Two fixed point theorems in topological and metric spaces

Josef Daneš

Some fixed point results are derived for mappings of contractive type in metric and topological spaces.

In the paper we shall generalize some results of Boyd and Wong [1], Ćirić [2], Massa [4], Sehgal [6], and the author [3].

DEFINITION 1. Let (X, d) be a metric space, $T: X \rightarrow X$ a mapping and $\varphi: R^{+}=[0,+\infty) \rightarrow R^{+}$a right continuous nondecreasing function such that $\varphi<$ id ; that is, $\varphi(t)<t$ for all $t>0$. For x, y in X let us denote

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(x, T y), d(y, T x), d(y, T y)\}
$$

and $\tilde{M}(x, y)=\max \{M(x, y), d(T x, T y)\}$. We shall say that the mapping T is a φ-max-contraction if
$(\varphi-\max) \quad d(T x, I y) \leq \varphi(M(x, y)) \quad$ for all x, y in X.
LEMMA 1. I is a φ-max-contraction if and only if the following condition is satisfied:

$$
(\varphi-\max)^{\sim} \quad d(T x, T y) \leq \varphi(\tilde{M}(x, y)) \text { for all } x, y \text { in } X .
$$

Proof. Clearly, if T is a φ-max-contraction, then T satisfies the condition $(\varphi-\max)^{\sim}$ (because φ is nondecreasing and $M(x, y) \leq \tilde{M}(x, y))$.

Let T satisfy the condition $(\varphi \text {-max })^{\sim}$. If $x, y \in X$ and $M(x, y)=\tilde{M}(x, y)$, then $(\varphi$-max $)$ holds for these x, y. Let x, y in X be such that $M(x, y) \neq \tilde{M}(x, y)$; that is, $M(x, y)<\tilde{M}(x, y)$. Then

Received 27 November 1975.
$\tilde{M}(x, y)=d(T x, T y)>0$, so that

$$
d(T x, T y) \leq \varphi(\tilde{M}(x, y))=\varphi(d(T x, T y))<d(T x, T y),
$$

which is a contradiction. The proof of the lemma is completed.
In what follows we shall use the following trivial (and well-known) lemma.

LEMMA 2. If $t_{0} \in R^{+}$and $t_{n+1}=\varphi\left(t_{n}\right)$ for $n \geq 0$, then $t_{n} \rightarrow 0$
DEFINITION 2. For x in X let

$$
O(x, n)=\left\{x, T x, \ldots, T^{n} x\right\}
$$

and

$$
O(x, \infty)=\left\{x, T x, \ldots, T^{n} x, \ldots\right\}=\bigcup_{n=1}^{\infty} O(x, n)
$$

LEMMA 3. For all $m, n \geq 0$ and x in X, the following inequalities hold:

$$
\begin{align*}
& \text { diam } O\left(I^{m} x, n\right) \leq \varphi^{(m)}(\operatorname{diam} O(x, m+n)) ; \tag{1}\\
& \text { diam } O\left(I^{m} x, \infty\right) \leq \varphi^{(m)}(\operatorname{diam} O(x, \infty)), \tag{2}
\end{align*}
$$

provided that diam $O(x, \infty)<\infty$. (Here "diam" means "the diameter of" and $\varphi^{(m)}=\varphi \circ \varphi \circ \ldots \circ \varphi(m$ times $\left.).\right)$

Proof. Let $1 \leq i, j \leq n+1, x \in X$. Then

$$
\begin{aligned}
d\left(T^{i} x, T^{j} x\right)= & d\left(T\left(T^{i-1} x\right), T\left(T^{j-1} x\right)\right) \leq \varphi\left(M\left(T^{i-1} x, T^{j-1} x\right)\right) \\
= & \varphi\left(\operatorname { m a x } \left\{d\left(T^{i-1} x, T^{j-1} x\right), d\left(T^{i-1} x, T^{i} x\right), d\left(T^{i-1} x, T^{j} x\right),\right.\right. \\
& \left.\left.d\left(T^{j-1} x, T^{i} x\right), d\left(T^{j-1} x, T^{j} x\right)\right\}\right) \leq \varphi\left(d i a^{\prime}, O(x, n+1)\right),
\end{aligned}
$$

and hence

$$
\begin{equation*}
\operatorname{diam} O(T x, n) \leq \varphi(\operatorname{diam} O(x, n+1)) \tag{3}
\end{equation*}
$$

From (3) one obtains easily (by mathematical induction) the inequality (1).
But the inequality (1) implies:

$$
\operatorname{diam} O\left(I^{m} x, n\right) \leq \varphi^{(m)}(\operatorname{diam} O(x, n+m)) \leq \varphi^{(m)}(\operatorname{diam} O(x, \infty))
$$

if diam $O(x, \infty)<+\infty$. As diam $O\left(T^{m} x, n\right) \rightarrow \operatorname{diam} O\left(T^{m} x, \infty\right)$ whenever $n \rightarrow+\infty$ (because the sequence of sets $\left\{O\left(T^{m} x, n\right)\right\}_{n=1}^{\infty}$ is nondecreasing), (2) follows.

THEOREM 1. Let (X, d) and φ be as in Definition 1 and let $T: X \rightarrow X$ be a φ-max-contraction. Then:
(i) $\left\{T^{n} x\right\}_{n=1}^{\infty}$ is a Cauchy sequence for each x in X with bounded T-orbit, that is, with diam $O(x, \infty)<+\infty$;
(ii) if $(i d-\varphi)^{-1}[0, a]$ is bounded, where $a=d(x, T x)$, then diam $O(x, \infty)<+\infty$;
(iii) if $x \in X$, diam $O(x, \infty)$ is finite and the closure of $O(x, \infty)$ is complete (this is so if X is complete), then the sequence $\left\{T^{n} x\right\}_{n=1}^{\infty}$ converges to a fixed point u of T and $d\left(T^{n} x, u\right) \leq \varphi^{(n)}(\operatorname{diam} O(x, \infty))$ for all $n \geq 1$;
(iv) T has at most one fixed point in X.

Proof. (i) Let $t_{0}=\operatorname{diam} O(x, \infty)$ and $t_{n+1}=\varphi\left(t_{n}\right)$ for $n \geq 0$. By Lemma 2, $\lim t_{n}=0$. As diam $O\left(T^{n} x, \infty\right) \leq \varphi^{(n)}\left(t_{0}\right)=t_{n}$ by Lemma 3 (2), we see that the sequence $\left\{I^{n} x\right\}_{n=1}^{\infty}$ is Cauchy.
(ii) Let $n \geq 1$. Then, by Lemma 3(1), there exists an integer k such that $1 \leq k \leq n$ and $d\left(x, T^{k} x\right)=\operatorname{diam} O(x, n)$. Then

```
diam}O(x,n)=d(x,\mp@subsup{T}{}{k}x)\leqd(x,Tx)+d(Tx,T\mp@subsup{T}{}{k}x)
    \leqd(x,Tx)+\operatorname{diam}O(Tx,n-I)\leqd(x,Tx)+\varphi(\operatorname{diam}O(x,n)),
```

by Lemma $3(1)$. Hence we have that $(\operatorname{id}-\varphi)(\operatorname{diam} O(x, n)) \leq d(x, T x)$, that is, $\operatorname{diam} O(x, n) \leq \sup (i d-\varphi)^{-1}[0, d(x, T x)]$, so that the sequence $\{\text { diam } O(x, n)\}_{n=1}^{\infty}$ is bounded by a number r. Then $\operatorname{diam} O(x, \infty)=\lim \operatorname{diam} O(x, n) \leq r$.
(iii) By $(i),\left\{T^{n} x\right\}_{n=1}^{\infty}$ is a Cauchy sequence contained in the complete subset $\overline{\theta(x, \infty)}$ of X, so that $T_{x} \rightarrow u$ for some u in X. Suppose that $d(u, T u)>0$. Then $M\left(T^{n} x, u\right)=\max \left\{d\left(T^{n} x, T u\right), d(u, T u)\right\}$ for sufficiently large n. It is easy to see that φ is upper semicontinuous. As $M\left(T_{x}^{n}, u\right) \rightarrow d(u, T u)$, we have

$$
\begin{aligned}
d(u, T u)=\lim d\left(T^{n+1} x, T u\right) \leq \lim \sup \varphi\left(M\left(T^{n} x, u\right)\right) & \leq \\
& \leq \varphi(d(u, T u))<d(u, T u)
\end{aligned}
$$

a contradiction. Hence $d(u, T u)=0$; that is, $u=T u$. Furthermore, we have $d\left(T^{n} x, u\right) \leq \operatorname{diam} O\left(T^{n} x, \infty\right) \leq \varphi^{(n)}(\operatorname{diam} O(x, \infty)) \quad$ by Lemma 3 (2).
(iv) Let u, v be two distinct fixed points of T. Then $d(u, v)=d(T u, T v) \leq \varphi(M(u, v))=\varphi(d(u, v))<d(u, v)$, a contradiction. Hence T has at most one fixed point in X.

REMARK 1. Let us note that the condition (φ-max) is equivalent to the following one: there are nonnegative real functions a, b, c, \vec{d}, e on $X \times X$ with $a+b+c+\bar{d}+e=1$ such that for all x, y the following inequality holds:

$$
\begin{aligned}
& d(T x, T y) \leq \varphi(a(x, y) d(x, y)+b(x, y) d(x, T x)+c(x, y) d(x, T y)+ \\
& +d(x, y) d(y, T x)+e(x, y) d(y, T y))
\end{aligned}
$$

The proof is trivial.
LEMMA 4. Let X be a compact (separated) space, $d: X \times X \rightarrow R^{+}$ a fronction and $T: X \rightarrow X$ a mapping. Suppose that the function $f(x)=d(x, T x)$ is lower semicontinuous on X and that the following condition is satisfied:
(4) for each x in X with $x \neq T x$ there exists a positive integer $k(x)$ such that

$$
d\left(T^{k(x)} x, T^{k(x)+1} x\right)<d(x, T x)
$$

Then T has a fixed point in X.
Proof. Let z in X be such that $f(z)=\min f(X)$. Suppose that $z \neq T z$. Then, by (4),

$$
f\left(T^{k(z)} z\right)=d\left(T^{k(z)} z, T^{k(z)+1_{z}} z\right)<d(z, T z)=f(z)=\min f(X)
$$

a contradiction. Hence we have $z=T z$. (Moreover, we have proved that
the fixed point set of T contains the set $f^{-1}(\min f(X))$.)
REMARK 2. Consider the following two conditions:

$$
\begin{equation*}
d\left(T x, T^{2} x\right)<d(x, T x) \text { if } x \neq T x \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
d(T x, T y)<\max \{d(x, y), d(x, T x), d(y, T y)\} \quad \text { if } y \neq x \neq T x \tag{6}
\end{equation*}
$$

It is easy to see that (6) implies (5), and that (5) implies (4). The function $f(x)$ is lower semicontinuous on X if, for example, T is continuous and d is lower semicontinuous.

DEFINITION 3. Let X be a topological space, M a family of subsets of X such that M in M and x in X implies that \bar{M}, $M \cup\{x\}$, and $M \backslash\{x\}$ are in M. Let μ be a mapping of M into a set such that $\mu(\bar{M})=\mu(M)=\mu(M \cup\{x\})$ for each M from M and $x \in X$. (We shall call μ a pseudomeasure of noncompactness. Compare with the definition of a measure of noncompactness in SadovskiY [5].) A mapping $T: X \rightarrow X$ is said to be μ-densifying if $M, T M$ in M and $\mu(T M)=\mu(M)$ implies M relatively compact.

THEOREM 2. Let X be a (separated) topological space, $d: X \times X \rightarrow R^{+}$a function and $T: X \rightarrow X$ a continuous μ-densifying mapping such that the function $f(x)=d(x, T x)$ is lower semicontinuous on each compact subset of X (the last condition is satisfied if, for example, d is lower semicontinuous on each compact subset of $X \times X$). Suppose that $O\left(x^{*}, \infty\right)$ is in M for some $x^{*} \in X$, and that the condition (4) of Lemma 4 is satisfied. Then T has a fixed point in X.

Proof. Let K be the closure of $O\left(x^{*}, \infty\right)$. As

$$
T\left(O\left(x^{*}, \infty\right)\right) \cup\left\{x^{*}\right\}=O\left(x^{*}, \infty\right)
$$

and T is continuous, we have $T K \cup\left\{x^{*}\right\}=K$. From the last equality and the inclusion $O\left(x^{*}, \infty\right) \in M$ it follows that K and $T K$ are in M. But $\mu(T K)=\mu(T K \cup\{x\})=\mu(K)$, so that K is relatively compact. As K is closed, it is compact. Hence T is a self-mapping of the compact space K into itself and satisfies all conditions of Lemma 4 . We conclude that T has a fixed point in $K \subset X$.

DEFINITION 4. Let us remember some notions. Let (X, d) be a metric space and for any subset M of X let us define:

$$
\begin{aligned}
& Q_{\alpha}(M)=\{a>0: M \text { has a finite } a \text {-covering }\}, \\
& Q_{\chi}(M)=\{a>0: M \text { can be covered by finitely many } a \text {-balls }\}, \\
& Q_{J}(M)=\{a>0: M \text { contains no infinite a-discrete set }\}, \\
& Q_{\chi_{i}}(M)=\{a>0: M \text { can be covered by finitely many } a \text {-balls }
\end{aligned}
$$

and $\mu(M)=\inf Q_{\mu}(M)$ for $\mu=\alpha, X, J, X_{i}$, respectively. The set functions α, X, J, X_{i} are called the Kuratowski's, Hausdorff, Istrătescu's, and inner Hausdorff measure of noncompactness, respectively (of the metric space (X, d)). We shall say that a mapping $T: X \rightarrow X$. densifies with respect to μ, where $\mu=\alpha, \chi, J$, or X_{i}, if $\mu(T M)<\mu(M)$ for each non-precompact subset M of X.

COROLLARY. Let (X, d) be a complete metric space, $T: X \rightarrow X$ a continuous mapping which densifies with respect to the Kuratowski's, Hausdorff, Istrătescu's, or inner Hausdorff measure of non-compactness of the space (X, d). If $O\left(x^{*}, \infty\right)$ is bounded for some x^{*} in X and the condition (4) of Lemma 4 is satisfied, then T has a fixed point in X.

Proof. Let M be the family of all bounded subsets of X. It is easy to see that T is μ-densifying (where $\mu=\alpha, \chi, J$, or X_{i}), and Theorem 2 may be applied. The corollary is proved.

References

[1] D.W. Boyd and J.S.W. Wong, "On nonlinear contractions", Proc. Amer. Math. Soc. 20 (1969), 458-464.
[2] Lj.B. Cirić, "A gneeralization of Banach's contraction principle", Proc. Amer. Math. Soc. 45 (1974), 267-273.
[3] Josef Daneš, "Some fixed point theorems in metric and Banach spaces", Comment. Math. Univ. Carolinae 12 (1971), 37-51.
[4] Silvio Massa, "Generalized contractions in metric spaces", Boll. Un. Mat. Ital. 10 (1974), 689-694.
[5] Е.H. Садовсний [B.N. Sadovskii], "Предельно номпантные и уплотнякщие операторы" [Limit-compact and condensing operators], Uspehi Mat. Nauk 27 no. 1 (1972), 81-146; Russion Math. Surveys 27, no. 1 (1972), 85-155.
[6]
V.M. Sehgal, "On fixed and periodic point for a class of mappings", J. London Math. Soc. (2) 5 (1972), 571-576.

Mathematical Institute,
Charles University,
Prague - Karlín,
Czechoslovakia.

