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On Density Conditions for
Interpolation in the Ball

Nicolas Marco and Xavier Massaneda

Abstract. In this paper we study interpolating sequences for two related spaces of holomorphic func-

tions in the unit ball of C
n, n > 1. We first give density conditions for a sequence to be interpolating

for the class A−∞ of holomorphic functions with polynomial growth. The sufficient condition is for-

mally identical to the characterizing condition in dimension 1, whereas the necessary one goes along

the lines of the results given by Li and Taylor for some spaces of entire functions. In the second part

of the paper we show that a density condition, which for n = 1 coincides with the characterizing

condition given by Seip, is sufficient for interpolation in the (weighted) Bergman space.

1 Introduction

Let A−∞ denote the space of holomorphic functions in Bn = {z ∈ C
n : |z| < 1}

(denoted B if no confusion can arise) satisfying the growth condition

log | f (z)| ≤ C f log

(

e

1 − |z|

)

C f > 0.

A−∞ is the smallest algebra of holomorphic functions that contains the class H∞

of bounded holomorphic functions and is closed by differentiation. A−∞ can be

thought of as the union of the spaces

A−p
=
{

f ∈ H(Bn) : ‖ f ‖A−p =: sup
z∈Bn

(1 − |z|)p| f (z)| <∞
}

p > 0.

It can also be thought as the union of weighted Bergman spaces

B2
α :=

{

f ∈ H(Bn) : ‖ f ‖2
α :=

∫

Bn

| f (z)|2(1 − |z|2)2α−1 dm(z) <∞
}

α > 0,

where dm denotes the Lebesgue measure.

The class A−∞ in the unit disk D ⊂ C was intensively studied by Korenblum in

two essential papers [Kor75, Kor77]. The first of them contains a characterization

of the zero sequences and a factorization theory for A−∞, whereas the second one

provides a complete description of its closed ideals.
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Definition Let Γ := {ak}k ⊂ Bn be a discrete sequence. Γ is A−∞-interpolating,

denoted Γ ∈ Int A−∞, if for every sequence of values {vk}k∈N, such that ∃C > 0

with

(1) log |vk| ≤ C log

(

e

1 − |ak|

)

for all k ∈ N

there exists f ∈ A−∞ with f (ak) = vk for all k ∈ N.

Bruna and Pascuas characterized A−∞-interpolation in the disk by a condition

which is essentially Korenblum’s condition for the zero sequences made invariant

by automorphisms (see [BP89]). A different characterization in terms of a suitable

density was given in [Mas99, Theorem 1.3]. We first prove that the formal analogue

of such density is also sufficient in higher dimension.

Let φz denote an automorphism of the unit ball exchanging z and 0.

Theorem 1 Γ = {ak}k is A−∞-interpolating if there exists a constant C > 0 such

that

(a)
∑

k: 0<|φa j
(ak)|≤1/2 log 1

|φa j
(ak)| ≤ C log( e

1−|a j |
) j ∈ N,

(b)
∑

k: 1/2<|φz(ak)|≤|z| log 1
|φz(ak)| ≤ C log( e

1−|z| ) |z| > 1/2.

The constant 1/2 can be replaced by any other δ ∈ (0, 1), as will be clearly seen in

the proof.

This result is proved using L2-estimates for the ∂̄, following the ideas in [BC95].

The main difficulty in the proof is, as usual, the choice of an appropriate subhar-

monic function with singularities on the sequence.

This sufficient condition cannot be improved, in the sense that no condition of

type
∑

k: 1/2<|φz(ak)|≤|z|

log
1

|φz(ak)| ≤ CΛ(|z|),

where Λ : [0, 1) → R is increasing and limr→1
Λ(r)

| log(1−r)| = +∞, can be sufficient.

This is easily seen by considering sequences {ak}k ⊂ Bn with ak = (αk, 0) ∈
D × {0}n−1, and applying the result in the disk, since {ak}k ∈ Int A−∞(Bn) if and

only if {αk}k ∈ Int A−∞(D).

When n > 1 the conditions above are far from being necessary. However, adapting

to the ball a result by Li and Taylor [LT96] for some algebras of entire functions, we

obtain a necessary density condition for A−∞-interpolation, which we include for

the sake of completeness.

Given z, ζ ∈ B consider the hyperbolic pseudodistance

d(z, ζ) = |φz(ζ)|.
Also, given δ ∈ (0, 1) and a sequence Γ, consider also the pseudoball

K(z, δ) = {ζ ∈ D : d(z, ζ) < δ}
and the associated counting function

n(z, δ) := #Γ ∩ K(z, δ).
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On Density Conditions for Interpolation in the Ball 561

Theorem 2 If Γ = {ak}k is A−∞-interpolating then

(a) Γ is weakly separated, that is, there exist constants ε, q > 0 such that

d(a j , ak) ≥ 2εmax[(1 − |ak|)q, (1 − |a j |)q] for all j 6= k.

(b) There exists a constant C > 0 such that for all z ∈ Bn and all r ∈ (0, 1)

n(z, r) ≤ C

(1 − r)n

[

log

(

e

1 − r

)

+ log

(

e

1 − |z|

)] n

.

Since
∑

k: 1/2<|φz(ak)|≤|z|

log
1

|φz(ak)| =

∫ |z|

1/2

n(z, t)
dt

t
,

from (b) we obtain the following condition.

Corollary 3 If n > 1 and Γ = {ak}k is A−∞-interpolating then

∑

k: 1/2<|φz(ak)|≤|z|

log
1

|φz(ak)| ≤
C

(1 − |z|)n−1

[

log

(

e

1 − |z|

)] n

|z| > 1/2.

Remark In the disk there is a gap between the necessary condition we obtain here

and the necessary condition (b) of Theorem 1.

In order to see this let dλ := (1 − |z|2)−(n+1) dm denote the invariant measure in

Bn. Then Theorem 2 (b) can be rewritten as

n(z, r)

λ
(

K(z, r)
) ≤ C

[

log

(

e

1 − r

)

+ log

(

e

1 − |z|

)] n

.

Similarly, the condition in Corollary 3 is equivalent to

∑

k: 1/2<|φz(ak)|≤|z| log 1
|φz(ak)|

∫ |z|

1/2
λ
(

K(z, t)
)

dt/t
≤ C

[

log

(

e

1 − |z|

)] n

|z| > 1/2.

When n = 1 this differs by a logarithmic factor from the necessary condition (b) of

Theorem 1, which is equivalent to

sup
z: |z|>1/2

∑

k: 1/2<|φz(ak)|≤|z| log 1
|φz(ak)|

∫ |z|

1/2
λ
(

K(z, t)
)

dt/t
<∞.

In the second part of the paper we show that the techniques used in the previous

results can be adapted to give a sufficient condition for interpolation in the space B2
α

in the ball, following [BC95, Theorem 3].
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Definition A sequence Γ = {ak}k ⊂ Bn is B2
α-interpolating if for all sequence of

values {vk}k∈N such that

(2) ‖v‖2
α :=

∞
∑

k=1

(1 − |ak|2)2α+n|vk|2 <∞,

there exists f ∈ B2
α such that f (ak) = vk.

The sufficient condition is given in terms of the following density

D(Γ) = lim sup
r→1

sup
z∈B

∑

k: 1/2<|φz(ak)|<r log 1
|φz(ak)|

log 1
1−r

,

which is the analogue of the 1-dimensional upper density used by Seip to characterize

B2
α-interpolation in the unit disk [Sei94].

Theorem 4 Let Γ be a separated sequence Bn. If D(Γ) < α/n then Γ is B2
α-interpo-

lating.

With this and [JMT96, Theorem 3.3] one can also give sufficient conditions for

interpolation in the more general Bergman spaces B
p
α = H ∩ Lp[(1 − |z|)α−1 dm],

p, α > 0.

A sequence {ak}k is called separated when inf j 6=k d(a j , ak) > 0. The separation

is a necessary condition for B2
α-interpolation, and it implies n(z, r) ≤ C(1 − r)−n,

whence by integration

sup
r>1/2

sup
z∈Bn

∑

k: 1/2<|φz(ak)|<r log 1
|φz(ak)|

(1 − r)1−n
<∞.

The order of this estimate cannot be improved, since {ak}k is B2
α-interpolating if it

is separated enough (i.e. inf j 6=k d(a j , ak) is big enough). We do not know of a more

precise estimate (in terms of α and n).

The paper is organized as follows. In Section 2 give the proof of Theorem 1, except

for some unpleasant computations that are left for an appendix. Section 3 contains

the proof of Theorem 4. In Section 4 we outline the proof of Theorem 2 and show

the minor adjustments to make the proof of Li and Taylor work in the ball.

A final remark about notation. C will always denote a positive constant and its

actual value may change from one occurrence to the next. A � B means that A ≤ cB

for some c > 0, and A ' B is A � B � A.

2 Proof of the Theorem 1

Let {vk}k satisfy condition (1).

We first see that it is possible to construct a smooth interpolating function having

the characteristic growth of A−∞.
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On Density Conditions for Interpolation in the Ball 563

Condition (a) implies that Γ is weakly separated (see the definition in Theo-

rem 2(a)). Thus, the hyperbolic pseudoballs Kk := K(ak, δk), where δk = ε(1−|ak|)q,

are pairwise disjoint.

Let X be a smooth cut-off function of one real variable with uniformly bounded

derivative, X(t) ≡ 1 for t < 1/2 and X(t) ≡ 0 for t > 1.

Consider the smooth interpolating function

F(z) =

∞
∑

k=1

vkX

( |φz(ak)|2
δ2

k

)

.

The support of F is contained in ∪kKk and for z ∈ Kk

|F(z)| ≤ |vk|,

|∂̄F(z)| � |vk|
|∂̄|φak

(z)|2|
δ2

k

≤ |vk|
1

δk

1

1 − |ak|
.

Thus, for some p > 0

sup
z∈B

|F(z)|(1 − |z|)p � sup
k∈N

|vk|(1 − |ak|)p <∞,

and similarly, supz∈B
|∂̄F(z)|(1 − |z|)p+q+1 < ∞. In particular, for some α > 0 big

enough

(3)

∫

B

|F(z)|2(1 − |z|2)α <∞;

∫

B

|∂̄F(z)|2(1 − |z|2)α <∞.

Now, when looking for a holomorphic interpolating function of the form f := F −u

we are led to the ∂̄-problem

∂̄u = ∂̄F,

which we solve by Hörmander’s theorem [Hör90]: given a pluirisubharmonic func-

tion ψ in B, there exists a solution u to the above equation such that

∫

B

|u|2e−ψ ≤
∫

B

|∂̄F|2Ωe−ψ,

where | · |Ω indicates the norm with respect to the metric Ω := i∂∂̄ψ (see also [Del98,

Theorem 1] for a more refined result).

In order to define a suitable weight ψ let

ρz =

{

3/4 if |z| ≤ 3/4,

|z| if |z| > 3/4,

and

K(r) =

∫ r

1/4

dt

1 − t
' log

1

1 − r
.
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Consider the negative function

F(ρ, x) =

{

0 if ρ ≤ x,

log x − 1
K(ρ)

∫ ρ

1/4

log max(x,t)
1−t

dt if ρ > x,

which is C1 and vanishes at order two on {(x, ρ) : x = ρ}, and let

v(z) = n

∞
∑

k=1

F
(

ρ2
z , |φz(ak)|2

)

.

Define the weights

ψβ(z) = β log

(

1

1 − |z|2
)

+ v(z) β > 0.

Recall that the fundamental form of the Bergman metric is

Ψ(z) = i∂∂̄ log

(

1

1 − |z|2
)

=
(1 − |z|2)i∂∂̄|z|2 + i∂|z|2 ∧ ∂̄|z|2

(1 − |z|2)2
.

Lemma 5 Under the hypotheses (a) and (b) of Theorem 1, there exists a constant

C > 0 such that i∂∂̄v ≥ −CΨ.

The proof of this lemma is a gloomy calculation, and it will be deferred till the end

of the paper. Assuming this, for β big enough we have:

Ωβ := i∂∂̄ψβ = βΨ + i∂∂̄v ≥ Ψ,

thus |∂̄F|Ωβ
≤ |∂̄F|Ψ ≤ |∂̄F| and

(4)

∫

B

|u|2(1 − |z|2)β ≤
∫

B

|u|2e−ψβ ≤
∫

B

|∂̄F|2(1 − |z|2)β+1e−v.

If z is in the support of ∂̄F, there exists k such that δk/2 < |φz(ak)| < δk. For such

z, if |z| > 3/4, the definition of v and the hypotheses yield:

−v(z) ≤ n
∑

j: |φz(a j )|≤|z|

log
1

|φz(a j)|2
� log

1

δk

+
∑

0<|φak
(a j )|≤1/2

log
1

|φak
(a j)|

+
∑

1/2<|φz(a j )|≤|z|

log
1

|φz(a j)|

� log
1

δk

+ log

(

1

1 − |ak|

)

+ log

(

1

1 − |z|

)

� log

(

1

1 − |z|

)

.
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If |z| ≤ 3/4 it is clear that

−v(z) �
∑

j: |φz(a j )|≤3/4

log
1

|φz(a j)|
� log

(

1

1 − |z|

)

.

Thus there is c > 0 such that e−v � (1−|z|)−c on supp(∂̄F). Taking β big enough,

the above and (3) show that the last integral in (4) is finite.

This shows that f ∈ A−∞. Moreover e−ψβ ' |φz(ak)|−2n around each ak, so

the convergence of the second integral in (4) implies u(ak) = 0 for all k ∈ N, and

therefore f (ak) = vk, as required.

3 Proof of Theorem 4

This proof follows the same scheme as the previous one.

Take δ > 0 such that the hyperbolic balls Kk := K(ak, δ) are pairwise disjoint,

and given {vk}k satisfying (2), consider the smooth interpolating function

F(z) =

∞
∑

k=1

vkX

( |φz(ak)|2
δ2

)

.

The support of F is contained in ∪kKk, and for z ∈ Kk we have now |F(z)| ≤ |vk|,
hence

∫

B

|F|2(1 − |z|2)2α−1 �
∑

k

∫

Kk

|F|2(1 − |z|2)2α−1 � ‖v‖2
α.

When solving the ∂̄ equation we will need an estimate of the norm with respect to

the Bergman metric

|∂̄F|2Ψ = (1 − |z|2)2|∂̄F|2 + (1 − |z|2)
∣

∣ ∂̄F ∧ ∂̄|z|2
∣

∣

2
.

Since

|∂̄F(z)| � |vk|
∣

∣ ∂̄|φz(ak)|2
∣

∣ z ∈ Kk

and

∂̄|φak
(z)|2 =

1 − |ak|2
|1 − ākz|2

[

∂̄|z|2 −
(

1 − |z|2
1 − akz̄

)

(

∑

j

a jdz̄ j

)

]

,

we have

|∂̄F(z)|Ψ � |vk| for z ∈ Kk.

From the above we get

(5)

∫

B

|∂̄F|2Ψ(1 − |z|2)2α−1 �
∑

k

∫

Kk

|vk|2(1 − |z|)2α−1 dm ' ‖v‖2
α.
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Now we solve the ∂̄-equation ∂̄u = ∂̄F by the following theorem.

Theorem [BC00, Theorem 2.3] Let w and ψ be plurisubharmonic functions such that

ψ ≥ 0 and i∂ψ ∧ ∂̄ψ ≤ si∂∂̄ψ for some s < 1. Let f be a ∂̄-closed (0, 1)-form in B in

L2(eψ−w). There exists u solution to ∂̄u = f such that

∫

B

|u|2eψ−w ≤ Cs

∫

B

| f |2
i∂∂̄(ψ+w)

eψ−w.

Here | · |i∂∂̄(ψ+w) denotes the norm with respect to the metric i∂∂̄(ψ + w).

In order to define the weights ψ and w, let now

K(r) =

∫ r

1/4

log 1/t

(1 − t)2
dt,

and consider the corresponding negative function

F(ρ, x) =

{

0 if ρ ≤ x,

log x − 1
K(ρ)

∫ ρ

1/4
log max(x, t)

log 1/t
(1−t)2 dt if ρ > x.

Define

v(z) = n

∞
∑

k=1

F
(

r2, |φz(ak)|2
)

.

We apply the theorem to

ψε(z) = (1 − ε) log
1

1 − |z|2 ,(6)

wε(z) = (2α− ε) log
1

1 − |z|2 + v(z),(7)

where ε > 0 will be chosen later. Clearly i∂ψε ∧ ∂̄ψε ≤ (1 − ε)i∂∂̄ψε = (1 − ε)2
Ψ.

Lemma 6 There exists ε > 0 such that i∂∂̄wε ≥ εΨ.

Assuming this we have i∂∂̄(ψε + wε) ≥ Ψ, so the theorem provides a solution u to

the ∂̄-equation such that

∫

B

|u|2(1 − |z|2)2α−1 ≤
∫

B

|u|2eψε−wε ≤ Cε

∫

B

|∂̄F|2Ψ(1 − |z|2)2α−1e−v.

By construction supp(∂̄F) ⊂ ∪kK(ak, δ) \ K(ak, δ/2) and for z in the region δ/2 <
|φz(ak)| < δ one has:
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−v(z) ≤
∑

j: |φz(a j )|<r

log
1

|φz(a j)|2
� Cδ,n +

∑

1/2<|φz(a j )|<r

log
1

|φz(a j)|2
≤ Cr,p,δ,n.

Thus, by (5), the last integral above is finite. Then f = F − u ∈ B2
α and f (ak) = vk,

as in the proof of Theorem 1.

Proof of Lemma 6 It is enough to see that i∂∂̄v ≥ −2(α− ε)Ψ.

Define the function

A(r) =

∫ r

1/4

− log2 t

(1 − t)2
dt.

Performing the integral in the definition of v we have

v(z) = n
∑

k: |φz(ak)|< 1
2

{

log |φz(ak)|2 − A(r2)

K(r2)

}

+ n
∑

k: 1
2
<|φz(ak)|<r

{(

1 − K
(

|φz(ak)|2
)

K(r2)

)

log |φz(ak)|2

− A(r2) − A
(

|φz(ak)|2
)

K(r2)

}

.

Therefore, using that i∂∂̄ log |φz(ak)|2 ≥ 0,

i∂∂̄v(z) ≥ n
∑

1/2<|φz(ak)|<r

i∂∂̄

[(

1 − K
(

|φz(ak)|2
)

K(r2)

)

log |φz(ak)|2
]

+
i∂∂̄A

(

|φz(ak)|2
)

K(r2)
.

In order to simplify the expressions we use the shorthand notation

N
(

φz(ak)
)

=
i∂∂̄|φz(ak)|2
1 − |φz(ak)|2 ,(8)

T
(

φz(ak)
)

=
i∂|φz(ak)|2 ∧ ∂̄|φz(ak)|2
(

1 − |φz(ak)|2
) 2

.(9)

Notice that by the invariance of the Bergman metric (or by a direct calculation):

(10) N
(

φz(ak)
)

+ T
(

φz(ak)
)

= Ψ(z).
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A computation gives then

i∂∂̄

(

(

1 − K
(

|φz(ak)|2
)

K(r2)

)

log |φz(ak)|2
)

=

(

1 − K
(

|φz(ak)|2
)

K(r2)

)

i∂∂̄ log |φz(ak)|2

+

(

3
log |φz(ak)|2
|φz(ak)|2 + 2

log2 |φz(ak)|2
1 − |φz(ak)|2

)

T
(

φz(ak)
)

K(r2)

+
log2 |φz(ak)|2
1 − |φz(ak)|2

N
(

φz(ak)
)

K(r2)

i∂∂̄A(|φz(ak)|2) = − log2 |φz(ak)|2
1 − |φz(ak)|2 N

(

φz(ak)
)

− 2

(

log |φz(ak)|2
|φz(ak)|2 +

log2 |φz(ak)|2
1 − |φz(ak)|2

)

T
(

φz(ak)
)

.

This and the fact that 1 − K(|φz(ak)|2)
K(r2)

≥ 0 when |φz(ak)| < r yield:

i∂∂̄v(z) ≥ −n
1

K(r2)

∑

1/2<|φz(ak)|<r

log
1

|φz(ak)|2
T
(

φz(ak)
)

|φz(ak)|2 .

Again from i∂∂̄ log |φz(ak)|2 ≥ 0, we deduce that:

T
(

φz(ak)
)

|φz(ak)|2 ≤ N
(

φz(ak)
)

1 − |φz(ak)|2 ,

or equivalently (by (10))

(11)
T
(

φz(ak)
)

|φz(ak)|2 ≤ Ψ(z).

Thus

i∂∂̄v(z) ≥ −2n

∑

k: 1/2<|φz(ak)|<r log 1
|φz(ak)|

K(r2)
Ψ(z).

Take ε > 0 so that D(Γ) < (α− ε)/n. Since limr→1
log 1

1−r

K(r2)
= 1, the density condition

of Theorem 4 implies the existence of r big enough such that

i∂∂̄v(z) ≥ −2(α− ε)Ψ(z).
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4 Proof of Theorem 2

(a) This is Theorem 2 in [Mas97].

(b) The proof we present is just an adaptation to the ball of the proof of Theo-

rem 3.6 in [LT96]. We include an outline for the sake of completeness.

Theorem 2 (b) is a consequence of the following proposition and a certain invari-

ance by automorphisms of interpolating sequences. Given a map F = (F1, . . . , Fn),

let ‖F‖A−p =
∑

j ‖F j‖A−p . Let DuF j denote the derivative of F j in the unitary direc-

tion u.

Proposition 7 Let Γ = {ak}k. Assume γ0 > 0, p > 0, and F = (F1, . . . , Fn) : B →
C

n, F j ∈ A−p, are such that F(ak) = 0 for all k ∈ N and

n
∑

j=1

|DuF j(ak)| ≥ γ0 ∀k ∈ N ∀u.

Then there exists C = C(n, p) > 0 such that

n(0, r) ≤ C

(1 − r)n

[

log ‖F‖A−p + log
1

γ0
+ log

( 1

1 − r

)] n

.

Proof Fix r ∈ (0, 1) and take ak with |ak| ≤ r. Because of the estimate on DuF j(ak),

there exist constants c1, c2, A1, A2 > 0 depending only on n, p and ‖F‖A−p such that:

d
(

ak, F
−1(0) \ {ak}

)

> dr := γ0c1(1 − r2)A1 .

and

(12) |F(w)| > δr := γ0c2(1 − r2)A2 for w ∈ ∂K(ak, dr).

This is proved using the analog of [LT96, Lemma 3.9] for the ball.

By Sard’s lemma there exists τ ∈ R
n with

δr

4
√

n
< τ j <

δr

2
√

n
j = 1, . . . , n

and a zero measure set E in the unit torus T
n such that for all ϕ = (ϕ1, . . . , ϕn) ∈

T
n \ E the value aϕ := τeiϕ

= (τ1eiϕ1 , . . . , τneiϕn ) is regular for F, hence F−1(aϕ) is a

discrete variety in C
n. Let

Fϕ = F − aϕ.

By (12), on ∂K(ak, dr):

|F − Fϕ|2 = |aϕ|2 =

n
∑

j=1

|τ j |2 < n
δr

4n
< |F|2.
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From this and Rouché’s lemma [BGVY93, Theorem 2.12] one deduces that

nF

(

K(ak, dr)
)

= nFϕ

(

K(ak, dr)
)

(denoting by nF(U ) the number of zeros of a map

F in U , counted with multiplicities). Thus

n(0, r) ≤ nFϕ

(

B(0, r)
)

for all ϕ ∈ T
n \ E.

Now take β > 1 such that βnr =
1+r

2
and apply the average estimate [Gru77, Theo-

rem 2.9]. If dϕ denotes the product measure in T
n and M(F j , t) = sup|z|=t |F j(z)|,

n(0, r) ≤ 1

(2π)n

∫

Tn

nFϕ

(

B(0,R)
)

dϕ

≤ cn

(β2 − 1)n

n
∏

j=1

[

log+ M(F j , β
nR) + log

4
√

n

δr

]

≤ cn

(β − 1)n

[

log ‖F‖A−p + log
( 1

1 − βnR

)

+ log

(

4
√

n

c2

)

+ A2 log
( 1

1 − r

)

+ 3 log
1

γ0

] n

.

Since β − 1 > 1−r
2n

and 1 − βnr =
1−r

2
, there exists C > 0 depending on n, p and

α such that log( 1
1−βnr

) � log( 1
1−r

), and the proof is finished.

Proof of Theorem 2 By [Mas98, proof of Main Theorem] there exist p > 0 and a

map F satisfying the hypotheses of Proposition 7 with γ0 = 1.

Fix z ∈ B. Define Γz = {φz(ak)}k and Fz
= F ◦ φz. Then Fz ∈ A−p and

‖Fz‖A−p ≤ ‖F‖A−p (1 − |z|)−p . Also Fz ≡ 0 on Γz, and letting bk = φz(ak):

n
∑

j=1

|DuFz
j (bk)| ≥

n
∑

j=1

|DuF j(ak)|
∥

∥Jφz

(

φz(ak)
)

· Jφz(ak)
∥

∥ ≥ 1√
n

(1 − |z|2)2(n+1).

Then we get the desired result as an application of Proposition 7.

5 Appendix. Proof of Lemma 5

Before the proof we state some easy consequences of (a) and (b) in Theorem 1.

Lemma 8 (See [Mas99], Lemma 3.5) Conditions (a) and (b) in Theorem 1 imply:

(i) For every 0 < r < 1 there exists a constant C(r) > 0 such that n(z, r) ≤
C(r) log( e

1−|z| ).

(ii) There exists C > 0 such that log 1
|z|n(z, |z|) ≤ C log( e

1−|z| ).

Proof of Lemma 5 Let

A(x) =

∫ x

1/4

log t

1 − t
dt.
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With this and the definition of K(r) given in Section 2, v can be rewritten as:

v(z) = v1(z) + v2(z),

where

v1(z) = n
∑

k: |φz(ak)|≤1/2

[

log |φz(ak)|2 − A(ρ2
z )

K(ρ2
z )

]

,

v2(z) = n
∑

k: 1/2<|φz(ak)|≤ρz

[(

1 − K
(

|φz(ak)|2
)

K(ρ2
z )

)

log |φz(ak)|2

− A(ρ2
z ) − A

(

|φz(ak)|2
)

K(ρ2
z )

]

.

(13)

Besides the notations (8), (9), we use:

β(z) = (1 − |z|2)i∂∂̄|z|2, γ(z) = i∂|z|2 ∧ ∂̄|z|2,

M
(

φz(ak)
)

=
i∂|φz(ak)|2 ∧ ∂̄|z|2 + i∂|z|2 ∧ ∂̄|φz(ak)|2

(1 − |z|2)
(

1 − |φz(ak)|2
) .

Notice that Ψ(z) = (1 − |z|2)−2
(

β(z) + γ(z)
)

.

We recap in the following lemma the computations we will use in the estimate of

i∂∂̄v in the following lemma. The proof is straightforward but tedious, and we omit

it.

Lemma 9 The following equalities hold

i∂∂̄K
(

|φz(ak)|2
)

= N
(

φz(ak)
)

+ T
(

φz(ak)
)

= Ψ(z),

i∂∂̄A
(

|φz(ak)|2
)

=
1 − |φz(ak)|2
|φz(ak)|2 T

(

φz(ak)
)

+
(

log |φz(ak)|2
)

Ψ(z),

(1 − |z|2)2i∂∂̄
A(|z|2)

K(|z|2)
=

(

1 − |z|2 − |z|2 log 1
|z|2

|z|2 +
2 log 1

|z|2

K(|z|2)

− A(|z|2)

K(|z|2)

(

1 − 2

K(|z|2)

)

)

γ(z)

K(|z|2)

+

(

log |z|2 − A(|z|2)

K(|z|2)

)

β(z)

K(|z|2)
,

i∂∂̄
A
(

|φz(ak)|2
)

K(|z|2)
=

1 − |φz(ak)|2
|φz(ak)|2

T
(

φz(ak)
)

K(|z|2)
+
(

log |φz(ak)|2
) Ψ(z)

K(|z|2)

−
(

log |φz(ak)|2
)M

(

φz(ak)
)

K2(|z|2)
− A

(

|φz(ak)|2
)

K2(|z|2)
Ψ(z)

+
2A
(

|φz(ak)|2
)

K3(|z|2)

γ(z)

(1 − |z|2)2
,
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i∂∂̄
K
(

|φz(ak)|2
)

K(|z|2)
=

(

1 − K
(

|φz(ak)|2
)

K(|z|2)

)

Ψ(z)

K(|z|2)
− M

(

φz(ak)
)

K2(|z|2)

− 2
K
(

|φz(ak)|2
)

K3(|z|2)

γ(z)

(1 − |z|2)2
.

Now we can estimate i∂∂̄v.

Case |z| ≤ 3/4 Here ρz = 3/4. Let K = K(3/4) and A = A(3/4). Using (11) and

log |φz(ak)|2 ≥ 0, from (13) we have:

i∂∂̄v(z) ≥ i∂∂̄v2(z)

= n
∑

k: 1/2<|φz(ak)|≤3/4

i∂∂̄

[(

1 − K
(

|φz(ak)|2
)

K

)

log |φz(ak)|2 +
A
(

|φz(ak)|2
)

K

]

= n
∑

k: 1/2<|φz(ak)|≤3/4

[

− log |φz(ak)|2
K

Ψ(z) − 2
(

1 − |φz(ak)|2
)

K · |φz(ak)|2 T
(

φz(ak)
)

+
1 − |φz(ak)|2
K · |φz(ak)|2 T

(

φz(ak)
)

+
log |φz(ak)|2

K
Ψ(z)

]

≥ − 1

K

∑

k: 1/2<|φz(ak)|≤3/4

1 − |φz(ak)|2
|φz(ak)|2 T

(

φz(ak)
)

≥ − 1

K

∑

k: 1/2<|φz(ak)|≤3/4

(

1 − |φz(ak)|2
)

Ψ(z)

� −n(z, 3/4)Ψ(z).

By Lemma 8, n(z, 3/4) � log( e
1−|z| ) � 1, since |z| ≤ 3/4. Thus

i∂∂̄v(z) � −Ψ(z).

Case |z| > 3/4 Now ρz = |z|. We estimate separately i∂∂̄v1 and i∂∂̄v2.

Using Lemma 9, throwing away positive terms, and finally applying Lemma 8:

i∂∂̄v1(z) � −n(z, 1/2)i∂∂̄
A(|z|2)

K(|z|2)

≥ − n(z, 1/2)

(1 − |z|2)2

[(

1 − |z|2
|z|2 + 2

log 1
|z|2

K(|z|2)
− A(|z|2)

K(|z|2)

)

γ(z)

K(|z|2)

− A(|z|2)

K(|z|2)

β(z)

K(|z|2)

]

� − n(z, 1/2)

(1 − |z|2)2

(

γ(z) + β(z)

K(|z|2)

)

� −n(z, 1/2)
Ψ(z)

K(|z|2)
� −Ψ(z).
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Consider now the term (13).

i∂∂̄v2(z) ≥ n
∑

1/2<|φz(ak)|≤|z|

− log |φz(ak)|2i∂∂̄

(

K
(

|φz(ak)|2
)

K(|z|2)

)

− 2
1 − |φz(ak)|2
|φz(ak)|2

T
(

φz(ak)
)

K(|z|2)

+
1 − |φz(ak)|2
|φz(ak)|2

K
(

|φz(ak)|2
)

· M
(

φz(ak)
)

K2(|z|2)

− i∂∂̄
A(|z|2)

K(|z|2)
+ i∂∂̄

A
(

|φz(ak)|2
)

K(|z|2)
.

Applying again Lemma 9 and (11), and throwing away positive terms

i∂∂̄v2(z) ≥ n
∑

1/2<|φz(ak)|≤|z|

−2 log
1

|φz(ak)|2
K
(

|φz(ak)|2
)

K3(|z|2)

γ(z)

(1 − |z|2)2

− 1 − |φz(ak)|2
|φz(ak)|2

T
(

φz(ak)
)

K(|z|2)

−
[

2 log 1
|z|2

K(|z|2)
− A(|z|2)

K(|z|2)

]

γ(z)

(1 − |z|2)2K(|z|2)

+
A(|z|2)

K(|z|2)

β(z)

(1 − |z|2)2K(|z|2)

− log
1

|φz(ak)|2
Ψ(z)

K(|z|2)
− A

(

|φz(ak)|2
)

K(|z|2)

Ψ(z)

K(|z|2)

� −
∑

k: 1/2<|φz(ak)|≤|z|

log 1
|φz(ak)|2

K(|z|2)
Ψ(z) −

log 1
|z|2 n(z, |z|)
K2(|z|2)

Ψ(z)

−
∑

k: 1/2<|φz(ak)|≤|z|

A(|z|2) − A
(

|φz(ak)|2
)

K2(|z|2)
Ψ(z).

We will be done as soon as we prove that each of the last three terms is bounded

below by a constant times −Ψ(z). Since K(|z|2) ' log( 1
1−|z| ), this is so for the first

term (by condition (b) in Theorem 1) and the second term (by Lemma 8). For the

third one just notice that it is implied by condition (b) in Theorem 1, since

∣

∣−A(|z|2) + A
(

|φz(ak)|2
) ∣

∣ ≤ sup
1/4<t<1

|A ′(t)|
∣

∣ |z|2 − |φz(ak)|2
∣

∣

≤ (4/3 log 4)
(

1 − |φz(ak)|2
)

.
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[Hör90] L. Hörmander, An introduction to complex analysis in several variables. third ed.,
North-Holland, Amsterdam, 1990.
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