥0 is a d-dimensional Brownian motion vector and (Wσ

t )t≥0 is a d × d Brownian
motion matrix. All processes are defined on a common probability space (�,F ,P). In what
follows, (Ft )t≥0 denotes the corresponding Brownian filtration. The entries between (WS

t )t≥0
and (Wσ

t )t≥0 can be correlated. We assume that d〈WS
t,k,W

σ
t,ij 〉 = ρk,ij dt for 1 ≤ k, i, j ≤ d.

The matrix diag(St ) is a diagonal matrix with entries St,1, . . . , St,d on the diagonal. Further,
N,M, and Q are d × d matrices with N ∈ GLd(R) the set of real invertible matrices of
dimension d× d . We also assume thatNNT � (d+ 1)QTQ (whereA � B means thatA−B
is positive semidefinite) which, according to Theorem 2.2 of Mayerhofer et al. (2011), implies
that (2.2) has a unique global strong solution on S+

d (R) which is the set of symmetric positive
definite matrices of dimension d × d . As usual, for� ∈ S+

d (R), we denote by�1/2 the unique
matrix A ∈ S+

d (R) for which A2 = �. The function B : S+
d (R) → Rd is measurable and will

be specified later.
In what follows we will assume, for the correlation coefficients ρk,ij , 1 ≤ k, i, j ≤ d

between the Brownian motions, that ρk,ij = 0 for k 	= i and ρk,kj =: ρj is independent
of k. In particular we denote ρ = (ρ1, . . . , ρd)

T . This means if (Bt ) is another d-dimensional
Brownian motion vector independent of (Wσ

t ), we assume that

WS
t

d=
√

1 − ρT ρ Bt +Wσ
t ρ.

Example 2.1. The Wishart stochastic volatility model can be regarded as an extension of the
Heston model to the multidimensional case. Recall that the one-dimensional asset return process
(St )t≥0 in the Heston model is determined by the stochastic process

dSt = St (µ+ λZt ) dt + √
Zt dWS

t ,
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whereas the volatility process (Zt )t≥0 follows a Cox–Ingersoll–Ross process

dZt = κ(θ − Zt) dt + ξ
√
Zt dWZ

t ,

where (WS
t )t≥0 and (WZ

t )t≥0 are Brownian motions with correlation ρ, and µ, κ, θ, and ξ are
suitable constants in R. We easily see that the dynamics above are specifications of (2.1) and
(2.2) in the one-dimensional case.

We now assume that an agent can invest into this financial market and define the portfolio
strategy process (πt )t≥0 as an Rd -valued progressively measurable process with respect to
(Ft )t≥0, where πt = (πt,1, . . . , πt,d )

T and πt,k represents the proportion of wealth invested
into stock k at time t . Obviously, π0

t := 1 − πTt 1 is the proportion of wealth invested in the
bond, where 1 = (1, . . . , 1)T ∈ Rd . Under a fixed portfolio strategy (πt )t≥0, the portfolio
wealth process (Xπt )t≥0 has the following dynamic

dXπt = Xπt π
T
t

dSt
St

+Xππ0
t

dS0
t

S0
t

.

Applying the dynamic (2.1) yields

dXπt
Xπt

= (πTt (B(�t )− r)+ r) dt + πTt �
1/2
t dWS

t , (2.3)

withXπ0 = x0 and r = (r, . . . , r)T ∈ Rd . We consider only portfolio strategies where (2.3) has
a unique strong solution and call them admissible. The solution of the portfolio wealth process
(Xπt ) is

XπT = x0 exp

(∫ T

0

[
πTs (B(�s)− r)+ r − 1

2
‖πTs �1/2

s ‖2
2

]
ds +

∫ T

0
πTs �

1/2
s dWS

s

)
.

Now, denote by U : R+ → R a (strictly increasing, strictly concave) utility function. We
want to solve the classical problem of maximizing expected utility of terminal wealth for power
and logarithmic utility. The value function of the optimization problem reads as

V (t, x,�) = sup
π

Et,x,�[U(XπT )], x > 0, � ∈ S+
d (R), t ∈ [0, T ], (2.4)

where Et,x,� is the expectation with respect to the conditional distributionsXt = x and�t = �,

and where the supremum is taken over all admissible portfolio strategies. We will follow the
usual way using stochastic control, i.e. we will first derive the HJB equation, then find a solution,
and, finally, verify it. However, the challenge here is to identify parameter cases where the value
function is finite. As pointed out in Kraft (2005) and Korn and Kraft (2004), this is an important
issue and in this case a nontrivial task.

3. The HJB equation and its transformations

In what follows we assume that U(x) = xγ /γ for γ < 1, γ 	= 0. The formal derivation
of the HJB equation is as follows. Since the process (V (t, Xπt , �t ))t≥0 is a supermartingale
under any admissible portfolio strategy π and a martingale under the optimal one, the drift of
the process, which is derived using the Itô–Doeblin formula, has to be zero when maximized

https://doi.org/10.1239/jap/1389370097 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370097


Optimal portfolios for financial markets with Wishart volatility 1029

over all portfolio allocations. In order to apply the Itô–Doeblin formula we have to compute
the quadratic variation and covariation of (Xπt ) and (�t ):

d〈�lk,�pq〉t = [�lp(t)(QTQ)kq

+�pk(t)(Q
TQ)ql +�lq(t)(Q

TQ)kp +�kq(t)(Q
TQ)lp] dt,

d〈�lk,Xπ 〉t = Xπt [(πTt �t )l(QT ρ)k + (πTt �t )k(Q
T ρ)l] dt,

d〈Xπ 〉t = (Xπt )
2[πTt �tπt ] dt.

We will also denote by Gt and Gx the partial derivative with respect to t and x and we denote
the operator matrix

∇ :=
(

∂

∂�ij

)
1≤i,j≤d

.

Thus, a candidate G(t, x,�) ∈ C1,2,2([0, T ] × R+ × S+
d (R)) for the value function should

satisfy the HJB equation:

0 = Gt + T r((NNT +M� +�MT )∇G)+ rxGx

+ 1
2T r(�(∇ + ∇T )(QTQ)(∇T + ∇))G

+ sup
u∈Rd

{xuT (B − r)Gx + 1
2x

2uT �uGxx + xuT �(∇ + ∇T )GxQ
T ρ},

with terminal condition G(T , x,�) = xγ /γ . When we use the usual Ansatz G(t, x,�) =
xγ g(t, �)/γ with g > 0 and substitute in the expressions above we end up with the HJB
equation

1

γ

(
gt + 1

2
T r(�(∇ + ∇T )(QTQ)(∇T + ∇))g + T r((NNT +M� +�MT )∇g)

)

+ rg + sup
u∈Rd

{
uT (B − r)g + γ − 1

2
uT �ug + uT �(∇ + ∇T )gQT ρ

}

= 0.

Obviously, a maximizer of this HJB equation is given by

π∗(t, �) = �−1
(
(B(�)− r)g(t, �)+�(∇ + ∇T )g(t, �)QT ρ

(1 − γ )g(t, �)

)
(3.1)

for � ∈ S+
d (R), 0 ≤ t ≤ T . Substituting the maximum point into the HJB equation, we arrive

at
gt + 1

2T r(�(∇ + ∇T )(QTQ)(∇T + ∇))g + T r((NNT +M� +�MT )∇g)
+ γ rg + γ

2(1 − γ )g
((B − r)T �−1(B − r)g2 + 2ρT Q(∇ + ∇T )g(B − r)g

+ ρT Q(∇ + ∇T )g�(∇ + ∇T )gQT ρ)

= 0. (3.2)

In the next section we will solve (3.2) under further conditions on the model parameters. Note,
in particular, that B = B(�) is up to now an arbitrary (measurable) function of�. In Section 4
we will consider the following two cases:
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Case 1. B(�) is general and

ρ = ρ̂1 and Qij = ciQ1j , ci ∈ R, 2 ≤ i ≤ d, c1 := 1, (3.3)

i.e. the correlations are the same and the rows of Q are multiples of the first row.
Technically this condition implies that under the transformation g = hδ for a suitable
δ the last two terms in (3.2) at least partially cancel and there remains a linear partial
differential equation, whose solution can be represented by a Feynman–Kac formula.

Case 2. B(�) − r = �v for a v ∈ Rd . This assumption implies a constant market price
v of variance-covariance risk. It is also used in the one-dimensional Heston model
(see Example 2.1). In this case it is possible to derive an explicit solution. In some
parameter cases one can show that the solution is finite. The key property that makes this
case solvable is the fact that the Wishart process (Zt ) is an affine process and the value
function of the problem can be interpreted as a Laplace transform of (�t ).

4. Solutions of the HJB equation

4.1. A candidate for general drift

In this section we consider case 1, so let us assume (3.3). This implies

QT ρρT Q = ρ̂2QT 11T Q = ρ2QTQ with ρ2 = ρ̂2 (
∑d
i=1 ci)

2∑d
i=1 c

2
i

.

We use the further transformation

g(t, �) = h(t,�)δ with δ := (1 − γ )

(1 − γ )+ γρ2 .

In this case (3.2) reduces to the linear partial differential equation

ht + T r(�(∇ + ∇T )(QTQ)(∇T + ∇))h+ T r((NNT +M� +�MT +H)∇h)
+

(
γ r

δ
+ γ

2(1 − γ )δ
(B − r)T �−1(B − r)

)
h

= 0 (4.1)

with terminal condition h(T ,�) = 1 and matrix

H := γ

(1 − γ )
(QT ρ(B − r)T + (B − r)ρT Q).

This specific transformation has been used before in Zariphopoulou (2001); in particular, it was
used in Kraft (2005) regarding the one-dimensional Heston model and in Rieder and Bäuerle
(2005) in a model with partial observation. Here we get exactly the same δ as in Kraft (2005),
p. 305.

It is now possible to formally derive a solution via a Feynman–Kac formula. So far we
worked under the physical measure P. We now denote a new measure by P̃ associated with the
following Radon–Nikodym derivative:

Zt := dP̃

dP

∣∣∣∣
Ft

= exp

(∫ T

t

T r(θ(�s)
T dWσ

s )− 1

2

∫ T

t

‖θ(�s)‖2 ds

)
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with

θ(�) := γ

1 − γ
(�1/2)−1(B(�)− r)ρT , � ∈ S+

d (R).

For a d × d matrix A, we define by ‖A‖2 = ∑
i,j a

2
ij the Frobenius norm. Then, we obtain the

following theorem which is proved in Appendix A.

Theorem 4.1. If the Radon–Nikodym derivative (Zt ) is an (Ft )-martingale and if

h̃(t, �) := Ẽ
�,t

[
exp

(∫ T

t

(
γ r

δ
+ γ

2(1 − γ )δ
(B(�s)− r)T

×�−1
s (B(�s)− r)

)
ds

)]
∈ C1,2(O) (4.2)

with O = [0, T ] × S+
d (R), then the solution h of (4.1), if it exists, has the Feynman–Kac

representation h̃, where Ẽ denotes the expectation under P̃.

Hence, we have a candidate solution for the stochastic control problem. However, for a
general function B, it is difficult to compute the expectation or verify the solution. In the next
subsection we consider the special case of a linear functionB where we get an explicit solution.

4.2. The linear drift case

In this subsection, we consider case 2, i.e. the drift coefficient B(�) of (St )t≥0 satisfies
B(�)− r = �v for some v ∈ Rd . The asset dynamic (St )t≥0 can now be written as

dSt = diag(St )((r +�tv) dt +�
1/2
t dWS

t ).

The key property that makes this case solvable is the fact that the Wishart process is an affine
process and its Laplace transform can be computed (see, e.g. Gnoatto and Grasselli (2014)).
We will later see that under the optimal strategy the expected utility of terminal wealth exactly
reduces to a Laplace transform of the Wishart process. The partial differential equation in (3.2)
now reads

gt + 1
2T r(�(∇ + ∇T )(QTQ)(∇T + ∇))g + T r((NNT +M� +�MT )∇g)

+ γ rg + γ

2(1 − γ )g
(vT �vg2 + 2ρT Q(∇T + ∇)g�vg

+ ρT Q(∇T + ∇)g�(∇ + ∇T )gQT ρ) = 0 (4.3)

with g(T ,�) = 1.
In the next theorem Sd(R) denotes the set of symmetric real matrices of dimension d. The

proof can again be found in the appendix.

Theorem 4.2. With boundary condition g(T ,�) = 1, the partial differential equation (4.3)
possesses the following solution in the cases where the expressions are finite:

g(t, �) = exp(φ(T − t)+ T r[ψ(T − t)�]), (4.4)

where φ(t) ∈ R and ψ(t) ∈ Sd(R) for t ∈ [0, T ] are solutions of the following Riccati
equations system:

ψt(t) = ψ(t)M̃ + M̃T ψ(t)+ 2ψ(t)Q̃T Q̃ψ(t)+ �̃, (4.5)

φt (t) = T r[ψ(t)NNT ] + γ r (4.6)
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with

M̃ = M + γ

(1 − γ )
QT ρvT , Q̃T Q̃ = QTQ+ γ

(1 − γ )
QT ρρT Q,

�̃ = γ

2(1 − γ )
vvT

and the initial conditions, ψ(0) = 0 ∈ Sd(R) and φ(0) = 0 ∈ R.

Note that equation (4.6) is not a problem because φ can simply be obtained by integrating the
right-hand side. The Riccati equations (4.5) have a finite solution in some parameter settings and
there are different ways to compute a solution. For example, it is possible to use a linearization
of the matrix Riccati ODE (see Gnoatto and Grasselli (2014) for details). In this case one
obtains, with Proposition 11 of Gnoatto and Grasselli (2014):

Proposition 4.1. In the case where a finite solution of (4.5) exists for t ∈ [0, T ] withψ(0) = 0,
the solution is given by

ψ(t) = ψ22(t)
−1ψ21(t),

where (
ψ11(t) ψ12(t)

ψ21(t) ψ22(t)

)
= exp

{
t

(
M̃ −2Q̃T Q̃

�̃ −M̃T

) }

and M̃, Q̃T Q̃, and �̃ are given in Theorem 4.2.

However, the inverseψ−1
22 (t) does not necessarily exist and it is hard to give conditions on the

parameters which imply existence. The next proposition presents an alternative representation
of the solution (under further parameter restrictions) which allows explicit conditions. As
usual sinh(A) for A ∈ S+

d (R) is defined as sinh(A) = (eA − e−A)/2 where eA is the matrix
exponential. Moreover, the log which appears there is the matrix logarithm. The proof can be
found in the appendix.

Proposition 4.2. Suppose M̃T (Q̃T Q̃)−1 = (Q̃T Q̃)−1M̃ . For t ∈ [0, T ], define

κ(t) := −(√C2 cosh(
√
C2t)+ C1 sinh(

√
C2t))

−1(
√
C2 sinh(

√
C2t)+ C1 cosh(

√
C2t)),

C2 := Q̃(−2�̃ + M̃T (Q̃T Q̃)−1M̃)Q̃T ∈ Sd(R),
C1 := −Q̃M̃T (Q̃T Q̃)−1Q̃T ∈ Sd(R),

with M̃, Q̃T Q̃, and �̃ given in Theorem 4.2. If

−2�̃ + M̃T (Q̃T Q̃)−1M̃ � 0,
√
C2 + C1 � 0, and Q̃T Q̃ ∈ GLd(R) (4.7)

are satisfied, then the partial differential equation (4.1) possesses, on [0, T ], the finite solution
(4.4), with

ψ(t) = 1
2 (Q̃

−1
√
C2κ(t)Q̃

−T )− 1
2M̃

T (Q̃T Q̃)−1,

φ(t) = − 1
2T r(NN

T M̃T (Q̃T Q̃)−1)t + γ rt

− 1
2T r(Q̃

−T NNT Q̃−1 log[(√C2)
−1(

√
C2 cosh(

√
C2t)+ C1 sinh(

√
C2t))]).

Remark 4.1. (a) Note that the condition M̃T (Q̃T Q̃)−1 = (Q̃T Q̃)−1M̃ is more general than
the commutativity assumption M̃Q̃ = Q̃M̃ in Bru (1991). For a discussion see Gnoatto and
Grasselli (2014).
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(b) The first two conditions in (4.7), for the existence of a finite solution of the Riccati equations,
reduce to the single condition

�̃ ≺ M̃T (2Q̃T Q̃)−1M̃, (4.8)

if M̃T (Q̃T Q̃)−1 is negative semidefinite. Under this assumption, C1 is positive semidefinite
and, thus, condition (4.8) implies the condition

√
C2 + C1 � 0. If γ > 0 andQ ∈ GLd(R) then

Q̃T Q̃ ∈ GLd(R) is always satisfied. Note that, for γ < 0, the condition �̃ � M̃T (2Q̃T Q̃)−1M̃

is always fulfilled.

(c) In the special case d = 1 the conditions (4.7) coincide with the results in the Heston model
in Proposition 5.2 of Kraft (2005). Let us use the terminologies in Kraft (2005) and denote, for
d = 1,

M := −κ
2
< 0, v := λ̄, ρ := ρ, Q := σ

2
,

M̃ = −κ
2

+ γ

1 − γ

σ

2
ρλ̄ =: − κ̃

2
.

In Kraft (2005) it is assumed that κ̃ > 0. Then Q̃T Q̃ = σ 2(1 + γρ2/(1 − γ ))/4 =: σ̃ 2 and
2M̃T (Q̃T Q̃)−1 = −κ̃/σ̃ 2 is negative semidefinite. The condition in (4.8) can be written as

γ

2(1 − γ )
λ̄2 <

(
κ2 − 2γ λ̄ρσκ

(1 − γ )
+ γ 2λ̄2ρ2σ 2

(1 − γ )2

)
1

2(σ 2 + γρ2σ 2/(1 − γ ))
.

Note that the term σ 2 + γρ2σ 2/(1 − γ ) is always positive, thus, multiplying both sides with
this expression, the inequality above can be simplified to

γ λ̄

1 − γ

(
λ̄

2
+ ρκ

σ

)
<

κ2

2σ 2

which is condition (26) in Kraft (2005).

(d) The one-dimensional Heston model with power utility has also been solved in Kallsen and
Muhle-Karbe (2010) using martingale methods. They deal with parameter settings where the
value function is finite for certain time horizons up to a critical one. The conditions in (4.7)
ensure that the value function exists for all T ≥ 0. Inspecting the proof of Proposition 4.2
we may also be able to identify cases where the matrix

√
C2 cosh(

√
C2t)+ C1 sinh(

√
C2t) ∈

GLd(R) for some t up to a critical one.

5. Verification

In this section we consider the linear drift case from Section 4.2 and verify that

G(t, x,�) := xγ

γ
exp(φ(T − t)+ T r[ψ(T − t)�]), t ∈ [0, T ], (5.1)

where ψ and φ are solutions of (4.5) and (4.6) respectively, is indeed the value function of our
portfolio optimization problem, givenG(t, x,�) is finite which is, for example, satisfied under
the conditions of Proposition 4.2.
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First note that our candidate, for the optimal portfolio strategy π∗, is given using (3.1) by
π∗
t = π∗(t, �t ) with

π∗(t, �) = v
1 − γ

+ 2ψ(T − t)QT ρ

1 − γ
. (5.2)

Note that π∗(t, �) = π∗
t , i.e. the optimal strategy is purely deterministic and does not depend

on �.
We will show directly that the corresponding value attained by this portfolio strategy is

G(t, x,�) and every other admissible portfolio strategy will not yield a larger value.

Theorem 5.1. (Verification.) Suppose the function G in (5.1) is finite (this is, for example,
satisfied under the conditions of Proposition 4.2). Given (π∗

t ) as in (5.2), there is

Et,x,�
[
(Xπ

∗
T )

γ

γ

]
= G(t, x,�), t ∈ [0, T ], x > 0, � ∈ S+

d (R)

and for every other admissible portfolio strategy π we obtain

Et,x,�
[
(XπT )

γ

γ

]
≤ G(t, x,�), t ∈ [0, T ], x > 0, � ∈ S+

d (R).

Thus, V = G and (π∗
t ) in (5.2) is the optimal portfolio strategy.

Proof. The inequality for every admissible portfolio strategy is standard and the proof
follows e.g. that of Kraft (2005) Proposition 4.3. For the equation, recall that we have

XπT = Xπt exp

(∫ T

t

[
πTs �sv + r − 1

2
‖πTs �1/2

s ‖2
2

]
ds +

∫ T

t

πTs �
1/2
s dWS

s

)

with Xπt = x. Let us denote

Zt := dQ

dP

∣∣∣∣
Ft

= exp

(
γ

∫ T

t

(π∗
s )
T �

1/2
s dWS

s − γ 2

2

∫ T

t

‖(π∗
s )
T �

1/2
s ‖2 ds

)
, (5.3)

which is a martingale by Proposition A.2 in Appendix A. Using Girsanov’s theorem, we obtain

x−γ Et,x,�[(Xπ∗
T )

γ ]

= Et,x,�
[

exp

(
γ

∫ T

t

[
(π∗
s )
T �sv + r − 1

2
‖(π∗

s )
T �

1/2
s ‖2

2

]
ds

+ γ

∫ T

t

(π∗
s )
T �

1/2
s dWS

s

)]

= Et,x,�
Q

[
exp

(
γ

∫ T

t

[
(π∗
s )
T �sv + r − 1

2
‖(π∗

s )
T (�s)

1/2‖2
2

+ γ

2
‖(π∗

s )
T (�s)

1/2‖2
2

]
ds

)]

= Et,x,�
Q

[
exp

(
γ

∫ T

t

[
(π∗
s )
T �sv + r + γ − 1

2
(π∗
s )
T �sπ

∗
s

]
ds

)]

= Et,x,�
Q

[
exp

(
γ r(T − t)+

∫ T

t

T r

[(
γ v(π∗

s )
T + γ (γ − 1)

2
π∗
s (π

∗
s )
T

)
�s

]
ds

)]
.

(5.4)
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In what follows let us introduce the deterministic matrix-valued process

Fs = γ v(π∗
s )
T + γ (γ − 1)

2
π∗
s (π

∗
s )
T

which appears in (5.4). By substituting the optimal strategy π∗ and using (4.5), we obtain

Fs = γ

1 − γ

{
1

2
vvT + vρT Qψ(T − s)

− ψ(T − s)QT ρvT − 2ψ(T − s)QT ρρT Qψ(T − s)

}

= ψt(T − s)− ψ(T − s)M −MTψ(T − s)− 2ψ(T − s)QTQψ(T − s)

+ γ

γ − 1
{2ψ(T − s)QT ρvT + 4ψ(T − s)QT ρρT Qψ(T − s)}.

Now note that under Q defined in (5.3) the process Ŵσ
t := Wσ

t − γ�
1/2
t π∗

t ρ
T is also a standard

Brownian motion and the dynamics of (�t ), under Q, is given by

d�t = (NNT +M�t +�tM
T ) dt +�

1/2
t dWσ

t Q+QT (dWσ
t )
T �

1/2
t

= (NNT +M�t +�tM
T + γ�tπ

∗ρT Q+ γQT ρ(π∗)T �t ) dt

+�
1/2
t dŴσ

t Q+QT (dŴσ
t )
T �

1/2
t .

Hence, under Q the process (�t ) is again a Wishart process with drift

NNT +M�t +�tM
T + γ�tπ

∗ρT Q+ γQT ρ(π∗)T �t

= NNT +M�t +�tM
T + γ

1 − γ
�tvρT Q+ 2γ

1 − γ
�tψ(T − t)QT ρρT Q

+ γ

1 − γ
QT ρvT �t + 2γ

1 − γ
QT ρρT Qψ(T − t)�t .

Next we compute
∫ T
t
T r(Fs�s) ds under Q. For this instance, note that due to the product rule

and since ψ(0) = 0 and �t = �, we obtain
∫ T

t

T r(ψt (T − s)�s) ds = T r

(
�ψ(T − t)+

∫ T

t

ψ(T − s) d�s

)
.

Substituting the dynamics of (�t ) under Q we obtain
∫ T

t

T r(Fs�s) ds = T r(�ψ(T − t))+
∫ T

t

T r(ψ(T − s)NNT ) ds

−
∫ T

t

T r(2ψ(T − s)QTQψ(T − s)�s) ds

+ T r

(∫ T

t

ψ(T − s)�
1/2
s dŴσ

s Q+
∫ T

t

ψ(T − s)QT (dŴσ
s )
T �

1/2
s

)
.

Note that the differential equation (4.6) can be written as

φ(T − t) =
∫ T

t

T r(ψ(T − s)NNT ) ds + γ r(T − t).
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Hence, we obtain

x−γ Et,x,�[(Xπ∗
T )

γ ]

= Et,x,�
Q

[
exp

(
γ r(T − t)+

∫ T

t

T r(Fs�s) ds

)]

= Et,x,�
Q

[
exp

(
T r(�ψ(T − t))+ φ(T − t)−

∫ T

t

T r(2ψ(T − s)QTQψ(T − s)�s) ds

+ T r

(∫ T

t

ψ(T − s)�
1/2
s dŴσ

s Q+
∫ T

t

ψ(T − s)QT (dŴσ
s )
T �

1/2
s

))]

= exp(T r(�ψ(T − t))+ φ(T − t))

× Et,x,�
Q

[
exp

(
−

∫ T

t

T r(2Qψ(T − s)�sψ(T − s)QT ) ds

+ 2T r

(∫ T

t

Qψ(T − s)�
1/2
s dŴ σ

s

))]
.

With the help of Proposition A.1 it can be shown that the expression within the expectation is
a Q-martingale with expectation 1, which yields

Et,x,�
[
(Xπ

∗
T )

γ

γ

]
= xγ

γ
exp(T r(�ψ(T − t))+ φ(T − t)),

and the statement is shown.

Remark 5.1. The optimal portfolio strategy (π∗
t ) in (5.2) can be decomposed into the Merton

ratio v/(1 − γ ) and the hedging demand given by

2ψ(T − t)QT ρ

1 − γ
.

In the case where there is no correlation between the Brownian motions that drive the assets
and those which drive the volatility process, i.e. ρ = 0, the optimal portfolio strategy reduces
to the Merton ratio and does not depend on time. In all case note that the optimal portfolio
strategy does not depend on NNT and is deterministic.

6. Logarithmic utility case

In the case where the utility function in (2.4) is the logarithmic utility U(x) = log x, the
problem can be solved by pointwise maximization. Indeed, in the general drift case, for an
admissible portfolio strategy, we obtain

Et,x,�(log(XπT ))

= log x + Et,x,�
[∫ T

t

πTs (B(�s)− r)+ r − 1

2
‖πTs �1/2

s ‖2
2 ds

]

+ Et,x,�
[∫ T

t

πTs �
1/2
s dWS

s

]

≤ log x + Et,x,�
[∫ T

t

max
πs,s∈[t,T ]

(
πTs (B(�s)− r)+ r − 1

2
‖πTs �1/2

s ‖2
2

)
ds

]
, (6.1)
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when we assume that
∫ T
t
πTs �

1/2
s dWS

s is a true martingale. Obviously the maximizer is here
given by

π∗(�) = �−1(B(�)− r). (6.2)

For the case B(�) = r +�v with a v ∈ Rd , it is evident that π∗
t ≡ v and

∫ T

t

vT �1/2
s dWS

s

is a true martingale.
Substituting π∗ into (6.1) yields

sup
(πs)

Et,x,�(log(XπT )) = log x + r(T − t)

+ 1

2

∫ T

t

Et,x,�((B(�s)− r)T �−1
s (B(�s)− r)) ds.

For further computations we need to calculate the conditional expectation of the function

f (�t ) := (B(�t )− r)T �−1
t (B(�t )− r).

Note that�t has a Wishart distribution for fixed t . We refer the reader to Matsumoto (2012) for
the conditional expectation of the moments of real inverse Wishart distributed matrices, and to
Sultan and Tracy (1996) for the moments of central and noncentral Wishart distributions.

7. An example

In this section we compute the optimal portfolio strategy numerically for time horizon T = 1
in a two-dimensional example for the case B(�) − r = �v. More precisely, we consider a
financial market with one riskfree asset and d = 2 risky assets. The parameters are taken from
Buraschi et al. (2010), where such a model is calibrated to real market data from the Standard
and Poor’s 500 Index and 30-year Treasury bonds. For the volatility process (�t ) they obtained

M =
(−1.21 0.491

0.3292 −1.271

)
, Q =

(
0.167 0.033
0.001 0.09

)
,

ρ =
(−0.115

−0.549

)
, v =

(
4.722
3.317

)
.

In the computation we assume that we have an investor with power utility U(x) = xγ /γ,

γ < 1, γ 	= 0, where we vary the parameter γ . We use the formula in Proposition 4.1 to
compute ψ(t), i.e.

ψ(t) = ψ22(t)
−1ψ21(t), t ∈ [0, 1],

where (
ψ11(t) ψ12(t)

ψ21(t) ψ22(t)

)
= exp

{(
M̃ −2Q̃T Q̃

�̃ −M̃T

)}
, t ∈ [0, 1],

and M̃, Q̃T Q̃, and �̃ are given in Theorem 4.2. In our numerical study, ψ22(t) was
always invertible and we obtained finite values for ψ(t). The optimal portfolio strategy is
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Figure 1: Hedging demand (2/(1 − γ ))ψ(1 − t)QT ρ for asset 1 and 2 for (from left to right) γ = 0.8
and γ = 0.2.

given by (5.2),

π∗
t = v

1 − γ
+ 2ψ(T − t)QT ρ

1 − γ
.

Indeed, in the figures we only plot the hedging demand.
Note that the degree of risk aversion of the investor changes with parameter γ . Formally the

degree of risk aversion is defined by the Arrow–Pratt absolute risk aversion coefficient, which
is

−U
′′(x)

U ′(x)
= (1 − γ )

1

x

in the case of the power utility. Thus, the risk aversion decreases for all wealth levels with γ .
The case γ → 0 corresponds to the logarithmic utility: It is easy to see that γ → 0 implies
�̃ → 0 and, hence, a trivial solution of (4.5) is ψ ≡ 0. Thus, the hedging demand

2ψ(T − t)QT ρ

1 − γ

in this case is 0 and π�t = v. We know from (6.2) that this is the optimal portfolio strategy in
case of a logarithmic utility.

If γ ∈ (0, 1), the investor is less risk averse than in the logarithmic utility case and we
expect a negative hedging demand which implies a tendency to shortsell stocks. Indeed, when
we look at the pictures of the hedging demand for different γ we see that positive γ (less
risk averse investor) implies a negative hedging demand (see Figure 1) and negative γ (more
risk averse investor) implies a positive hedging demand (see Figure 2). We have observed
this behavior in all our numerical computations. This effect has also been reported in other
situations with power utility (see, e.g. Rieder and Bäuerle (2005)). Since the formula for (π∗

t )

is still quite complicated we did not try to prove this observation but we conjecture that it is
true for reasonable parameters.

In any case, the numerical study shows that it is very easy to compute the optimal portfolio
strategy numerically since the formulas are explicit and no numerical integration is needed.
Much higher dimensions than d = 2 would also pose no numerical problems.

https://doi.org/10.1239/jap/1389370097 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370097


Optimal portfolios for financial markets with Wishart volatility 1039

Figure 2: Hedging demand (2/(1 − γ ))ψ(1 − t)QT ρ for asset 1 and 2 for (a) γ = −0.1, (b) γ = −1,
and (c) γ = −8.

Appendix A

This section contains some proofs and auxiliary results.

Proof of Theorem 4.1. Observe first that under the new measure P̃, the process defined by
W̃σ
t := Wσ

t − ∫ t
0 θ(�s) ds is a d × d matrix Brownian motion on [0, T ] by the Girsanov

theorem. Thus, under P̃ the process (�t ) has dynamics

d�t = (NNT +M�t +�tM
T +H) dt +�

1/2
t dW̃σ

t Q+QT (dW̃σ
t )
T �

1/2
t ,

where we have used �1/2θQ+QT θT �1/2 = H . Hence, the process (�t ) is again a Wishart
process under P̃, however, with different drift. The characteristic operator of this process is,
for f ∈ C2(S+

d (R)), given by

(Af )(�) = 1
2T r(�(∇ + ∇T )(QTQ)(∇T + ∇))f
+ T r((NNT +M� +�MT +H)∇f ) under P̃.
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Then the partial differential equation (4.1) can be written as

Ah = −ht −
(
γ r

δ
+ γ

2(1 − γ )δ
(B − r)T �−1(B − r)

)
h, h(T ,�) = 1.

Applying the theorem of Feynman–Kac, we conclude that the representation in (4.2) is the
solution of (4.1) under proper conditions.

Proof of Theorem 4.2. We simply verify that g given in (4.4) satisfies (4.3). To this end note
that

gt = −g(φt (T − t)+ T r(ψt (T − t)�)),

∇g = ∇T g = gψ(T − t),

g�lk,�ij = gψji(T − t)ψkl(T − t).

Substituting these derivatives into (4.3) yields (obviously g cancels out):

0 = −(φt + T r(ψt�))+ 2T r(�ψ(QTQ)ψ)+ T r(ψ(NNT +M� +�MT ))

+ γ r + γ

2(1 − γ )
T r(vT �v + 4ρT Qψ�v + 4ρT Qψ�ψQT ρ).

In order to see that the right-hand side is really 0, keep in mind that φ satisfies (4.6), ψ satisfies
(4.5), and the following relations hold:

γ

2(1 − γ )
T r(vT �v) = T r(�̃�),

γ

2(1 − γ )
T r(4ρT Qψ�v) = γ

1 − γ
T r(vρT Qψ�)+ γ

1 − γ
T r(ψQT ρvT �),

T r(ρT Qψ�ψQT ρ) = T r(ψQT ρρT Qψ�).

To ensure g(T ,�) = 1, we need the initial conditions ψ(0) = 0 and φ(0) = 0. This completes
the proof.

Proof of Proposition 4.2. The explicit representation of ψ and φ follows directly from
Theorem 11 of Gnoatto and Grasselli (2014). Given Q̃T Q̃ ∈ GLd(R), these expressions are
well defined and finite when

K(t) := √
C2 cosh(

√
C2t)+ C1 sinh(

√
C2t) ∈ GLd(R), t ∈ [0, T ].

Indeed, we show now that K(t) ∈ GLd(R), for all t ≥ 0, if and only if

−2�̃ + M̃T (Q̃T Q̃)−1M̃ � 0 and
√
C2 + C1 � 0.

First of all note thatC2 is symmetric and for the well definedness of the matrix square root of
C2, we needC2 to be nonnegative definite, which is equivalent to −2�̃ + M̃T (Q̃T Q̃)−1M̃ � 0.
Consider the situation t = 0. We obtain K(0) = √

C2. Then K(0) ∈ GLd(R) if and only if
−2�̃ + M̃T (Q̃T Q̃)−1M̃ � 0.

Subsequently, we show the sufficiency of the conditions for t > 0. For the sake of simplicity,
we write

K(t) = 1
2 (

√
C2 + C1)e

√
C2t + 1

2 (
√
C2 − C1)e

−√
C2t .

Note that, for
√
C2 ∈ S+

d (R) and t > 0, there is e
√
C2t ∈ S+

d (R) and e−√
C2t = (e

√
C2t )−1 ∈

S+
d (R). Moreover, expanding the matrix exponential functions as a series, we obtain e

√
C2t −

e−√
C2t � 0 for

√
C2 ∈ S+

d (R), t > 0. Hence, we can write e
√
C2t = e−√

C2t + P(t) with
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P(t) ∈ S+
d (R). Then there is

K(t) = 1
2 (

√
C2 + C1)(e

−√
C2t + P(t))+ 1

2 (
√
C2 − C1)e

−√
C2t

= √
C2e−√

C2t + 1
2 (

√
C2 + C1)P (t),

which is always invertible if and only if det(K(t)) 	= 0, for all t > 0. Note that
det(K(t)P−1(t)) = det(K(t)) det(P−1(t)) and det(P−1(t)) > 0, for all t > 0, since
P(t) ∈ S+

d (R) for all positive t . We obtain K(t) ∈ GLd if and only if det(K(t)P−1(t)) 	= 0,
for all t > 0. Because of

K(t)P−1(t) = √
C2e−√

C2t (e
√
C2t − e−√

C2t )−1 + 1
2 (

√
C2 + C1)

= (e2
√
C2t (

√
C2)

−1 − (
√
C2)

−1)−1 + 1
2 (

√
C2 + C1)

=
(

2tI + 2t2
√
C2 + 4t3

3
C2 + · · ·

)−1

︸ ︷︷ ︸
�0

+1

2
(
√
C2 + C1),

it follows that det(K(t)P−1(t)) 	= 0, for all t > 0 from
√
C2 + C1 � 0.

Finally, we show the necessity of the conditions. We assume
√
C2 + C1 � 0. Note that,

for t = 0, K(0) = √
C2 � 0, which implies that all the eigenvalues of K(0) are positive. If√

C2 + C1 � 0, i.e.
√
C2 +C1 possesses at least one negative eigenvalue, we can show that the

matrix (
√
C2 + C1)e

√
C2t also has at least one negative eigenvalue by using a matrix similarity

transformation,

σ((
√
C2 + C1)e

√
C2t ) = σ((e

√
C2t )1/2(

√
C2 + C1)(e

√
C2t )1/2),

where σ(A) denotes the spectrum of the matrixA. Then, for large enough t , it follows thatK(t)
has at least one negative eigenvalue. Since the spectrum of a matrix is a continuous function
on the entries of the matrix (see Rellich (1969)), we conclude that there exists a t > 0 with
K(t) /∈ GLd(R) if

√
C2 + C1 � 0. This completes the proof.

Proposition A.1. Let us denote

Zt := exp

(∫ T

t

T r(As�
1/2
s dWσ

s )− 1

2

∫ T

t

‖As�1/2
s ‖2 ds

)
,

where (At )t∈[0,T ] is a deterministic process with values in Rd×d and bounded by A∗ ∈ Rd×d .
Then (Zt )t∈[0,T ] is a martingale.

Proof. By Lemma 4.2. in Hata and Sekine (2011), (Zt ) is a martingale if there is a constant
C0 ∈ R+ such that √

T r(θ(�)θT (�)θ(�)θT (�)) ≤ C0
√
T r(��) (A.1)

with θ(�) = A�1/2. Consider the left-hand side of this inequality,

T r(θ(�)θT (�)θ(�)θT (�)) = T r(A�AT A�AT )

≤ λmaxT r(A��A
T )

= λmaxT r(�A
T A�)

≤ λ2
maxT r(��),
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where λmax is the largest eigenvalue of ATA. The second to last inequality follows from the
fact that the trace of a matrix is the sum of its eigenvalues and

A�ATA�AT = A�O�OT�AT � λmaxA��A
T ,

where O�OT is the spectral decomposition of ATA. The last inequality follows in the same
way, i.e.

�ATA� = �O�OT� � λmax��.

SinceAs ∈ Rd×d is bounded on [0, T ], λmax is also bounded on [0, T ] and we denote its upper
bound by λ∗

max. Hence, we conclude that (A.1) is satisfied with C0 = λ∗
max, which implies that

(Zt ) is a martingale. This completes the proof.

Proposition A.2. Let us denote

Zt := exp

(∫ T

t

ATs �
1/2
s dWS

s − 1

2

∫ T

t

‖ATs �1/2
s ‖2 ds

)
, t ∈ [0, T ],

where (At )t∈[0,T ] is a deterministic process with values in Rd which is bounded by A∗ ∈ Rd .
Then (Zt )t∈[0,T ] is a martingale.

Proof. First note that it is sufficient to show that EZt = 1 for t ∈ [0, T ]. Since 〈WS
t,k,

Wσ
t,kj 〉 = ρj we obtain (WS

t,k)
d= (ρ1W

σ
t,k1 +

√
1 − ρ2

1Ŵt,k1), where (Ŵt ) is a d × d Brownian

motion matrix independent of (Wσ
t ). Thus, denoting vρ := (ρ1, 0, . . . , 0)T ∈ Rd and v̄ρ :=

(

√
1 − ρ2

1 , 0, . . . , 0)T ∈ Rd , we obtain

ATt �
1/2
t dWS

t
d= T r(vρA

T
t �

1/2
t dWσ

t )+ T r(v̄ρA
T
t �

1/2
t dŴt )

and

‖ATt �1/2
t ‖2 = (ρ2

1 + (1 − ρ2
1 ))‖ATt �1/2

t ‖2 = ‖vρATt �1/2
t ‖2 + ‖v̄ρATt �1/2

t ‖2.

Hence, we can write

Zt
d= exp

(∫ T

t

T r(vρA
T
s �

1/2
s dWσ

s )− 1

2

∫ T

t

‖vρATs �1/2
s ‖2 ds

)

× exp

(∫ T

t

T r(v̄ρA
T
s �

1/2
s dŴs)− 1

2

∫ T

t

‖v̄ρATs �1/2
s ‖2 ds

)

= E

(∫ T

·
T r(vρA

T
s �

1/2
s dWσ

s )

)
t

E

(∫ T

·
T r(v̄ρA

T
s �

1/2
s dŴs)

)
t

,

where E denotes the stochastic exponential. Now we obtain

EZt = E[E[Zt | F Wσ

T ]]

= E

[
E

( ∫ T

·
T r(vρA

T
s �

1/2
s dWσ

s )

)
t

E

[
E

( ∫ T

·
T r(v̄ρA

T
s �

1/2
s dŴs)

)
t

∣∣∣∣ F Wσ

T

]]
.

Since (Ŵt ) and (Wσ
t ) are independent, the inner conditional expectation is equal to 1 due

to Example 4 in Liptser and Shiryaev (2001). From Proposition A.1 we conclude that the
remaining expression is also 1.
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