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MONOTONE METHOD AND PERIODIC SOLUTION OF NON LINEAR
PARABOLIC BOUNDARY VALUE PROBLEM FOR SYSTEMS

M. PAUL DEVASAHAYAM

A system of parabolic equations is considered:

Lu. = u., - u. = f.[x, t, u, u. ) on Q ,
^ it ix vK ix}

jU^j, t) = O)̂ .(t) , t e (-oo, oo) , j = o, 1 , i = 1, 2, ..., n ,

where B. is one of the boundary operators B.u. = u. or

B.u. = 3M./3V + &.{x, t)u. , x = 0, 1 , n = (0, 1) ,
tr U Is Is if

Q = SI * R , u[=[ux, ..., u^)) : Q •+ iP , v(x) is the outward

normal to the boundary 3fi, /, u, to , a) are n-valued functions

and /, tOg, to are periodic in t with period T and 6- is a

positive function.

The paper is classified into two parts. The first part deals

with the existence and uniqueness of periodic solutions of the

above system of parabolic equations. The second part deals with

a monotone iterative method which develops a monotone iterative

scheme for the solution of the above system of equations. In

this paper we establish the existence of coupled quasi-solutions

of the above equation. Also we give a monotone iterative scheme

for the construction of such a solution.
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1. Introduction

The method of upper and lower solutions is one of the known techniques

in the theory of non-linear boundary value problems and initial boundary

value problems. In particular, when we are dealing with systems of

equations, we require that the non-linearities be quasimonotone. But in

applications such a restriction does not always obtain for example,

consider a simple model governing the combustion of a single species

described by the following system of equations [7]:

f . h,r • „,-*/«•
(l.D

where T denotes temperature, y the concentration of reactunt and

k , k , q, E, E, Ft are all positive constants. However, a mixed quasi-

monotonicity condition is satisfied. In this paper we establish the

existence of coupled quasi-solutions of the periodic parabolic boundary

value problem. Also we give a monotone iterative scheme for the

construction of such a solution.

2. Existence theorem

Consider a system of parabolic equations:

(2.1) LUi = uit - uixx = /\(z, t, u, uix) on Q ,

( 2 . 2 ) B/uJ.3, t) = u . . ( t ) , * e (-°°, °°) , j = 0 , 1 , i = 1 , 2 , . . . , n ,

where B • i s one of t h e boundary o p e r a t o r s B .u.. = u. o r

B.u. = 3 M . / 9 Y + B . U , t)u. , x = 0, 1 , fi = ( 0 , 1) , Q = fi x R ,
U Lr If 1* Is

u[=(u. •-. u )) : Q -* if , y(#) is the outward normal to the boundary

dil , /, M, OK, o) are n valued functions and /, a) , a) are periodic

in t with period T and 3- is a positive function.

Let /(a;, t) : Q ->• R be a continuous function which is periodic in

t with period T and Holder continuous in x £ [0, 1] uniformly with

respect to t . It is well known that the linear problem
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B.uAj, t) = 0 , j = 0, 1 , i = 1, 2 , . . . , n ,
Is L-

has a unique periodic solution of period T [5] which may be written as

rt rlft ,1
uAx, t) = G(x, t; a,

r J oo Jn
9)f.(o, d)dade

where G(x, t; a, 8) is the Green's function for Lu. = 0 on a rectangle.

We shall let S denote the Banach space of real-valued functions

v(x, t) which are periodic in t of period T , continuous on

[0, l ] x [0, T] , have a partial derivative with respect to x which is

continuous on [0, l ] x [o, T] . The norm of S will be given by-

lull = max \v{x, t)\ + max l u
x ( x » *)I •

[0,l]x[0,2i [0, l]x[0,r]

Now let X = S1" . Let u G X ; then u = [u ... u ) and

lu\\x= \\uj + ... + iujl .

We require the following hypotheses.

(i) /-(x, t, u, p.) is a periodic in t of period T .

(ii) f. (x, i, M, p.) is continuous for 0 < x <, 1 and

(t, u, p) & H satisfies a Holder condition (jointly in (x, t) ) with

exponent 0 and satisfies local Holder conditions (in u and p

uniformly with respect to t ) with exponent a .

(iii) For |w| <, M and all x, t, p ,

1/J*, *. «, P̂ l * ̂ H P J ) , * = 1, 2, ..., n ,

where y. (s) is defined for s > 0 and is positive non-decreasing in s

with u...(s) = o[s } as 8-»-+°°.

(iv) / . satisfies mixed quasi-monotonicity in u ; that i s , for

each j # i (fixed), / . is monotonic (either non-decreasing or non-

increasing) in u. . Arranging the components of u (other than ith ) in
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which / . is non-decreasing in [u] , and those in which / . is non-
1' A. I*

increasing in [u]^ , we write

j \(x, t , u, uix) = /\(x, t , uv [u]lt [u]2, uix) .

(v) <|>, ip a r e coupled lower and upper s o l u t i o n s of t h e problems

( 2 . 1 ) , ( 2 . 2 ) ; namely, p e r i o d i c func t ions $,$£(?' (#, if1) such t h a t

<J) < ip and

ht " hxx * fi(x> *• *i« [<t)]i' W2> * tJ o n « -
(2.1*)

B,.<t>,-(<7, t ) < u . , . ( t ) , 3 = 0 , 1 , i = 1 , 2 , . . . , n ;

it
(2.5)

B.ifUar, t ) > u . . ( t ) , J = 0, 1 , i = 1, 2 , . . . , n .

(v i ) There i s a function q(x, t) in the Holder class C~+a(Q) such

t h a t q.U, t ) = a), . ( t ) , t e R , j = 0, 1 , £ = 1 , . . . . n .

THEOREM 2 . 1 . ylsswme tha t ( i ) - ( v i ) above hold. Then problems (2 .1) ,

(2.2) ?zas at least one solution uix, t) which satisfies

<}>.(x, t ) < u . ( a , t ) £ <J>.(a:, t ) on fi x i?
1* I* t'

for some constant N = (N . . . N ) > 0 .

Proof. We sha l l l e t d.Ax, t) denote the unique periodic solution

to the problem Lu. = 0 with boundary condition (2 .2 ) . The existence and

uniqueness of d.Ax, t) i s well known [ 5 ] . Now l e t

f. (x, t , u, p.) - [ M . - A . J / 1+M. | for u. < <(>. ,

(2 .6) Fj [x, t , u, Pj) = • f.[x, t , u, p.) for <)>. <,u. <, ty. ,

f . (x , t , u, p.) - fw.-iji.l/ 1+M. for u. > \b. ,

where
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u. =

<K(x, t) i f u. > iK(x, t) ,
tf If Lf

u.
1

i f A . ( x , t) < u ^ <b.(x, t) ,

b.(x, t) i f u. < <f>.(x, t ) ;

we can consider the equation

(2.7) Lu^ = F^fe, t, u, uix)

with the boundary conditions (2 .2 ) .

I t i s easy to show tha t <j> and ty are again coupled lower and upper

solutions of (2 .7 ) , (2 .2) . We further define

-F.[x, t, 4(x, t), 4 . (x, *))]

( 2 . 8 ) g.(x, t ,
+ * \ ( x , t , <(.(x, t), <i,ix(x, t)) i f ^ < u^ £ ^ ,

F . f x , t , tMx, t), \1>. ( x , t)) - \u.-\h.']
t v 'IX y t f

i f u. > <J).(x, t ) .
If i*

Observe that g-(x, t, u) is continuous on Q * IT and satisfies local

Holder continuity in (x, t) with exponent o . Moreover, being linear in

u. , g. satisfies uniform Lipschitz conditions in the variable u . We

form a family of parabolic equations

(2.9)

with boundary conditions (2.2) and \ € [0, l ] .

We asser t tha t any periodic solution v(x, t) of ( 2 . 9 ) , (2.2)

sa t i s f i e s

(2.10) .(x, t) ^ V.(x, t) ^ *.(x, t) on

To prove the right hand inequality, define

u.(x, t) = u.(x, t) - tj).(x, t) .
U If lr

It is evident that w. is continuous and periodic on Q . Let y.(x, t)
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attain i ts maximum at (x*, t*) . We can easily see that (x*, t*) is an

interior point of Q . Thus

o <c w.t{x\ t*) - wixx{x\ t*)

= vu{x*, t*) - vixx(x\ t*) - 1^(x*. **) + *ixx{x*t t*)

<: XF.(x*. t\ v(x*. **), v.Jx*, t*)) + (l-X)o.(a*, t*. v{x\ t*))

_ XF.fe*. **, * . , [*] , [<fr] , *. (x*. t*)1 - (l-X)a.(x*. t*, \\>(x*, t*))

= _(1-X)[ur^] + Xf.(x*. **, v, vix)

< 0 (by the hypothesis (iv))

which is a contradiction. Hence the above assertion. A similar argument

can be used to complete the proof of (2.10).

Next define integral operators

Wi : X ->- 5 by W^h) = h^x, t) ,

where

rt ,1
h.x(x, t) = d. (x, t) + [ C(x, t; a, 6)

J_oo ^0
( 2 - l l ) l> , (o , 9, ft(a, 6), h. (o, 8))+(l-X)fl.(o, 6, Ma, 6))]dade .

We can easily show that v(x, t) and V_(x, t) are bounded functions
•E

where

tt rl
u i(x, t) = diQ(x, t) + I [ G(x, t ; a, 6)

(/.(a, 6, u, u. )+(l-X)g. (a, 6, v(a,

+ G(x, t\ a, t-6)y.(a, t-
Jn v

&)do

and

rt rl ,1
v. (x , t ) = d. (x, t) + [ G |_XF.+(1-X)^.]dade + | G y.da .

Let W and ff be such t h a t | u . (x , t)\ <M. and \v. (x , t ) | ^ N. on
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Q . See [7]. Now, when X = 0 ,

(2.12) Lu = g{x, t, u) .

Equation (2.12) with (2.2) has a unique periodic solution since g

satisfies the Lipschitz condition (uniformly) in u (see [5], p. 202).

Therefore, by the Leray-Schauder theorem, the problems (2.1), (2.2)

have periodic solution. This completes the proof.

For uniqueness of the solution, an additional hypothesis is imposed.

This is the content of

COROLLARY 2.1. In addition to the hypotheses of Theorem 2.1., suppose

that, for all t, x, u, v, p ,

/ ' **• » £> w s PI ~Jj \x •> t , V

for some positive constant c . Then problem (2.1)j (2.2) has a unique

periodic solution {of period T ) .

DEFINITION 2.1 . The functions u, v, C 2 ' 1 ^ , iP) are said to be
coupled quasi-solutions of ( 2 . 1 ) , ( 2 . 2 ) i f

uit ~ uixx = fi(x- *» V [u]i« [v]2> uiJ -
(2.13a)

B.-uAJ, t) = 0)..(t) , 3 = 0, 1 , i = 1, 2, . . . , « ,

and

it ixx i *• ' ' i' 1' 2' ix' '
(2.13b)

B.-vAJ, t) = w..(t) ,3 = 0, 1 , i = 1, 2, ..., n .

In view of Theorem 2.1, we see that the problem (2.13) has a solution and

hence (2.1), (2.2) have coupled quasi-solutions.

3. Monotone iterative method

To develop a monotone iterative scheme for the solution of the

boundary value problem (2.1), (2.2), we need the following one-sided

condition similar to Llpschitzian.
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(vii)

/ \ (x , t, vit [v]±, [u]2, vix) - f^x, t , uit [u]v [v}2, uix)

< Mx.(B) (u.-*.) + M2.(u.x-v.

for <|>.(x, t) <, v. < u. < i().(x, t) , where B c iP i s any bounded se t

and A/n . = M . (B) , Mo. are posi t ive constants .

Consider now the boundary value problem

(3-D Lu. = ^(x, t, «, u j

with the boimdary conditions (2.2) where

(3.2) l l

for any periodic function n, , n_ e C[Q, B'"\ such that

<}>(x, t) < n , n ^ <^(x, t ) , |n . | < N. on Q and H. i s truncated in

p . ; t h a t i s

H• (x, t , M, p . j = f• [x, t , w, p . )

where

'tf. i f p . > N. ,

-N^ i f p^ < -ff ,

where ff. i s the bound of the derivative of the solution of ( 2 . 1 ) , (2 .2 ) .

We can eas i ly show tha t Y. s a t i s f i e s a l l the hypotheses ( i ) - ( v i ) of

Theorem 2 .1 (see [3 ] ) .

LEMMA 3.1. Let the assumptions ( i )-(vi) hold. Then there exists a

unique periodic solution u G CT' [Qt i r ] to the boundary value problem

( 3 - D , (2.2) such that

(b.(x, t) < u.(x, t) < IJJ.(X, t) on Q
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and there exists a N > 0 such that

on

Proof. The existence is assumed by Theorem 2.1. The uniqueness can

be proved on lines similar to the part of the proof in Theorem 2.1 where

any solution V is shown to satisfy (2.10). Hence the lemma.

How for each pair (n , ru) as used in defining Y. in (3.2), let

A^r\ , rip] denote the unique v G (T' [Q^ tf1} which is the solution of the

boundary value problem (3.1), (2.2).

LEMMA 3.2. Under the assumptions of Lemma 3.1 and (vii) above, the

mapping A[•, •] satisfies

(3.3) ylQ^, n2] < A[r\2, n j

where x\ , n are any periodic functions with ((j> <) n < ru (< ty) and

Proof. Let A^, rig] = w± , A£T)2, n ^ = " 2 • Then writing

z. = w . - w . , if possible, let (xn, tn) c Q be the interior point such

that z. attains a positive maximum there:

LW .

left

2^ ^xx

hand side

= S^x , V

< 0 (by (vii))

which is a contradiction. From boundary conditions we have that

z.{j, t) <, 0 for all t in R , j = 0, 1 , i = 1, 2, ..., n (see [5],
1
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page 5 3 ) . There fore 2-(a; , t) < 0 on Q . Hence t h e lemma.

We d e f i n e t h e sequences

where V- = <)> , w = ty . I n view of Lemma 3 -2 , we get

vn <, y, < . . . < v < w < . . . < w ,
0 1 n n 0

(t r l
u Ax, t) = d.Ax, t) + I G(x, t; a, 9)

n*% %0 H-6 J0

3d6 + G(x, t; a, t-

where G is Green's function and

rt rl
v . (x , t) = d. + G fe.+M . (y .-u , .) + M . fu . -v , .
n , s x ^0x j + j ; j n x ^ l•^-n^ n-1,1-1 2^v m-x n-l,t

+ ff v .da .

Since for each i , S, i s a bounded function, the sequence {v } i s
If 7%

uniformly bounded and equicontinuous. Then by the Arzela-Ascoli theorem

\v } contains a subsequence which is uniformly convergent. Since [v }

is monotone, the full sequence converges uniformly. \v } contains a
1 nx'

subsequence which is uniformly convergent. We can find subsequences which

we again denote by \v }, {w } converging uniformly and monotonically.

Let a(x, t) = lim v (x, t) , g(x, t) = lim w (x, t) . Then

Lai = H^x, t, ou, [ a ] 1 , [B l 2 > a ^ ) ,

B.aio, t) = (D. . ( t ) , 3 = 0 , 1 , i = 1 , 2 , . . . , n ,

Lg. = ^ ( x , t, li% [ B j ^ t a ] 2 , &ix) ,

B.B(j , *) = to. . ( t ) , i = 0, 1 , i = 1 , 2 , . . . , n .
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For each i , using the continuation arguments as outlined in Theorem 1.5.1

of Bernfeld and Lakshmikantham [2] , we arrive at the conclusion that a, 3

are coupled quasi-solutions of ( l . l ) , (1.2).

Using similar arguments, we can conclude that

v (x, t) < u, v < w (x, t) on Q

where u, v are any coupled quasi-solutions of (l.l), (1.2).

We claim tha t (a , 3) are coupled minimal and maximal quasi-

solut ions . Let {u, v) be any coupled quasi-solutions of ( l . l ) , (1.2)

such that <)>. < u., v. < ty. on Q . Since u = <j> , w. = 4> , vn <L u

and w > v , then v = A[y-, W/\ < A[U, V] = u and so on. This implies

that v < u and similarly w > v for a l l n . Thereforen n

lim v = a(x, t) <, u and lim w (x, t) = 3(x, t) > v . Hence (a, 3) is
n "

coupled minimal and maximal quasi-solutions.
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