The Consortium to Investigate Vascular Impairment of Cognition: Methods and First Findings

Kenneth Rockwood, Heather Davis, Chris MacKnight, Robert Vandorpe, Serge Gauthier, Antonio Guzman, Patrick Montgomery, Sandra Black, David B. Hogan, Andrew Kertesz, Remi Bouchard, Howard Feldman

ABSTRACT: Background: The Consortium to Investigate Vascular Impairment of Cognition (CIVIC) is a Canadian, multi-centre, clinic-based prospective cohort study of patients with Vascular Cognitive Impairment (VCI). We report its organization and the impact of diagnostic criteria on the study of VCI. Methods: Nine memory disability clinics enrolled patients and recorded their usual investigations and care. A case report form included all vascular dementia (VaD) individual criteria for each of four sets (National Institute of Neurological Disorders and Stroke (NINDS-AIREN), Alzheimer’s Disease Diagnostic Treatment Centers (ADDTC), the ICD-10 Classification of Mental and Behavioural Disorders (ICD-10), and the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV)) of consensus-based diagnostic criteria and for the Hachinski Ischemia Score (HIS). Investigators, having completed the case report form, were asked to make a clinical judgement about the cognitive diagnosis based on the best available information, including neuroimaging. Results: Of 1,347 patients (mean age 72 years; 56% women), 846 (63%) were diagnosed with dementia and 324 (24%) were diagnosed with VCI. The proportion of patients diagnosed with VaD by the diagnostic criteria was: 23.9% (n=322) by DSM-IV, 10.2% (n=137) by HIS, 4.3% (n=58) by ICD-10, 3.8% (n=51) by ADTCC, and 3.6% (n=48) by NINDS-AIREN. Judged against a clinical diagnosis of VaD, the sensitivity/specificity of each was: DSM-IV (0.77/0.80); HIS (0.41/0.92); ICD-10 (0.29/0.98); ADTCC (0.24/0.98); NINDS-AIREN (0.42/0.995). Compared with a clinical diagnosis of VCI, sensitivities were lower for the diagnostic criteria, reflecting the exclusion of patients who did not have dementia. Conclusions: Consensus-based criteria for VaD omit patients who do not meet dementia criteria that are modeled on Alzheimer’s disease. Even for patients who do, the proportion identified with VaD varies widely. Criteria based on empirical analyses need to be developed and validated.
The term VCI refers to a heterogeneous syndrome of cognitive impairment in which a vascular or cardiac cause is implicated. Three broad clinical subtypes are included: VCI that does not meet dementia criteria (vascular cognitive impairment, no dementia – VascCIND), mixed AD/VaD and VaD. These can be further classified radiographically as showing any of cortical or subcortical infarction, or predominantly white matter changes.

Having surveyed the situation in 1993-1994, the Consortium of Canadian Centres for Clinical Cognitive Research (C5R) undertook an empirical study of the manner in which practicing Canadian clinicians diagnose VaD. Here we report the methods of our inquiry and provide baseline results which estimate the proportion of patients identified as having VaD by the various sets of criteria, their clinical and neuroimaging profiles, and how these criteria compare with a clinical diagnosis.

Methods

Nine memory disability clinics, based in university-affiliated teaching hospitals, participated. Attending physicians were either geriatricians (n=17) or neurologists (n=14). This is a prospective cohort study, with exposures identified at baseline, and outcome measures to include death, institutionalization, and progression of disease. Exposure data included demographic information and data on vascular risk factors. All criteria from each of four sets of diagnostic criteria were recorded in a case report form organized traditionally (i.e., presenting complaint, symptoms, physical exam, neuroimaging results). Items were collected to replicate data collection in the second phase of the Canadian Study of Health and Aging (CSHA). The Consortium to Investigate Vascular Impairment of Cognition (CIVIC) protocol built on usual care at each centre. Although a study nurse completed a semi-structured interview and nurses and physicians were obliged to complete several standardized scales and the diagnostic checklist, use of ancillary investigations, such as neuroimaging (CT and/or MRI, SPECT) and neuropsychological testing, were left to individual sites. The data collection protocol also importantly parallels the clinic-based cohort study known as A Canadian Cohort Study of Cognitive Impairment and Related Dementias (ACCORD), the first report from which has now been submitted for publication.

Diagnosis criteria

To diagnose VaD, the NINDS-AIREN criteria first define dementia as progressive deficits in memory and other areas of cognition (notably language, motor skills and perception) that occurs in the absence of delirium or “systemic disorders”. Similar to NINDS-AIREN, the definition of dementia in DSM-IV requires memory and other cognitive deficits. These are specified as being “sufficiently severe to cause impairment in occupational or social functioning” provided that such cognitive and functional impairment represents “a decline from a previously higher level of functioning.” The 10th International Classification of Diseases (ICD-10) - Mental and Behavioural Disorders (both clinical and guidelines and research criteria) views dementia as progressive impairment of multiple higher cortical functions, specified as: memory, thinking, orientation, comprehension, calculation, learning capacity, language, and judgement. Note, however, that memory impairment is not specified as primary. ICD-10 also specifies that the deficits occur “in the absence of clouding of consciousness”. Of some relevance to the understanding of VaD is that these criteria note that noncognitive features (“deterioration in emotional control, social behaviour, or motivation”) can accompany or even precede dementia. Nevertheless, how this insight should be operationalized is not specified. Like ICD-10, the ADTCC criteria do not privilege memory over other cognitive functions; rather they define dementia as “deterioration from a known or estimated prior level of intellectual function sufficient to interfere broadly with the patient’s customary affairs…”

The criteria also have subtle but important differences in how they view the attribution of vascular injury. The most restrictive criteria (i.e., those most closely on a multi-infarct model) are the ADTCC, which require evidence of two or more strokes outside the cerebellum. The NINDS-AIREN criteria specify the temporal relationship to be within three months of a known stroke, or require that the progression be fluctuating or stepwise. The least restrictive criteria are the DSM-IV, which do not specify the timing of the relationship between ischemic lesions, which allow white matter changes to be sufficient to demonstrate vascular injury, and which permit evidence of focal vascular injury either by neuroimaging or by focal neurological signs by traditional clinical examination.

Other measures

Although built on a “usual care” protocol, all clinics collected certain standard data, in addition to the case report form data on the elements that went into judgements about dementia and vascular burden of illness. Each of these items was collected in the CSHA. Additional measures were the Mini-Mental State Examination, the Functional Rating Scale, the Clinical Dementia Rating, the Cumulative Illness Rating Scale, the Disability Assessment for Dementia and the Functional Assessment Staging Tool each of which, save the last, was used in the ACCORD study.

Analysis

The sensitivity and specificity of each set of criteria were calculated in the usual fashion. Yule’s Q was calculated to compare the proportions of patients who met each of the various criteria.

Ethics

All patients gave informed consent. This study was approved by the ethics committee of each participating institution.
RESULTS

The baseline CIVIC cohort was assembled between July 1996 and March 1999. A bi-modal distribution was observed, with most patients being older adults (65+ years), but an important proportion (9%) at each clinic being less than age 55 years (median 75; range 37 to 97). As seen in Table 1, vascular risk factors were common, particularly in those diagnosed with VCI of whom 56% had hypertension, 21% had diabetes mellitus, and 23% had lipid disorders, compared with the overall burden of these factors in the study sample (38%, 13%, and 18% respectively). Most patients (56%) were women, with the average years of education being 11.3±3.9 years. In general, the memory clinics see patients early in the course of their illness, as reflected by a mean MMSE score of 22.3 (±6.5), as well as a mean functional assessment staging score of 3.6 (±1.3), where a score of 3 indicates mild cognitive impairment and a score of 4 indicates mild dementia. Although there were many similarities observed between patients seen by geriatricians and those seen by neurologists, patients seen by geriatricians were older (75±10 years compared with 69±10 years), and had more comorbid illnesses (mean CIRS score 6.3±5.3, compared with 3.8±4.9).

Of the 1,347 patients, the most common diagnosis was probable Alzheimer’s disease (n=463; 34%). Vascular cognitive impairment (n=324; 24%) was diagnosed in three groups of patients: 97 (30%) who had VCI that did not meet criteria for
Table 3: Clinical and demographic characteristics of patients identified with vascular dementia by each of four major sets of diagnostic criteria and the Hachinski Ischemic Score (HIS)

<table>
<thead>
<tr>
<th></th>
<th>NINDS-AIREN (N=48)</th>
<th>ADTCC (N=51)</th>
<th>ICD-10 (N=58)</th>
<th>DSM-IV (N=322)</th>
<th>HIS (N=137)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean, sd)</td>
<td>76.2 (8.0)</td>
<td>74.8 (7.4)</td>
<td>76.8 (7.7)</td>
<td>76.0 (8.2)</td>
<td>75.3 (8.5)</td>
</tr>
<tr>
<td>Female (n, %)</td>
<td>19 (40.0)</td>
<td>19 (37.3)</td>
<td>28 (48.3)</td>
<td>166 (51.6)</td>
<td>62 (45.3)</td>
</tr>
<tr>
<td>Years of Education (mean, sd)</td>
<td>11.0 (3.5)</td>
<td>10.9 (4.1)</td>
<td>11.2 (3.6)</td>
<td>11.0 (3.8)</td>
<td>10.0 (4.1)</td>
</tr>
<tr>
<td>Hypertension (n, %)</td>
<td>33 (68.8)</td>
<td>32 (62.8)</td>
<td>33 (57.9)</td>
<td>146 (46.4)</td>
<td>91 (67.4)</td>
</tr>
<tr>
<td>Lipid Disorders (n, %)</td>
<td>8 (19.5)</td>
<td>13 (30.2)</td>
<td>16 (34.0)</td>
<td>47 (16.6)</td>
<td>30 (25.0)</td>
</tr>
<tr>
<td>Diabetes Mellitus (n, %)</td>
<td>12 (25.0)</td>
<td>11 (22.5)</td>
<td>11 (23.6)</td>
<td>47 (16.6)</td>
<td>37 (27.2)</td>
</tr>
<tr>
<td>MMSE Score (mean, sd)</td>
<td>20.9 (6.1)</td>
<td>24.3 (6.1)</td>
<td>25.1 (5.9)</td>
<td>24.2 (6.4)</td>
<td>22.5 (7.2)</td>
</tr>
<tr>
<td>FRS Score (mean, sd)</td>
<td>4.4 (0.9)</td>
<td>4.3 (0.8)</td>
<td>4.4 (0.9)</td>
<td>4.3 (0.9)</td>
<td>4.0 (1.2)</td>
</tr>
<tr>
<td>Focal Neurological Symptoms (n, %)</td>
<td>31 (64.6)</td>
<td>32 (62.8)</td>
<td>37 (63.8)</td>
<td>99 (30.8)</td>
<td>97 (70.8)</td>
</tr>
<tr>
<td>Focal Neurological Signs (n, %)</td>
<td>23 (47.9)</td>
<td>20 (39.2)</td>
<td>29 (50.0)</td>
<td>85 (26.4)</td>
<td>69 (50.4)</td>
</tr>
<tr>
<td>Number of Focal Neurological Signs (mean, sd)</td>
<td>1.5 (0.8)</td>
<td>1.6 (0.7)</td>
<td>1.6 (0.9)</td>
<td>1.4 (0.7)</td>
<td>1.5 (0.7)</td>
</tr>
<tr>
<td>Diagnosed by Neurologist (n, %)</td>
<td>13 (27.1)</td>
<td>26 (51.0)</td>
<td>23 (39.7)</td>
<td>137 (42.8)</td>
<td>32 (23.4)</td>
</tr>
<tr>
<td>Diagnosed by Geriatrician (n, %)</td>
<td>35 (72.9)</td>
<td>25 (49.0)</td>
<td>35 (60.3)</td>
<td>183 (57.2)</td>
<td>105 (76.6)</td>
</tr>
<tr>
<td>Hachinski Ischemic Score (mean, sd)</td>
<td>7.7 (3.1)</td>
<td>6.2 (3.5)</td>
<td>6.7 (3.4)</td>
<td>4.5 (3.1)</td>
<td>8.6 (1.9)</td>
</tr>
</tbody>
</table>

Table 4: Neuroimaging (CT) characteristics of patients identified by each set of diagnostic criteria

<table>
<thead>
<tr>
<th></th>
<th>NINDS-AIREN (N=48)</th>
<th>ADTCC (N=51)</th>
<th>ICD-10 (N=58)</th>
<th>DSM-IV (N=322)</th>
<th>HIS (N=137)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single cortical strokes (n, %)</td>
<td>9 (18.8)</td>
<td>7 (13.7)</td>
<td>10 (17.2)</td>
<td>41 (12.7)</td>
<td>24 (17.5)</td>
</tr>
<tr>
<td>Multiple cortical strokes (n, %)</td>
<td>4 (8.3)</td>
<td>9 (17.7)</td>
<td>4 (6.9)</td>
<td>14 (4.4)</td>
<td>9 (6.6)</td>
</tr>
<tr>
<td>Single subcortical strokes (n, %)</td>
<td>7 (14.6)</td>
<td>4 (7.8)</td>
<td>6 (10.3)</td>
<td>37 (11.5)</td>
<td>12 (8.8)</td>
</tr>
<tr>
<td>Multiple subcortical strokes (n, %)</td>
<td>9 (19)</td>
<td>33 (64.7)</td>
<td>14 (24.1)</td>
<td>36 (11.2)</td>
<td>13 (9.5)</td>
</tr>
<tr>
<td>Clinically significant white matter changes (n, %)</td>
<td>23 (47.9)</td>
<td>19 (37.3)</td>
<td>24 (41.4)</td>
<td>156 (48.5)</td>
<td>31 (22.6)</td>
</tr>
<tr>
<td>Watershed ischemia (n, %)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>No identified lesions (n, %)</td>
<td>2 (4.2)</td>
<td>0 (0.0)</td>
<td>4 (6.9)</td>
<td>24 (7.5)</td>
<td>15 (11.0)</td>
</tr>
</tbody>
</table>

Dementia, 126 (39%) who were characterized as “possible Alzheimer’s disease with a vascular component”, and 101 (31%) diagnosed with VaD. The other diagnostic categories were: no cognitive impairment 151 (11%); cognitive impairment that did not meet the diagnostic criteria for dementia, excluding vascular causes, 253 (19%); mixed AD with other non-VaD 41 (3%); frontotemporal dementia 42 (3%); dementia with Lewy Bodies 32 (2%); other focal dementias 5 (0.4%); and other dementias 37 (3.0%).

Table 2 represents the sensitivity and specificity of each set of diagnostic criteria compared with a clinical diagnosis of VCI and VaD. Sensitivity for all the diagnostic criteria were relatively low compared with a diagnosis of VCI, and improved slightly when compared with a diagnosis of VaD.

The exact numbers and degree of overlap between the various sets of criteria is illustrated in the Figure, which shows that very few patients would be classified as having VaD by each set of criteria. As the diagnostic criteria identify different numbers of patients, consideration of the characteristics of patients identified is enabled by exploration of demographic and clinical characteristics of the people identified with VaD (Table 3).

Of the five criteria considered, DSM-IV identified the greatest numbers of patients as having VaD. Lower proportions of these individuals had vascular risk factors and focal neurological signs compared with those identified by other criteria. Table 4 reports the neuroimaging profiles of the patients, using only CT data to allow best comparability. As would be expected, greater proportions of ADTCC classified patients showed a multi-infarct profile, whereas white matter changes were most common amongst those diagnosed by DSM-IV. In general, neuroimaging was felt to change the final diagnosis in 10.8% of patients.

DISCUSSION

Eight years ago, the C5R called for empirical studies of the merit of consensus-based criteria for VaD. Since then several studies have shown that the criteria are not substitutable, and also...
lack good inter-rater reliability.9-16 This study adds to our understanding of the operational aspects of existing VaD criteria by profiling other characteristics of those who meet each set. It puts in place the baseline for understanding the criterion validity of each approach as the outcome data become available, and builds on two preliminary reports of mixed dementia28 and patterns of presentation29 as well as two pilot studies carried out at a single site.30,31

We have reported characteristics of the CIVIC cohort at inception. Of the 1,347 patients, 324 had a diagnosis meeting clinicoangiologic criteria for VCI, as operationalized in usual practice at expert referral clinics across the country. Compared with patients with AD, VCI patients were the same age (75.6±8.0) and had the same years of education (10.9±3.8), however there was a gender difference with more women in the AD group compared with the VCI group.

Our data must be interpreted with caution. As this is a clinic-based study, and we make no claim that proportions estimated are representative of the population. On the other hand, this study was conducted in parallel with the CSHA, therefore the characteristics of the clinic patients may be understood within that context. For example, 39% of our patients with cognitive impairment had a diagnosis of AD vs 37% of those with a clinical examination in the CSHA.19 Similarly, 27% of our patients with cognitive impairment had a diagnosis of VCI compared with 24% of those with a clinical examination in the CSHA.32

Some readers might wonder about the usefulness of a clinical diagnosis of VCI/VaD, and why we did not specify at the outset how physicians should have made such a diagnosis. In our view, to have done so at the outset would have been circular: we would have simply been offering yet another consensus-based set of criteria. We argue that what really is needed are data about how VaD is diagnosed, given the widespread acknowledgement and empirical studies of the problems with the existing consensus-based criteria. In consequence, the CIVIC protocol built on the usual care provided at each of the participating clinics precisely because no set of diagnostic criteria had been validated. The strategy, therefore, was to use clinical judgement to arrive at a clinical diagnosis and then to compare these judgements with existing criteria. Without such data, there is no non-arbitrary means of specifying at the outset what these criteria should have been. From the present study, we now have some idea of what factors influence the clinical judgment of practicing physicians. Ultimate validation will be available with follow-up, as predictive validity of all criteria, and the clinical judgement can be assayed (e.g., ability to predict death, disease progression) and criterion validity can be compared by reference against a neuropathological diagnosis. In addition, the strategy of building on usual care and following patients to assay outcomes allows the value added by, for example, routine neuroimaging, to be evaluated.

Our data were collected from memory clinics. While inferences drawn in such a setting might be internally valid, their generalizability is not likely to extend to patients seen in cerebrovascular clinics, who more typically present with classical strokes.33 At present, however, we do not have a good estimate of what proportions of patients with VCI present to stroke clinics and what proportion come to the attention of memory disorders clinics. In addition, at memory clinics, the pretest probability of AD is high, so that a memory clinic estimate of VCI includes many patients with so-called “mixed dementia”. On the other hand, that too will be the case in representative population samples19 including ones with autopsy validation.34,35 Thus how “mixed dementia” is handled should not be an afterthought. In practice, and on a population basis, it will be an important aspect of diagnosis.37

Our data have some additional important strengths. Coupling this study with the CSHA and ACCORD studies should greatly enhance the efficacy of the inquiry, especially as more detailed analyses of the natural history of various types of VCI are undertaken. Given that the findings are based on usual clinical care, the generalizability, at least to patients with cognitive presentations, is assured. The comparatively low proportion of missing data (apart from neuroimaging, which was undertaken with varying frequencies and modalities across the country, we have no variable with more than 3% missing data, and most variables have none) speaks to the care with which the study was conducted.

Several recent studies have compared the empirical performance of existing criteria. Briefly, our data are similar to the previous work, in terms of rank order of the number of individuals diagnosed with VaD by each set of criteria. In a study of 25 cases chosen to represent a spectrum of cognitive impairment and subtypes of dementia, Chui et al10 found that the DSM and modified HIS were most liberal, ADDTC and original HIS were intermediate, and NINDS-AIREN criteria were the most conservative in terms of diagnosing VaD. Wetterling et al11 studied 167 consecutive patients referred for the evaluation of possible dementia, and showed a diagnosis of VaD for 65 patients (38.9%) using the DSM-IV criteria, 28 (16.8%) using the ICD-10 criteria, 23 (13.8%) using the ADDTC criteria, and 12 (7.2%) using the NINDS-AIREN criteria. They also found that the percentage of overlapping cases between the groups was poor (<50%). Verhey et al12 studied 124 demented patients from a memory clinic, and found that depending on which criteria were used, frequencies of VaD ranged from 6 to 32%, and only eight patients were diagnosed as having VaD by all criteria. In work comparing a neuropathological diagnosis to the clinical criteria, the ‘probable’ categories of both the ADDTC and NINDS-AIREN criteria in particular lacked sensitivity (0.21 and 0.19 respectively).9

Interestingly, while the DSM-IV criteria were reasonably sensitive, they lacked specificity, and thus included many people not otherwise classified as having VaD, even by the more liberal criteria that seem to operate in usual practice. It is instructive to consider why this might be so. DSM-IV allows for patients with “dementia due to multiple etiologies” to be double-counted, i.e., included in both VaD and AD, and VaD or other dementia groups. This approach accords with a recent proposal to classify mixed dementias as primary neurodegenerative dementia / VCI.16 Such an approach can also be operationalized with reasonable precision, using Bayes’ theorem, or like modeling approaches.38

As noted, the DSM-IV criteria allow for focal neurological symptoms/signs or neuroimaging findings and do not specify a time frame for the strokes to count as being “etiologically related” to the dementia; rather the contribution of ischemic
injury to cognitive impairment is left to clinical judgment. Such judgments are likely to vary depending on the theory of causality which clinicians bring to bear in relation to the ischemic injuries. As reviewed elsewhere,7,18 two poles can be detected: that the cognitive impairment arises directly from the focal impact of infarction, or that the lesions represent a brain at risk for cerebrovascular injury. Whereas the former theory was dominant previously39 – when many of these criteria were being decided upon – several lines of evidence (of which, perhaps the most influential are autopsy data showing the ischemic burden of cerebral atherosclerosis on cognition, even with limited frank infarction) point to the latter having substantial credence.34-36

The observation of routine clinical practice is of particular value when controversy exists about the nature of clinical phenomena. Under such circumstances, there is merit in going back to basics, and seeing how it is that clinicians operate. Such an exercise, however, can only be a starting point. While it represents an alternative to expert consensus, its real merit is in helping to provide a database from which patterns can be observed. These patterns will be most helpful as they relate to outcome. Put another way, they represent a viable alternative to a “gold standard”, which is one form of criterion validity.40 Another form of criterion validity (the strongest validation standard) is predictive validity.40 With the cohort assembled, we will turn in further studies to understanding whether clinical criteria that can be derived from this study allow us to predict relevant and non-arbitrary outcomes for patients who present with VCI.

ACKNOWLEDGEMENTS

The CIVIC study was developed through the Consortium of Canadian Centres for Clinical Cognitive Research, supported by the Medical and Research Council of Canada through its MRC/Pharmaceutical Manufacturers’ Association of Canada support program in association with Aventis Canada (grant no. PMAC/MRC PA-13560 / 1996HMR01). Dr. MacKnight is supported by a New Investigator Award and Dr. Rockwood by an Investigator Award, each from the Canadian Institutes for Health Research. Dr. Rockwood is also supported by the Dalhousie Medical Research Foundation as the Kathryn Allen Weldon Professor of Alzheimer Research.

REFERENCES

