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Abstract

A mixed boundary-valued problem associated with the diffusion equation, that
involves the physical problem of cooling of an infinite slab in a two-fluid medium,
is solved completely by using the Wiener-Hopf technique. An analytical solution
is derived for the temperature distribution at the quench fronts being created by
two different layers of cold fluids having different cooling abilities moving on the
upper surface of the slab at constant speed. Simple expressions are derived for
the values of the sputtering temperatures of the slab at the points of contact with
the respective layers, assuming one layer of the fluid to be of finite extent and the
other of infinite extent. The main problem is solved through a three-part Wiener-
Hopf problem of a special type, and the numerical results under certain special
circumstances are obtained and presented in the form of a table.

1. Introduction

The interesting physical problem considered in this paper is that of the de-
termination of the temperature distribution in an infinite slab composed of
uniform material possessing uniform thermal properties. Such a heated slab
is allowed to cool down with the help of a two-fluid medium of different
extents, with two different rates of cooling but moving with the same uni-
form speed v along one of the surfaces of the slab, producing two quench
fronts (see [1]) that also propagate with the same speed. The present mixed
boundary value problem for the diffusion equation is a generalisation of the
problems considered in [ 1 ]-[7] where similar cooling phenomena have been
investigated associated with a single fluid medium.
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[2] Cooling of an infinite slab 475

The principal mathematical tool employed to solve the mixed boundary-
valued problem at hand is the Wiener-Hopf technique, as described in [6]
and [8], and utilised for the solution of the problems considered in [2]-
[7]. Following the methods of Jones [6], the problem under consideration
is reduced to that of solving a Wiener-Hopf type functional relation, known
as the "three-part Wiener-Hopf problem" (see Chakrabarti [4]). This three-
part Wiener-Hopf problem is solved by employing an idea similar to that of
Jones (Jones [6] and Chakrabarti [4]) after reducing the problem to a system
of algebraic equations involving two-infinite unknowns, whose solutions are
completed in a standard manner. As in the works of Chakrabarti and Evans,
we find that the sputtering temperature, i.e. the temperature of the surface of
the slab at the points of contact with the two layers of fluid, can be calculated
by means of simple formulae involving sine and cosine hyperbolic functions,
the width of the slab, the speed v and the diffusivity k, along with the
rates Bo and B{ of cooling. Certain typical values of various parameters of
the problem are considered for the purpose of numerical computation of the
sputtering temperatures.

2. Formulation and reduction to the Wiener-Hopf problem

Using Cartesian co-ordinates (x, y), the boundaries of the infinite slab
under consideration are represented by the lines y = 0 and y = h respec-
tively. Inside the material of the slab, the distribution of the steady-state
temperature u(x, y) satisfies the partial differential equation

with

p - = 0, 0<y<h, (2.1)
ox

where k is the thermal diffusivity of the material, v is the constant speed of
the quench fronts x = 0, x = -I on the surface y — h of the slab, one half
(x < 0) of which is in contact with a two-fluid medium of different cooling
abilities.

It is required to solve (2.1) under the following set of conditions:

(i) % — 0 > o n y = 0» —oo < x < °° (insulated boundary)
(ii) ?jj = 0,ony = h,x>0 (insulated boundary)

(iii) J$+BQU = 0 , on y = h , -I < x < 0 (Bo = constant rate of cooling)
(iy) % + Biu = 0, on y = h, -oo < x < -I {B{ = constant rate of

cooling in -oo < x < -I)
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(v) M - » 0 a s x - » -oo (cold end at x —> -oo)
(vi) u -* 1 as x —> +oo (constant temperature at x -> +oo) and

(vii) M, | ^ ~ 0(1) as JC -»• 0 , and as x -+ - / , on y — h (bounded
temperature at the quench fronts).

In order to reduce the above mixed boundary-value problem to a Wiener-
Hopf problem, we follow Jones's method [6], as described in [7] and [5].

Setting
u{x,y) = \-<p{x,y)e-sx, (2.2)

(2.1) transforms to the form

(V2-s2)<p(x,y) = 0, (2.3)

and the conditions (i) to (vii) transform to the following new conditions:
(i)' | f = 0 , o n j ; = 0 (-oo < x < oo)

(ii)' §J = 0 , o n j / = / i , ; c > 0
(iii)' % + Boq> = Boe

sx , on y = h , -I < x < 0
(iv)' %k + B,v = B,esx , on y = h , -oo<x<-l
(v)' (p ~ O{esx), a s x - » - o o

(vi)' (p ~ O(e~sx), as x -> +oo
(vii)' <p and | f ~ 0(1) as x -> 0 and as x —• - / , on 3; = A, for

uniqueness of the solution.

While the above conditions (i)' to (v)' and (vii)' are derivable from the
conditions (i) to (v) and (vii) by using the transformation (2.2), the derivation
of the condition (vi)' requires the following attention.

The transformation (2.2) produces the partial differential equation (2.3)
for the function <p , which possesses, for x > 0 , the general solution in the
form

<p{x, y) = ] T Ane-{s2+fl")l'2x(cos 0ny) + Aesx + Be~sx, (*)
n

which satisfies the conditions (i)' and (ii)', with An, A, B as arbitrary
constants and the constants /?„ satisfying the equation

sm0nh = O. (**)

Then, with the form (•) of q>, (vi) will be satisfied, in conjunction with
(2.2), only if A = 0, and, then (vi)' will have to be used as a replacement of
(vi) under the transformation employed here.

We then define the following Fourier transforms:

<D(Q, y) = <D+(a, y) + * , ( a , y) +d>~(a, y) = f ° <p(x, y)eiaxdx, (2.4)
J—00
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with
/•oo

O (a,>»)= / (p{x,y)e dx,
Jo

*,(o,j ')= f\(x,y)eiaxdx, (2.5)

®~(a,y)= (p{x, y)e'axdx,
J— OO

and observe, as in [2] and [3], by using the conditions (v)', (vi)' and (vii)',
that the functions <I>+ and O/+ are analytic in the region Im(a) > —s and
O~ and O'~ are analytic in region Im(a) < 5 whilst Oj represents an entire
function of a , in the complex a-plane, so that O(a, y) and <J>'(a, y) are
analytic functions of a in the strip | Im(a)| < s.

Using the Fourier transform to the partial differential equation (2.3) and
solving the resulting ordinary differential equation satisfying the condition
(i)', we obtain

O(a, y) = A(a) cosh yy, (2.6)

where y = (s2 + a2)1 /2 .
Applying a Fourier transform to the boundary conditions (ii)\ (iii)' and

(iv)', along with the use of (2.6), we obtain the following relations:

O'(a, h) = 0>',(a, h) + * '~ (a , h) = A(a)ysinyh, (2.7)

O',(a h) + BnQ>,(a h) — Bn • ~ g (2.8)
1 ° ' ° s + ia

O'~(a, h) + BjO'ia, h) — B^- :—, (2.9)

and

(2.10)
(using (2.8) and (2.9)). Eliminating ^(a) from (2.7) and (2.10), we obtain
the following three-part Wiener-Hopf functional relation for the determina-
tion of the three unknown functions O + (a , h), O'~(a, h) and <!>\(a, h):

50<D+(a, h) -#,(<*)<*>>, h) - (B0/B,)K2{a)9>'-(a, h) = iBQ/(a-is),
(2.11)

where

tf,(a) = 1 + (B0/y)cothyh, K2(a) = 1 + (B,/y)cothyh, (2.12)
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so that

Kl{a)=(l-!&) + ̂ K2(a). (2.13)

It is worth noting, at this point, that in the special case when 1 = 0, Oj (a, h)
= 0 , K2(a) = Kx (a) — 1 + (BJy) coth yh, and we can easily restore the same
results as obtained by Levine [7] and Chakrabarti [3].

3. Solution and sputtering temperatures

In order to solve the three-part Wiener-Hopf problem as given by (2.11)
we proceed in a manner as described next.

We factorise K{ (a) in the form

Kl{a) = Kf(a)K;(a), (3.1)

where K*(a) and ATj~(a) are analytic in the overlapping halfplanes Im(a) >
T_ and Im(a) < T+ respectively, the details of which will be presented below,
and rewrite (2.11) as

*lt f} jj-*r(°)*i(«. h) - ^-K;(a)O'-(a, h)

•«/ / A. (a) A. (a) (.a - is)

Now,

y sinh yh + Bo cosh yh
A, (a) = :—r—;1 ysmhyh

where ±ian , ±i/?B are the zeroes of ysinhyA + 50coshyA and ysinhyh
respectively, and A is a known constant. Moreover, we write

K+(a) = A1'2 f[[(a + ian)/{a + ifin)],

which is free from zeroes and poles in the upper half-plane

T = Im(a) > max(-a1 , -/?,) = T_ (say)

and

K-{a) = Al/2 Q[(a - ian)/(a - ifij],
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which is free from zeroes and poles in the lower half-plane

T = Im(a) < min(aj ,/?,) = x+ (say).

Let us now observe that for x_ < c < c < x+ ,

o, h) dco

(3.4)

where X+ is analytic in T > c and X_ is analytic in x < c (see Jones [6]
and Noble [8]). Then from (3.2), using (3.4), we obtain

K*(a) + ~ 2niJ_oo+ie K+(co) (to-a)
i' <t>'~(co,h) dco

2niJ_oo+ic< K*(to) (co-a)'

> ( a , h) ( 1 1 \ 1 r°°+ic <j> (G)) /j) (1(0

K+(a) + \B~0 ~ ~B,) ' 2lTi } _ 0 0 + i e K+(co) (to-a)

1 " (3-5)
(a - is) [k+(a) K+(is)

which has been derived by separating the + and - functions and utilising
Liouville's theorem in a manner similar to that employed by Jones [6] and
other workers of the Wiener-Hopf technique (see Noble [8], also).

In order to employ Liouville's theorem in the present context, we have to
bear in mind the behaviour of tp and 0 as x —> 0 and as x —> - / , as given
by the condition (vii)'. Then, when the definitions (2.5) of the functions
O + , Ot and O_ are made use of, along with the Abelian theorems (see
Noble [7], for example) on Fourier transforms, we find that

(a) 9+(a,h), O /
+ ( a , / j )~O( i ) , a s Ima^+<x>,

(b) O,(a, h), O',(a, h) are integral functions of a with the property
that

/ u\ A aJ ( u\ f e "*'> a s I m a - > + o o
(0, h) and <t>,(Q,/!)~

as Ima —+ —oo

(c) <D~(a, h), <J>'~(a, h) ~ O(e~ial/a), as I m a - -oo.

These infinity behaviours (a), (b) and (c) of the various complex functions
of a ultimately force the separated + and - functions in (3.2) obtained
after using the split as given by (3.4), to be identically equal to zero when
Liouville's theorem is also made use of.
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We then evaluate the integral in (3.5), by closing the contour in the lower
half-plane, and use the residues at the poles, to get

(a - w) L*,+(a) K+(is)\'

where a lies in the upper half-plane x > c.
We again rewrite (2.11) as

fa (iaja) \-iaJ

1 * ' (3.6)

where

^ 2 ( a ) _ »-/ x _ y sinh yft + lfy cosh yft
^ , (o) ~ W y sinh y/i + ^o cosh y/z' l J

and use the factorisation K(a) = K+(a)K~(a), where

K^ia) = Bi/2 f[[(a ± z^)/(a ± /<*„)], (3.9)

±/an and ±ian being the zeroes of ysinhyh + 5 0 /Coshy/t respectively,
and B being a known constant, different from the constant A, appearing
earlier.

We then divide both sides of (3.7) by K+{a)e~'al, bearing in mind the
behaviour (b) of <fr{ (a, h) and O', (a, h) as a —> oo, to obtain the relation:

Splitting the first term in (3.10) into the sum Y+ + Y_ , where Y+ is
analytic in T > d and Y_ is analytic in t > d' {x < d < d' < x+) in the
usual manner, and using Liouville's theorem as before, we obtain that
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e

ft)-

(3.11)

when (3.3) is also made use of.
We then evaluate the integral in (3.11), by closing the contour in the upper

half-plane, and use the residues at the poles, to get

oo

V
- a){iaj + ia'j)

n=\
*j

iaj - is)(ictj -a)j^x (iaj +

n=\

(3.12)

where a lies in the lower half-plane x < d'.
Using a = iar in (3.6) and a = —iar in (3.12), we obtain the follow-

ing two-infinite system of algebraic equations for the two-infinite unknowns
Q>+(iar, h) = xr and ®'~(—iar, h) = yr, respectively:

(3.13)
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where

b (l

0 AB'J AB L(a; + a;.)(ay + ar)J ^ L(«; + <)(<*. - a j j '

fr = -(s_ r n r + - 7+ '

g = —- • y~̂  — /— ' - • n (—"—^—~)

+
(3.14)

The solution of the system of equations (3.13) will determine the un-
known constants xr, yr for all r = 0, 1,2, It is interesting to note that
the Wiener-Hopf functional relation (2.11) containing the three unknowns
<D+(a, h), <J>',(a, h) and O'~(a, h), is tackled in such an elegant way that
the determination of only two unknown functions O +(a , h) and ®'~(a, h)
will solve the present problem completely.

The temperature distribution can finally be determined, by using (3.6) and
(3.12). The sputtering temperature at the quench front x = 0, i.e., at the
points of contact with the first fluid stratum (or the first quench front), is
obtained from the relation (see Chakrabarti [3])

uJh) = 1 - ?>(0, h) = lim [1 + /aO+(a, h)]
|a|-»oo

(3.15)

(using (3.6)).
In the special case when / = 0, the expression for the sputtering temper-

ature at the quench front x = 0 reduces to the same form as obtained by
Levine [7] and subsequently by Chakrabarti [3].
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The sputtering temperature at the second quench front x = -I i.e., at the
points of contact with the second fluid stratum, is given by (2.2)

si

where

u(-l,h) = 1-?(-/, h)e",

(-l,h)= lim [iaeial0~{a,h)].
|<*|->oo

Using (3.12) and (2.9), we have

(3.16)

So,

, . . . ial« —
hm [iae O (

|a|->oo

-si 1

~AB

s + ia B,

. . i q £ 1 -.I—, i > . i a /

= lim : -=-O (a,h)iae

gx, ti-a>~a''f(( ^-^ )

We finally derive from (3.16) that

n±j

fa (aj - s)(aj + «;.) 11 V (a. + «'„)(<*,. -
4

, 2 2N

(3.17)
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4. Numerical results

[ii]

The numerical results for the sputtering temperatures uo{h) and u{-l, h)
at the points of contact to the first and second fluid strata, that is at the first
and second quench fronts respectively for suitable choices of A, /i, s and
/ , where A = BQh, n - Bth, are tabulated below taking A • B = 1. The
equations (3.15) and (3.17) have been utilised for the numerical evaluation
of the sputtering temperatures.

A study of the table of the values of the sputtering temperatures in Set
I, shows that for fixed fi,s and l(s < I), uo(h) and u(—l,h) increase
with the increase in values of A up to A = 0.4 and then decrease with the
increasing values of A.

A study of the table of the values of the sputtering temperatures in Set II,
shows that for fixed n, s and l(s > I), uo(h) and « ( - / , h) increase with
the increase in values of A.

TABLE: Calculation of sputtering temperatures uo(h) and u(—l, h)

Set I:

H = 0.02

s = 0.01

/ = 0.5

«o(*) =

«(-/,*) =

M = 0.02

s = 0.01

/ = 0.5

«o(*) =

«(-/,*) =

A = 0.04

0.3139361

0.1900475

A = 0.4

0.5888806

0.3335399

A = 0.06

0.4141611

0.2509164

A = 0.6

0.5771541

0.3073943

A = 0.08

0.4691014

0.285951

A = 0.8

0.5593662

0.2821618

A = 0.2

0.5717536

0.344757

A = 1

0.540358

0.2598951

Set II:

H = 0.02

s = 0.05

/ = 0.02

"oC0 =
«(-/,*) =

A = 0.04

0.5459645

0.4238668

A = 0.06

0.6465706

0.4971518

A = 0.08

0.7023641

0.5421164

A = 0.2

0.8428629

0.6531928

A = 0.4

0.9646779

0.7129149
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